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IPAC: Caltech Astrophysics Science Center

eScience Center functions for NASA missions

Cosmology and

e Data centers for major projects such as Great galaxy evolution
Observatories and all-sky surveys Exoplanets
. . Asteroids and the
e Supports NASA, NSF and privately funded projects solar system
Infrared-

e Award-winning media, outreach and education support

submillimeter
astrophysics.

*\Vibrant research environment and staff

ZX7xr] Robot Astronomy Talk Show In Progress: The Mass of
Asteroids
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Mission
IRAS
ISO

Spitzer

Herschel
Planck
WISE / NEOWISE

Kepler/K2/TESS

Euclid
WEFIRST
NEOCAM
SPHEREX
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32 Years of Science Operations for NASA Missions

IPAC Role

Science Data Center

US Data Center

Full Science Operations for a NASA
Great Observatory

US Science Center
US Science Data Center

Science Data Center

Candidate and Confirmed Planet

Archive, Follow-up Observing Program _““

US Science Data Center 7 oy >

i g F

Joint Science Operations
Science Data Center

Science Data Center
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2MASS

Keck Interferometer

Keck Observatory

Large Binocular
Telescope
Interferometer

Palomar Transient
Facility

Zwicky Transient
Facility

Large Synoptic
Survey Telescope
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Data processing;
Archive

Observation planning;
Data processing;
Archive

Browse product
pipelines; Archive

Archive

Nightly Ingest; Data
processing; Archive

Nightly Ingest; Data
Processing; Alerts;
Archive

Science Platform &
User Interface
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Spitzer Finds Seven Earth-Size Planets in One System

Hationnl Edition

Lhc cw Lork Cimes

* M-Dwarf, 10% R,,,, 12 pc
from here, first observed
in 2000

e 2015: ground-based
observing yields 3 Earth-
sized planets
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IPAC Astronomy 2017: Debris Disks and
Colliding Neutron Stars

Gravitational Waves! Exoplanets in Debris Disks
* |PAC Executive Director Dr. George Helou and * |PAC scientist Dr. Tiffany Meshkat finds that
IPAC scientist Dr. Lin Yan were part of the team giant exoplanets that orbit far from their stars
confirming the source of the recent observation are more likely to be found around young stars
of gravity waves from colliding neutron stars. that have a disk of dust and debris than those
* First co-observations of gravity waves with without disks.
EM-spectrum signature. * Spitzer data on debris disk systems vs. non-
« Data from IPAC’s NED cited in discovery debris disk systems; scanned for exoplanets
papers. * Combined with data from Keck and ESO VLT.
* ICE team developed key graphics for public e Result helps JWST and other missions plan
communication of results. where to look for exoplanets.

RIPPLES OF GRAVITY,
FLASHES OF LIGHT:

WORLD'S OBSERVATORIES
WITNESS A COSMIC CATACLYSM
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NASA/IPAC Extragalactic Database
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NED Is Building the Census of the Universe

ol
TPAC | UXTRAGALACTIC" TABASE " [ J O 5 b I I t I
e . IH11on Ccatalog sources
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Aperture/Beam Spectrum Previews Retrieve Data Observational Information Spectral Coverage & Resolution
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NASA/IPAC Infrared Science Archive

5 104 g - - . '
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Wavelength (mlcron) IRAS: 12, 25, 60, 100 microns AKARI: 65,90, 140, 160 microns

IRSA provides all sky images and
catalogs covering 24 wavelength bands.
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Astrophysics Research with IRSA

o0 < i = Irsaipac.caltach.edu
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Buckyballs In A Young Planetary Nebula Spitzer Space Telescope « IRS
NASA 7 JPL-Caltach ¢/ J. Cami (Univ, of Western Ontario/SETI Ingtitute) s5c2010-06a

3000-01-06,

WISE 4.5um (2010) Spitzer 4.5um (2014)
L .

!- &0 s s

7 207004 13 T 20100913 3 20130711

R R

= = T
x . % | WISE (AIWISE): helix; image boundary %
M4 o2 b Mo-soorsy @VEA % - &
designation ] dec clon. clat. sigra sigdec sigradec ‘wimpro wisigmpro wisor wirchiz w2mpro
(deg) (deg) (arcsec) (arcsec) {ancsec) (mag) (mag) (mag)
L7 <16

J0B5530.67+584513.1 133.8786377 58.7536515 08hS5m30.67s 58d45m13.15s 0.0756 0.0788 ~0.0070 14.975 0.031 349 1.1959e+00 14996

J0B5528.37+584604.6 133.8682168 58.7679447 08hS5m28.37s SBA4EmDM 605 0.0602 0.0613 0.0070 14.020 0027 399 B.168e-01 14.084 H H

e - o [ WISE+Spitzer discover the coldest brown dwarf (Luhman

2014, ApJL 786, L18)

Search & display can be tailored to various instrument/science
. . . . ( F ]
Big Data at IPAC / imel  CONTEXES, using reusable visualization components. 0 o1 § @ m &@@h




NASA Exoplanet Archive

Data Holdings

NASA EXOPLANET ARCHIVE ;- ARG e Confirmed exoplanets

A SERVICE OF NASA EXOPLANET SCIENCE INSTITUTE

B, R SR LN . e 80,000+ planetary and stellar

ssstoittioss | | cop nemsomen , || guptopeomitom || pempmrimget for >3500
T parameters Tor >
Explore the Archive New Planets and Parametersl . exo p I an ets

October 27, 2017 « New Data
We've added 13 confirmed planets, which bumps up the total confirmed
planet count to 3,545, and includes the six-planet system HD 34445. Also

added this week: new parameters for 27 planets. (Click ﬁ:rde.uils) . [ ] We e k I y u p d a te S

Transit Surveys 22,649,919 Light Curves

| e Kepler: ~4500 planets and
Kepler ey " candidates, stellar properties,

B R T data validation and occurrence

% Threshold-Crossing Events =+ Q Search Stellar Data

o= - Pew— rate products

Kepler K2  KELT  SuperWASP News—-+ '1 2 3 4 Plots+ 1 2 3 4

e Space (CoRoT) and ground-
Tools & Services Work with Data
+ | @ i | O e |G s based transit surveys (>20

Mt + |{Q} Builda query (AP iz, + || Pre-Generated Plots a1r- .
e e - e million light curves)

O Transit and RV Fitting Planet Data
a Bulk Download Service  =* g&r;g:;?_d;llanets % Microlensing Planets -+ D Contributed Data

e Community-contributed follow-
up observing data (ExoFOP)
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Capabilities

NASA Exoplanet Archive

* Interactive table search;

parameter plotting

* Predicted Observables for

Exoplanets

e Transit and Ephemeris

Service
e Periodograms

e EXOFAST: Transit and
Radial-Velocity Fitting

EXOFAST:
simultaneous on-
demand fitting of

radial velocity and
transit data for
Exoplanet systems.
The Archive is in the
process of making
use of the
Commercial cloud
for the EXOFAST and
Periodogram
services.

e Auto-generated plots and

movies
* AP| to data

Big Data at IPAC / imel
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Typical Big Data Scales
e Google: >20 Exabytes
e Amazon: >1 million servers

e FINRA: scans PB of financia
market data in real time to
for exchange fraud.

e LHC: 600M events/sec (at
1MB/event)

e SKA: data rates of many PB per

second

IPAC Data Center

* 3 rooms, 3500 sq ft .
e 76 x 42U racks

e 2500 cores, increasing to 7000 in
next few years

Big Data at IPAC / imel

I
look

IPAC Datacenter with
12 PB of spinning disk

12 PB disk = 30 PB in next few
years

* Robotic tape library with 17 PB

capacity
All on UPS

13

Amazon Rack with
12 PB spinning disk

* Network: 10 Gbps internal; 10
Gbps to commercial internet; 40
Gbps to internet2; planning Core
upgrade to 100 Gbps

w0 Caltech



Scale of Operations at IPAC

50 .
o IRSA Holdings Growth
IRSA Annual Query Rates IRSA Data Volume (right)
40 T - 5000
has grown by a factor of —_
735 | ten every few years E 4000
S 1 .
7 %0 recently, and is projected :: 3000
— 2 - -
8 5 to grow even faster. £ 2000
g 2] _ = 1000
g 15 - IRSA queries (left) have o 011 I I I
10 + - | exploded with the advent > 0 - "
5 I I - | of program interfaces %QQQ’ ’190% ’19'\9 %Q'\')’ ,19'\9‘ ,19'\9 ,19'\3’
0t— = = W H W and Virtual Observatory
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 | protocols. Year
Year
40 90 154 ~25
D B ~1 GB/ni 1.2 TB/ni 2 B
ata Rate GB/night 76 GB/day GB/night GB/night TB/night GB/day 00 GB/day Th/day
Data Volume 24.5TB 32TB 45TB 350 TB 3 PB 6 PB 7 PB 3PB
LoB 10 100B 750B sources; 0.5 Trillion 108153;‘;%5'
Complexity somirces 44B sources instruments, sources, alert system, row DB, arallel ML*
archive only ML* ML* ML* pnodes

*ML = Machine Learning algorithms used in pipeline
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* NASA Archives, like NASA missions, are
necessarily conservative, focusing on reliable
operations:

o Data integrity, backups, guaranteed
uptime, IT security.

o Support for mission operations; stability
of interfaces.

o Ingestion of datasets is usually a higher
priority than new features.

e Data volumes and database table sizes are
increasing exponentially, creating challenges
for Ingest, query, and download.

o Successful implementation of program
interfaces, e.g. virtual observatory
protocols, has led to incorporation of
NASA Archives into data processing
pipelines, with skyrocketing access rates.

Big Data at IPAC / imel 15

__ The Context of Operational Systems

Summary of FY17 for IRSA and NED:

IRSA:
IRSA:
IRSA:
IRSA:

30 million queries,

200 TiB of data downloaded

20 new datasets

All major data sets available through

VO protocols

IRSA:
IRSA:
NED:
NED:
NED:

Time Series Tool

User interface for NASA IRTF

80 million database queries

83 million new objects and cross-ids
Redesign of User Interface and

supporting infrastructure

w  Caltech



MY ACCESS To RESOURCES ON [SUBTECT] OVER TIME:

1985 1950 1995 2000 2005 2010 2005 2070

BOOK. ON
SUBTECT
[SUBTECT).PDF
SITE GOES DOUN, BACKEND
[SUBTECT] WEB DATABASE DATA NOT ON PfECq:I\MEﬂEﬁ
JAUR FRONTEND
SU ILE APP
https://xkcd.com/1909/ {Lgawmmmy | NDLDNGER R
(SUBTECT] ANALYSIS SOFTLIARE |._gﬁﬁﬁ#§ o e
INTERACTIVE [SUBTECT] CD-ROM E'H%m &Eumwm
LIBRARY MICROFILM
[SUBTECT] COLLECTION

TS UNSETTUNG TO REALIZE HOW QUICKLY DIGITAL RESOURCES
CAN DISAPPEAR WITHOUT ONGOING LIORK TO MAINTAIN THEM.

10 Lessons We’re Learning at IPAC
(with some case studies)




Lesson: Large Holdings

irsabst16-LB/irsa-wi

e Simple solutions with careful planning can get you ;:::g::;::t;:;;::::,;:&:E:;:’:é; o s
a Ior_]g Way Without much technical magic: irsabstlS-L@/irsa-wise-datagd fexport/irsa-wise-datagd
organization is the magic!

irsabst15-L1/irsa-wise-dataB5 fexportfirsa-wise-datad5s
irsabst22-LB/irsa-wise-databé lexport/irsa-vise-datadt
irsabst16-L3/irsa-wise-datad? . . 3 3 3 rsa-wise-dataB?
irsabst15-L8/1rsa-wWise-datads - . 54 port/irsa-wise-datagd
1rsabstl5-L1/1rsa-wise-dataes - ol 3 port/irsa- uTse dataeg
irsabst22-L0/irsa-wi at: portfir -datal®
irFsabstle-L1/irsa-wis a - c G fexport/irsa-wWis atall
irsabstl6-L8/irsa-wise-datal2 N .5 3 943 fexportfirsa se-datal?
irsabst16-L1/irsa-wise-datal3 933 fexport/irsa- e-datal3
irsabsti5-L3/irsa-wise-datald 8.5 963 fexport/irsa-wise-datald
irsabstl5-LO/irsa-wise-datals - 2 fexport/irsa-wise-datals
1r=anst14 LE{!rfa wWige- uatalb 3 % port/irsa-wWise-datalé

fexportfirsa-wise-datal9

* Reduce s/w overheads: small latencies that didn't
use to matter now stand out. ;' e Vo j"*“?"j}“a'.,‘iﬂ:::ﬁ

ise-data23
firsa-wise-dataia
L !1rﬁn wise-datazs

e Pay careful attention to data layouts.

e Maximize channel performance 1/0, networking.

e Put critical high-demand data on faster storage. :.. o

rsa- k1se dataS] . - 3 9 Ie:purt11rsa-
fexportfirsa-wi
aPApnrtrirr

* Increasing storage density worsens bottlenecks. L '.' e s e

e Beware complexity - things that are complicated e

when they are small explode on you when they
grow big.

e Large datasets are hard to move: try to get it right

the first time, and consider moves carefully.

e Large databases are hard to change or update, so

plan the content carefully before loading.

Big Data at IPAC / imel
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L2/irsa-wise-dbms@3
L1/irsa-wise-dbmsB8a
Lifirsa-wise-dbmsAs
1r.ab.t’2 L1/irsa- H1,= dbms66

L1/irsa=wise-dbmse9
t27-L2/irsa-wise-dbms18
irsabst1-L8/irsa-wise-dbms11
irsabstl-L1/irsa-wise-dbms12
irsabstl-L2/irsa-wise-dbmsl3
irsabstl-L3/1rsa-wise-gbmsl4
irsabstl-L2/irsa-wise-dbms15
1rsapsti7-L1/1rsa-wise-abmsls
irsabstl-L1/irsa-wise-dbms17
irsabst27-L2/irsa-wise-dbms18
irsabstd2-L2/irsa-wise-dbms19

Partial listing of IRSA’s WISE
data disks, mostly at ~95%.

11/02/17

ise-dbms83

se-dbmsBd
port/firsa-wise-dbms@s
port/irsa-wise-dbmsec

fexpart/irsa-wise-dbms12
fexport/irsa-wise-dbms13
ort/irsa-wise-gbmsla
xport/irsa-wise-dbms15

fexport/irsa-wWise-dbmsls
fexport/irsa-wise-dbms17
fexport/firsa- e-dbms18
fexport/irsa-wise-dbms13
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Lesson: Large Database Tables

* Optimize data layouts for most common e
use cases: But different use cases “  Depth=7 -
require different organizations. dexing by e B # / |

) ) ] Berriman shows that £ g
* Increasing interest in which tesselation g4 / ‘
scheme is used is not
summary/statistical queries vs. the _asimportantas
optimizing the depth T s et
typical past use case of simple retrieval: °f;::r§g§fgt‘j;nf:;
. . . <10000rows, 00 | Depth=14 E
@) ThIS usage requlres more eXpenSIVe manyce”sortwofew g / ]
. canincrease the £ y E
table scan operations. query time. Here, &
color represents the w2, i
 May need to consider indexing in space- density of objects
within a tesselation gl i
time, rather than just space, for moving cell. g

object applications.

e Some tables are outgrowing our ability
to handle them with previous
techniques: for example, ZTF light
curves.

o 10 108
Big Data at IPAC / imel 18 11/02/17 Ca I tec h
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Case Study: ZTF Light Curves

AV Men (RR Lyr), P = 0.555 days
class probs = 0.016, 0.975, 0.009

* Prior datasets have included a photometry
table which includes a record for every
measurement of every source.

120 119 11.8

e /TF data rate would generate a table with
more than a trillion entries.

o Database servers to handle this scale of
data with traditional approach exceeds
project budget.

o Especially difficult with nightly table 0.0 05 1.0 15 2.0
updates / re-indexing.

124 123 122 121

Light curve from WISE photometry database
e Hybrid approach:

o Database for objects, photometry in files.

o Metadata for objects and pre-calculated
photometric statistics.

o Photometry extracted from files on-the-fly
in response to queries.

Big Data at IPAC / imel 19 11/02/17 Ca I tec h



Lesson: Constant Data Ingest

e Reliable and efficient operations

requires rigorously verified metadata T
with tested process for interface Al I_PERE Data F
changes. =

180

160

e Tables can grow beyond what is feasible
to re-index on a nightly basis: in some | e e
cases, we have implemented multi-
stage table ingest. But this requires
much more operations book-keeping.

: Reversions:
!}'. Jul 2016 - Power cut wiped unsaved settings
3 ‘.' Nov 2016 - Rerouting after water intrusion
AlE AR Feb 2017 - Radio failure

s 3 ,‘ June 2017 - Routing update

?an 2016 Mar 2016 May 2016 Jul 2016 Sep 2016 Nov 2016 Jan 2017 Mar 2017 May 2017 jul 2017

e Because an interruption to operations is

not acceptable, doing a redesign mid-
mission can be ve ry difficult. Parameter tuning by application can make a big

o WISE / NEOWISE / NEOW|SE(R) difference in performance. For ZTF data transfer
.. ] . from Mt. Palomar, optimizing hardware and
mission has been in Operat|0n5 for 8 routing achieves a factor of 2 in transfer rate.
years; Spitzer has been in operations

for 14 years.
Big Data at IPAC / imel 20 11/02/17 Ca I teCh



Lesson: Data Complexity and Variability

* Metadata:

o In order to perform searches across an archive,

need to have consistent metadata. Example of a diffuse, extended structure.

This shock wave was observed by WISE, and
o Need interface and metadata standards to is caused by the rapid motion of the star in

search across archives: the middle of the image through a nebula.

» We have adopted VO protocols.
» Working with other archives to adopt the
Common Archive Observation Model.
e Objects:

o Co-registration of objects from one
observation to next; moving objects!

-

o Cross-identification of objects between
datasets: resolution, wavelength.

o Extended in space.

o Hierarchical objects (galaxy vs. its components,
multiples with planets, planets with moons).

o Evolving knowledge of the relationships
between objects as systems are observed.

Big Data at IPAC / imel 21 11/02/17




e NED correlate newly ingested

catalogs with existing database of

~250 million objects.

e Currently ingesting 2MASS
catalog with 470 million sources.

e Next catalog, AIIWISE, has 748
million sources.

e Using parallel processing to do
cross-ids, but rate slows over
time due to database I/O
performance.

o Currently a six-month
ingestion process.

o Database must be parallelized.

Big Data at IPAC / imel

100MHzHbcm  1mR0um  [kJ W

2MASS PSC

.
.

Reliable cross-IDs are required to construct spectral energy distributions (SEDs).

Upper Left: Cross-matching the 2MASS Point Source Catalog (PSC, red) with prior objects in
NED (yellow). Quasar PKS 1057-79 is at center. Upper right: Result of fusing 2MASS PSC
photometry (JHKs bands) with prior data in NED from Fermi, Swift, ROSAT and WMAP.

8

Time to cross-id each source

Even Bigger
Cache

H

Source Processing time (ms/src)
Z Z

Partial
Indexes Bigger
Cache

Maove

. Indexes t‘
¥

N————

40
20
0
5/17/17 0:00 5/22/17 0:00 9/27/17 0:00 10/2/17 0:00

* ms/fsrc {Current)
= Wndw3B6 {1h)
* ms/fsre {Completed)

Wndw386 (1h)
Back to

Bigger
Cache  ° |}

10/7/17 0:00 10/12/17 0:00
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Case Study: Complexity and Variability in
Exoplanet Archive Objects

e Exoplanet Archive catalogs and curates
exoplanets orbiting other stars as published
in the literature

e 3 out of every 2 stars are binaries — often
unknown at the time of the planetary
discovery.

e Often confirmed planets are found to orbit
within multi-star systems after the system
has been published.

Kepler-132: a confirmed planetary

e Archive needs to track with 4 planets and later found to
. be a binary star. While the planets
© SyStem has multi ple stars are almost certainly real, it is
o System has p|an ets unclear as to which star(s) the
planets orbit and what their true
o Which star(s) hosts the planets — if known planetary radii are.

o Changes in derived system parameters
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Case Study: ExoFOP

EPIC 201367065, Candidate 2 of 3

49,?51', 215-03-11_10h25m18s, hid = 2457092.947082, ap = 23, expt = 1200 5, SNRe = 26.2, APy = 2.56, SPCv = 260
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E:
Subset of data files A G =

acquired in follow-up
observing of a planet
candidate system.
ExoFOP must ingest and
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Lesson: Machine Learning

* Transient Identification: used on A A A Eh
PTF, and will be used on ZTF, BE OB BB 38
NEOCAM, and WFIRST. g %% ....... ﬁglf‘}l ...... { ﬂlf
e Cross-Matching: used as part of § i f 111. I 4 %I vg
NED ingest of large catalogs. Only - }} ﬁ }{ ﬁ 1
way to make associations between N | el T B
catalogs of 100’s of millions of 3 R
(0] bJ ects. 0.0 05 1.0 1.5 false positive rate (1-reliability)

e Literature Extraction: NED has
evaluated several packages, but with
limited success for NED applications
to date.

* Research Applications:

o Self-Organizing Maps and t-
distributed Stochastic Neighbor
Embedding for galaxy colors: fast
estimates of galaxy parameters
(redshift, mass, age).

o Classification of Periodic Variable
Stars.
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From Masci et al., ApJ
2014:

Using Machine
Learning to classify
periodic variable stars
detected by WISE.
Upper Left: example
light curves.

Left: Matrix of scatter
plots for three
variable types for all
pairs of metrics.
Upper Right:
Accuracy vs.
Completeness of
classification.
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band 4
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Case Study: ML for NEOCAM Tracklets (1/2)

26

Training Set Examples

Bad tracklet,
comprised of spurious
detections

Good tracklet,
comprised of reliable
detections
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Case Study: ML for NEOCAM Tracklets (2/2)

e NEOCam ada ptS the ML automatic 1 * number of raw extracted candidates
. . . . 1 © number of "likely real" candidates after ML vetting
classification algorithms operated in the PTF
transient detection pipeline to identify and
filter out spurious detections of difference
image residuals

—_
DJ:-
I

—

<
T
1

—

<
GE]
1

o PTF detected ~1M transient candidates

Number of candidates per PTF difference-image

each day
101 N
o The ML classifier filtered out ~94% of these
as spurious
100 - - TR RS ARSI 3 O
o The remaining candidate detections had a v a2 4 s 8 10 1
. ope . .2
demonstrated reliability of 99% and Source density [ # arcmin ™
com pleteness of ~¥97% The dominant source of spurious detections
. - for NEOCam is expected to be residuals in the
o NEOCam will have fewer SpuUrious difference images due to small registration

. . ) errors and PSF mismatches between the visit
detections, but 100K real detections daily.  gng static sky images.
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* Co-registration of data sets: IRSA
(and soon, NED) allow
simultaneous viewing of different
data sets.

e Time-domain: light curves,
folded-viewing, periodograms,
moving objects.

e For massive sets we have to go
from symbol representation to
continuous quantities: density
plots, histograms.

e Data Cubes
* The IPAC Visualization Group
(iViz) is exploring data viewing
approaches:
o 3-dim / N-dim
representations
o Will VR be useful?

Big Data at IPAC / imel

Lesson: Data Visualization

DB | CEATEOE | SEE ©
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Led: .
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I —
S —
Racat hraly %

IRSA Viewer uses a density plot when the number of points becomes too great to show
individually. The number of points in each bin in the plot is provided on hover.

Caltech
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Parallax for Ultra-Cool Dwarf Stars

Y

Davy Kirkpatrick, 2016, fitting parallax and proper motion using Spitzer on WISE YO dwarf: 6 pc
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Data Cubes

Full-resolution mosaic of the
central 256 frequency planes of
30 GALFA-HI images, centered
on Oh Right Ascension. The RGB
color is derived by combining 3
adjacent frequency planes. All
gaps, such as that around 20
degrees declination, are due to
incomplete coverage in the
input images.
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Lesson: Data Discovery

* The use of data in NASA archives can double the science

of the original mission.

e NAVO is a collaboration of NASA archives to provide
uniform access to data via VO protocols.
* NAVO has evaluated having a single portal for access

to all NASA astrophysics data.

* Asingle portal is less effective and more expensive
than archives dedicated to supporting a specific
community with tools, formats, services, and

expertise.

* NAVO provides the machinery to do data discovery

via its Registry.

* NED and Exoplanet archive are data discovery engines:
o Attempt to provide all known information about a
particular object and/or region in the sky.
o All listings have links back to published research and
to primary observational data (e.g. other NASA

archives).

e |RSA provides comprehensive data discovery for its
holdings, and plans to increase integration with VO

discovery.

Big Data at IPAC / imel
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New IRSA data
discovery
service will
provide an
“Amazon-like”
functionality to
selecting and
displaying
images and
catalogs from
IRSA holdings
as well as
other NASA
Archives.
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Lesson: Virtualization

* Important step in making analysis
available near the data: safe environment.

o IPAC Herschel provided virtual
machines for US scientists to run the
very memory-intensive and
complicated HIPE analysis software.

e Improves reliability for pipeline
processing, system maintenance in

Progression from
Herschel Level-2

* Helpful for moving to cloud, or cloud- to Level-3 data.

hybrid datacenter.

context of 24/7 operations.

e Euclid is virtualizing the entire processing
system: identical science data centers at 9
locations around the world, including IPAC.

* May use as data-delivery mechanism for
Joint Data Processing activity.
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Lesson: The Commercial Cloud

* The IPAC Datacenter is cost-effective
for systems in long-term and mostly
full-time use.

o Backups to AWS Glacier would
currently cost ~S2M/year, and even
more for data on S3.

o Processing pipelines are long-term
24/7 operations.

e Cloud-computing is cost-effective for
ephemeral processing:
o Preliminary development
o Sandboxes & experiments

o Debugging and automated
integration testing

o Su rge computing needs: 5°x5° 18k x 18k pixel section (1.2, 3.4 and 8.8 um) of
reprocessi ng, urge nt and 16-wavelength Infrared Atlas of Galactic Plane using

' Mont the A Cloud.
parallelizable tasks, one-off ontage on the Amazon Clou
simulations, Sagan Workshop
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* Generate ~20M light curves from UKIRT survey
imagery to estimate microlensing event rate for
WEFIRST.

e Research project with a deadline: would have taken
weeks to run on original 4-core system. Easily
parallelizable task: separable analysis of multiple
datasets.

* Rather than order expensive hardware, configured
AWS AMI on compute-optimized system to execute
analysis.

 After verifying function on a single VM, duplicated
twelve times: analysis ran over 1-2 days.

e 1 of the 12 crashed: apparently the allocated
memory was insufficient. Took 5 min to create VM
with double the memory, which succeeded. Very
agile approach!

» Total bill was ~S300; 2/3 was for TB data transfers,
1/3 for CPU.

o Longer term data storage would have been
$50/month (about 2 TB).

o Subsequent work done using JPL Supercomputing
cluster—better price for keeping data longer,
though less optimized compute systems.

Big Data at IPAC / imel
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» Take advantage of work that has already
been done:

* NED now using ADS for bibliographic
info

e NED using Image Viewer from IRSA /
LSST (Firefly): comes not only with
image manipulation and coordinate
info, but also source table & plotting

* IRSA using NED data tables (enabled
by VO protocols).

* Publishing archives to VO registry and
providing protocols greatly expanded
access through VO discovery tools.

e Collaboration between IRSA and MAST:
overlay of Spitzer/Hubble/JWST
footprints on data for observation
planning.

Big Data at IPAC / imel

Lesson: Interoperability

Increasing interoperability can allow a divide-and-conquer approach to Big Data.

Average Daily Rate of VO Data Requests at NAVO Centers

ooooooo

uuuuuu

uuuuu

1000

Queries per day (4 week averages)

10
918114 12127114 416115 71515 10/23/15 13116 5/10/16 8118116 11/26/16 3617
® HEASARCCone ® HEASARCTable = HEASARCImages ~ © MAST Cone
B MAST Images X MAST Spectra * MAST Registry * IRSA Cone
© NED Con X NED Spectra

JWST/NIRCAM 1 modulle

NGC 1333 WISE 3um: IRAC/MIPS; PACS/SPIRE; HST E

This figure shows
overlays of areas
surveyed by Spitzer
(blue and green),
Herschel (red),and
HST (purple) in the
region of NGC 133.
The background
image is the WISE 3
micron image of
the region.
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e NED used Aladin Java applet
for FITS image viewing; not
supported by modern
browsers.

e For release next month: NED
adopted open-source Firefly
image viewer service,
developed for IRSA, LSST,
WISE, PTF, ZTF and others.

e Firefly capability brings not
only image viewing, but will
add catalog overlays,
selection, and plotting.

Big Data at IPAC / imel
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Images available
for this NED object

H aGEaa| a0 cTHBIaASSE0ORE | 308 -

g

Tri-View with all
svas~..  INED sources
selected
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Opportunity: Archive as Observatory

Discovery of a new class of superluminous spiral galaxies (Ogle et al. 2016) based
entirely on data synthesized within NED demonstrates its power as a discovery engine.

e The quantity and complexity of archival e g : : ’

data now available has led to the use of ' _
Astronomy Archives as Virtual i 7z Tt
Observatories.

* NASA Archives are cooperating to create a
synergistic “Virtual Observatory” across
individual archives using VO protocols.

1

. “b1?’-5}35'ﬁ3ﬂ§-—'\n*%!ﬁﬁgacaﬁp‘i“h?ﬁ'fg";éa:—\r\".\‘:ab:ﬁ""’

WISE+2MASS gaIaXIes 1 Plaan TTTTTITIT 'I TTT T TTT ?I rTrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrroroda
' a— Median qg
F12 1 . B Can 18

84 . ot W Rok

. 9 - 1 - a8 1 ﬁ | 2 | T :{4.;:.« B e« A B §

af R .
i - LT PYPEPYS - 3
O ER- ! JEGE’H tialllz =2

3 '/pix, 1200x1200 pix
3 '/pix, 1200x1200 pix

1
[T O Y Rt

(209,-57) N (209,-57)
Combining data from multiple missions (WISE+2MASS+PanSTARRS) data
may reveal supervoid in CMB cold spot seen by Planck; (Szapudi et al. 2015,
MNRAS, 450, 288)

A visualization of the redshiftindependent distance measurement techniques used in
extragalactic research, as available in NED, from Steer et al. (2017, AJ, 153, 37). The
data are sorted by median distance, showing the 25™ and 75t pcrccnti es (boxes) and full
range of each distribution. /“’_”‘3’ ,,u} ﬁ Yo l?q;
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* The science opportunities from joint analysis of data
from Euclid, LSST, and WFIRST go well beyond the
science enabled by each survey alone.

o Many of the goals of a joint analysis require
pixel-level co-processing to address the
complexity and subtlety of systematics
confusion, and astrophysics.

o The resources for joint analysis are beyond
NSF/DOE budget for LSST and NASA budget for
Euclid & WFIRST.

e |PAC is leading to scope an approach for this kind of
processing:

o Target specific science goals to scope
requirements: tools and architecture will pay off
well beyond those goals.

o Products of joint processing may be “objects”
rather than just data sets: data embedded in
environments (VMs or Docker containers) with
methods to access and analyze them—
compatible with cloud-based distribution for on-
demand scalability.
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Opportunity: Joint Processing for Large Surveys

Subaru

Left: HST view of a galaxy cluster. Right: Subaru Suprime Cam view of the
same cluster. Green ellipses are HST extracted sources, red are the Subaru
extracted sources. Combining data sets of different resolutions and wavelengths
can lead to science results not available from analysis of the individual sets
alone.

Joint Processing Enables:
Improved Photo-Z estimates
Improved weak-lensing shear field estimates
Better galaxy cluster mass estimates
Star-formation history for millions of galaxies
Cross-mission systematics checks
Suppress spurious objects
Separating blended sources
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Opportunity: Pacific Research Platform

* |[PAC is implementing high-performance connectivity
(10-100 Gbps) via the NSF-funded Pacific Research
Platform (PRP) node at Caltech

o Deployed "perfsonar" performance testing
endpoints on IPAC's PRP and regular networks

o Deploying two data transfer nodes on PRP for
prototyping and project experimentation

o Developing a plan for properly integrated access
to PRP from IPAC's core networks

* This will be important to fulfill IPAC’s role as the
Euclid U.S. Science Data Center in a widely distributed
system

o Update: Demonstrated the use of our PRP node
to transfer 60 TB of reprocessed Planck data from
NERSC. First attempt yielded factor of 3 speedup.

o Current limitation in rate is now from disk 1/0
rather than network bandwidth.

e Evaluating the option of implementing a permanent
Globus endpoint on our PRP node.
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Opportunity: Open Science Grid

National Supercomputer

ot
P
> | , |
—_—
§ 0SG o ' Collaborator’s Cluster |
' )—>|® | —> | Metascheduling | §
3 Service 7
-3 ——>{ Nationally Shared Clusters ‘
.l, 'o“”‘%a. _
Uy i
\ poal Clastar 9 Commercial Cloud \
Open Science Grid: “distributed High- IPAC Evaluating Participation
Throughput Computing » Meetings with OSG participants at IPAC and
* Sort of a “SETI-at-Home” for data centers: at OSG Conference; exchange of
keeps CPUs busy. presentations.
* Advantage over commercial cloud: data * Implementing general purpose shared VM
transfer is “free”. compute cluster
* Access to computing related to computing ¢ Need to plan security policies (i.e., firewall
resources provided rules) to allow outside users to run tasks on

internal IPAC compute cluster.
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 |PAC uses both google/apache analytics
as well as query logging:

o Metrics reported to funding
agencies: number of hits, unique
IPs.

o ldentification of “most popular
archive queries”, bad-actor IP
addresses, popularity by archive API
“service”, geographic location of hits
(easily spoofed, however), most
popular IPAC website pages.

e We have yet to fully use data analytics
related to IPAC data services:

o Not yet a priority from funding
agency and science community

o Once those use cases are identified,
services may need to be modified to
record useful analytics data.

Big Data at IPAC / imel

Challenge: Analytics
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Reminder: The Archive Dilemma

As part of IPAC’s briefing to the Big Data Task Force Subcommittee
of the NASA Advisory Council Science Committee in 2016, we
highlighted a paradox confronting NASA Archives:

* NASA’s Astrophysics Archives have
focused on curation and online
query/access services for science
datasets. Resources available for custom
processing and analysis are limited.

e Operating Missions are primarily focused
on generation and distribution of
standard products for many applications.

* Many users have indicated interest in
deeper analysis and mining of those
products.

* Most users do not have resources to
download entire data sets for special-
purpose analysis.
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Data cannot be

analyzed:
science lost




. Model 12um Residual 12um |
FTLE -
e Complex and high-impact queries 1 g"fﬁ’.’;:a
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o Efficient billion-row multi-table queries, with S f‘ga‘:‘:x
VO protocols and optimized local | woare=nris l{j?::
performance Model 24um Residual 2aum

o Enhanced statistical views of query results; Rl
leverage ongoing visualization work e : '-; :

i o

o Sustainable implementation
(queuing, asynchronous TAP)

n=0.7; R, = 10.3"41.4" ¥ =139

) , Finn et al. measure cluster galaxy gas disks using Spitzer and WISE, and
o Alternate DBMS options, e.g. LSST's Qserv, stellar disks in the optical. Expanding to the entire WISE all-sky data set,

multiple instances of DB this technique will inform models of star formation truncation as a

« Test integrating standard pixel analysis packages function of environmental density.

(source extraction, PSF-fitting, quantitative
morphology)

* User-optimization of algorithms: Python
notebooks, e.g. IPython, Jupyter, for
collaboration, record keeping, and publishing to
the cloud

e Coordination of user access to intensive
computation on Archive hardware (VMs, Docker)

Lang (2014) reprocessed WISE single-exposure images to
optimize measurements of extended sources. Other science

objectives will require alternate processing.
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The LSST Science Platform

* Provides access to LSST data
via three “Aspects”: Browser

* API: IVOA-standard Web Portal
access to catalogs and
images; support for user
data

e Web Portal: Structured
access to all data with viz
and discovery tools

* Notebooks: Interactive
Python environment External Users

based on JupyterLab bl IPython ! image
Kernel microservices Storage

* Aspects are integrated: ttps: L = g e
e Near-data user VOSpace \ ' Computing Computing

H (WebDAV) \

computing and storage : .

* Workflows can cross
aspects

Browser | .
irefly Widgets

Jupyter Client

https:
TAP, SIA...

User Storage
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Summary

e Archives double or more the
science return from a mission:
data discovery and archive
interoperability enhance this.

* [PAC is learning to use Big Data
techniques to serve modern
astronomical data sets and support
their exploitation.

e Organization is the key to managing
Big Data: must account for how
data are transferred, queried,
accessed, and analyzed.

* Processing at the Archive is already
under development. The next
challenge will be processing at
multiple archives.

46 11/02/17



Acknowledgements

The following™* directly contributed to this update:

George Helou, IPAC Executive Director

IRSA: Steve Groom, Harry Teplitz, Vandana Desai, Justin Howell, Luisa Rebull, and the IRSA team.

NED: Joe Mazzarella, Rick Ebert, Jeff Jacobson, and the NED team.

Exoplanet Archive: Rachel Akeson, David Ciardi, and the Exoplanet Archive team

ZTF: Frank Masci, Ben Rusholme, and the ZTF team.

Montage: Bruce Berriman and John Good

Firefly: Trey Roby, Loi Ly

LSST: Xiugin Wu, Gregory Dubois-Felsmann

Science Research: Yossi Shvarzvald, Davy Kirkpatrick, Peter Capak, Dan Masters
Spitzer: Sean Carey, Jim Ingalls, and the Spitzer Science Center Team

NEOCAM: Roc Cutri, Carrie Nugent

ICE: Gordon Squires, Janice Lee, Robert Hurt, Tim Pyle, Jake Llamas, and the ICE Team

IPAC Systems Engineering: Dave Flynn and the ISG SysEng Team

*Many IPAC staff work on multiple activities. All are named only once here.

Big Data at IPAC / imel 47 11/02/17

Caltech



