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•Science Center functions for NASA missions
•Data centers for major projects such as Great 

Observatories and all-sky surveys
•Supports NASA, NSF and privately funded projects
•Award-winning media, outreach and education support
•Vibrant research environment and staff

IPAC:  Caltech Astrophysics Science Center

Cosmology and 
galaxy evolution

Exoplanets

Asteroids and the 
solar system

Infrared-
submillimeter 
astrophysics.
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Mission IPAC Role

IRAS Science Data Center

ISO US Data Center

Spitzer Full Science Operations for a NASA 
Great Observatory

Herschel US Science Center

Planck US Science Data Center

WISE / NEOWISE Science Data Center

Kepler/K2/TESS Candidate and Confirmed Planet 
Archive, Follow-up Observing Program

Euclid US Science Data Center

WFIRST Joint Science Operations

NEOCAM Science Data Center

SPHEREx Science Data Center

32 Years of Science Operations for NASA Missions
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Science Operations for Ground-Based Observatories
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Observatory IPAC Role

2MASS Data processing; 
Archive

Keck Interferometer
Observation planning; 

Data processing;
Archive

Keck Observatory Browse product
pipelines; Archive

Large Binocular 
Telescope 

Interferometer
Archive

Palomar Transient 
Facility

Nightly Ingest; Data 
processing; Archive

Zwicky Transient 
Facility

Nightly Ingest; Data 
Processing; Alerts; 

Archive

Large Synoptic
Survey Telescope

Science Platform & 
User Interface



Spitzer Finds Seven Earth-Size Planets in One System  
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• M-Dwarf, 10% Rsun 12 pc 
from here, first observed 
in 2000

• 2015:  ground-based 
observing yields 3 Earth-
sized planets

• System observed by 
Spitzer in 2016–2017:  7 
earth-size planets.
• Transit observations 

give planet sizes.
• With resonances and 

timing variations, 
masses can be 
estimated.

• Combination gives 
density:  rocky,  
volatiles, probably 
water!



• IPAC Executive Director Dr. George Helou and 
IPAC scientist Dr. Lin Yan were part of the team 
confirming the source of the recent observation 
of gravity waves from colliding neutron stars.
• First co-observations of gravity waves with 

EM-spectrum signature.
• Data from IPAC’s NED cited in discovery 

papers.
• ICE team developed key graphics for public 

communication of results.  

• IPAC scientist Dr. Tiffany Meshkat finds that 
giant exoplanets that orbit far from their stars 
are more likely to be found around young stars 
that have a disk of dust and debris than those 
without disks.
• Spitzer data on debris disk systems vs. non-

debris disk systems; scanned for exoplanets
• Combined with data from Keck and ESO VLT.

• Result helps JWST and other missions plan 
where to look for exoplanets.

Gravitational Waves! Exoplanets in Debris Disks
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IPAC Astronomy 2017: Debris Disks and 
Colliding Neutron Stars



NED serves as NASA’s “Google for Galaxies”
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NASA/IPAC Extragalactic Database

NED is: 
• Comprehensive
• Reliable
• Easy-to-use 
• Synthesis of multi-

wavelength data
• Content linked to 

refereed literature
• Data augmented 

with derived 
physical attributes

Published:
• Names
• (α,δ)
• Redshifts
• DMpc
• Fluxes
• Sizes
• Attributes
• References
• Notes

Contributed:
• Images
• Spectra
Derived:
• Distances
• Metric sizes     SEDs
• Luminosities   Aλ
• Velocity corrections
• Cosmological corrections

Every day NED serves over 70,000 queries and 
is acknowledged by 2 peer-reviewed articles.
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NED Is Building the Census of the Universe

• 0.5 billion catalog sources
• 2.3 billion photometric data points
• 250 million distinct objects
• 40 million links to Journal Articles
• 8 million redshifts
• 2.5 million images



IRSA curates the science products of NASA’s infrared and submillimeter missions.
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NASA/IPAC Infrared Science Archive

IRSA provides all sky images and 
catalogs covering 24 wavelength bands.
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Astrophysics Research with IRSA
IRSA integrates catalogs, images, and spectra from many missions to enable new science discoveries.

Search & display can be tailored to various instrument/science 
contexts, using reusable visualization components.

WISE+Spitzer discover the coldest brown dwarf (Luhman
2014, ApJL 786, L18) 

WISE 4.5μm (2010) Spitzer 4.5μm (2014)



• Confirmed exoplanets
• 80,000+ planetary and stellar 

parameters for >3500 
exoplanets

• Weekly updates
• Kepler:  ~4500 planets and 

candidates, stellar properties, 
data validation and occurrence 
rate products

• Space (CoRoT) and ground-
based transit surveys (>20 
million light curves)

• Community-contributed follow-
up observing data (ExoFOP)

Data Holdings

11/02/17Big Data at IPAC / imel 11

NASA Exoplanet Archive
NASA’s Official Exoplanet Database



• Interactive table search; 
parameter plotting

• Predicted Observables for 
Exoplanets

• Transit and Ephemeris 
Service

• Periodograms
• EXOFAST:  Transit and 

Radial-Velocity Fitting
• Auto-generated plots and 

movies
• API to data

Capabilities

11/02/17Big Data at IPAC / imel 12

NASA Exoplanet Archive
The Archive supports future Exoplanet missions:  TESS, JWST

EXOFAST:  
simultaneous on-
demand fitting of 

radial velocity and 
transit data for 

Exoplanet systems.  
The Archive is in the 

process of making 
use of the 

Commercial cloud 
for the EXOFAST and 

Periodogram
services.



Typical Big Data Scales
• Google:  >20 Exabytes
• Amazon:  >1 million servers
• FINRA:  scans PB of financial 

market data in real time to look 
for exchange fraud.

• LHC:  600M events/sec (at 
1MB/event)

• SKA:  data rates of many PB per 
second
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Big Data at IPAC Relative to Elsewhere

IPAC Datacenter with 
12 PB of spinning disk

Amazon Rack with 
12 PB spinning disk

• 3 rooms, 3500 sq ft

• 76 x 42U racks

• 2500 cores, increasing to 7000 in 
next few years

• 12 PB disk  30 PB in next few 
years

• Robotic tape library with 17 PB 
capacity

• All on UPS

• Network:  10 Gbps internal; 10 
Gbps to commercial internet; 40 
Gbps to internet2; planning Core 
upgrade to 100 Gbps

IPAC Data Center
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Scale of Operations at IPAC
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IRSA Holdings Growth
IRSA Data Volume (right)
has grown by a factor of
ten every few years
recently, and is projected
to grow even faster.

IRSA queries (left) have
exploded with the advent
of program interfaces
and Virtual Observatory
protocols.

Data System 
Metrics (Ops)

2MASS
1999-2001

WISE
2010-2011

Keck
2004–present

PTF
2009–2017

ZTF
2018–2020+

NEOCAM
5 yr mission Euclid WFIRST

5 yr mission

Data Rate 40 
GB/night 76 GB/day ~1 GB/night 90 

GB/night 1.2 TB/night 154
GB/day 200 GB/day ~25 

Tb/day

Data Volume 24.5 TB 32 TB 45 TB 350 TB 3 PB 6 PB 7 PB 3 PB

Complexity 1.5B 
sources 44B sources

10 
instruments, 
archive only

100B 
sources, 

ML*

750B sources;
alert system, 

ML*

0.5 Trillion 
row DB, 

ML*

10B sources,    
1 of 9 

parallel 
nodes

ML*

*ML = Machine Learning algorithms used in pipeline

Dataset volumes have increased by a factor of 100 in the past decade.
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The Context of Operational Systems

• NASA Archives, like NASA missions, are 
necessarily conservative, focusing on reliable 
operations:
o Data integrity, backups, guaranteed 

uptime, IT security.
o Support for mission operations; stability 

of interfaces.
o Ingestion of datasets is usually a higher 

priority than new features.

• Data volumes and database table sizes are 
increasing exponentially, creating challenges 
for Ingest, query, and download.
o Successful implementation of program 

interfaces, e.g. virtual observatory 
protocols, has led to incorporation of 
NASA Archives into data processing 
pipelines, with skyrocketing access rates.

Summary of FY17 for IRSA and NED:
• IRSA:  30 million queries, 
• IRSA:  200 TiB of data downloaded  
• IRSA:  20 new datasets
• IRSA:  All major data sets available through 

VO protocols  
• IRSA:  Time Series Tool 
• IRSA:  User interface for NASA IRTF
• NED:  80 million database queries
• NED:  83 million new objects and cross-ids
• NED:  Redesign of User Interface and 

supporting infrastructure

IPAC's highest priority for its 
resources is supporting NASA 
missions and the science 
community.  Big Data Technology 
Innovation must happen in that 
context. 



https://xkcd.com/1909/

10 Lessons We’re Learning at IPAC
(with some case studies)
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Lesson:  Large Holdings
Strategic organization can be more important than new technology.

• Simple solutions with careful planning can get you  
a long way without much technical magic:  
organization is the magic!

• Pay careful attention to data layouts.
• Reduce s/w overheads:  small latencies that didn't 

use to matter now stand out.
• Maximize channel performance  I/O, networking.
• Put critical high-demand data on faster storage.
• Increasing storage density worsens bottlenecks.
• Beware complexity - things that are complicated 

when  they are small explode on you when they 
grow big.

• Large datasets are hard to move:  try to get it right 
the first time, and consider moves carefully.

• Large databases are hard to change or update, so 
plan the content carefully before loading.

Partial listing of IRSA’s WISE 
data disks, mostly at ~95%.



• Optimize data layouts for most common 
use cases:  But different use cases 
require different organizations.

• Increasing interest in 
summary/statistical queries vs. the 
typical past use case of simple retrieval:  
o This usage requires more expensive 

table scan operations.

• May need to consider indexing in space-
time, rather than just space, for moving 
object applications.

• Some tables are outgrowing our ability 
to handle them with previous 
techniques:  for example, ZTF light 
curves.
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Lesson:  Large Database Tables
Table organization gets even more important as table size grows.

Study of spatial 
indexing by Good and 
Berriman shows that 

which tesselation
scheme is used is not 

as important as 
optimizing the depth 

of the scheme.  For 
queries returning 
<10000 rows, too 

many cells or two few 
can increase the 

query time.  Here, 
color represents the 

density of objects 
within a tesselation

cell.

Depth=7

Depth=14

Depth=20



• Prior datasets have included a photometry 
table which includes a record for every 
measurement of every source.

• ZTF data rate would generate a table with 
more than a trillion entries.
o Database servers to handle this scale of 

data with traditional approach exceeds 
project budget.

o Especially difficult with nightly table 
updates / re-indexing.

• Hybrid approach:
o Database for objects, photometry in files.
o Metadata for objects and pre-calculated 

photometric statistics.
o Photometry extracted from files on-the-fly 

in response to queries. 
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Case Study:  ZTF Light Curves

Light curve from WISE photometry database

Cost effective solution, 
rapid response to queries, 
but limits queries available.



• Reliable and efficient operations 
requires rigorously verified metadata 
with tested process for interface 
changes.

• Tables can grow beyond what is feasible 
to re-index on a nightly basis:  in some 
cases, we have implemented multi-
stage table ingest.  But this requires 
much more operations book-keeping.

• Because an interruption to operations is 
not acceptable, doing a redesign mid-
mission can be very difficult.  
o WISE / NEOWISE / NEOWISE(R) 

mission has been in operations for 8 
years; Spitzer has been in operations 
for 14 years.
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Lesson:  Constant Data Ingest

Parameter tuning by application can make a big 
difference in performance.  For ZTF data transfer 
from Mt. Palomar, optimizing hardware and 
routing achieves a factor of 2 in transfer rate.

Invest early in scalable design; follow details end-to-end.



• Metadata:  
o In order to perform searches across an archive, 

need to have consistent metadata. 
o Need interface and metadata standards to 

search across archives:
 We have adopted VO protocols.
 Working with other archives to adopt the 

Common Archive Observation Model.
• Objects:

o Co-registration of objects from one 
observation to next;  moving objects!

o Cross-identification of objects between 
datasets:  resolution, wavelength.

o Extended in space.
o Hierarchical objects (galaxy vs. its components, 

multiples with planets, planets with moons).
o Evolving knowledge of the relationships 

between objects as systems are observed.
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Lesson:  Data Complexity and Variability

Example of a diffuse, extended structure.  
This shock wave was observed by WISE, and 
is caused by the rapid motion of the star in 
the middle of the image through a nebula.
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Case Study:  Cross-Identification of Large Catalogs

• NED correlate newly ingested 
catalogs with existing database of 
~250 million objects.

• Currently ingesting 2MASS 
catalog with 470 million sources.

• Next catalog, AllWISE, has 748 
million sources.

• Using parallel processing to do 
cross-ids, but rate slows over 
time due to database I/O 
performance.
o Currently a six-month 

ingestion process.
o Database must be parallelized.

Time to cross-id each source

Reliable cross-IDs are required to construct spectral energy distributions (SEDs). 
Upper Left:  Cross-matching the 2MASS Point Source Catalog (PSC, red) with prior objects in 
NED (yellow).  Quasar PKS 1057-79 is at center. Upper right:  Result of fusing 2MASS PSC 
photometry (JHKs bands) with prior data in NED from Fermi, Swift, ROSAT and WMAP.   

SED spanning gamma rays 
through radio frequencies

Swift

Fermi

ROSAT
WMAP

2MASS PSC



• Exoplanet Archive catalogs and curates 
exoplanets orbiting other stars as published 
in the literature

• 3 out of every 2 stars are binaries – often 
unknown at the time of the planetary 
discovery.

• Often confirmed planets are found to orbit 
within multi-star systems after the system 
has been published.

• Archive needs to track 
o System has multiple stars
o System has planets
o Which star(s) hosts the planets – if known
o Changes in derived system parameters
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Case Study:  Complexity and Variability in 
Exoplanet Archive Objects

Kepler-132: a confirmed planetary 
with 4 planets and later found to 
be a binary star.  While the planets 
are almost certainly real, it is 
unclear as to which star(s) the 
planets orbit and what their true 
planetary radii are.

Exoplanet systems involve objects with changing M to N mappings.
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Case Study:  ExoFOP

IPAC Archives must support a large number of data types and formats.

Subset of data files 
acquired in follow-up 
observing of a planet 

candidate system.  
ExoFOP must ingest and 

provide both website and 
API access to a wide 

variety of data content, 
including target lists,

observing status,
observational data,

derived parameter data,
and notes and comments. 



• Transient Identification:  used on 
PTF, and will be used on ZTF, 
NEOCAM, and WFIRST.

• Cross-Matching:  used as part of 
NED ingest of large catalogs.  Only 
way to make associations between 
catalogs of 100’s of millions of 
objects.

• Literature Extraction:  NED has 
evaluated several packages, but with 
limited success for NED applications 
to date.

• Research Applications:
o Self-Organizing Maps and t-

distributed Stochastic Neighbor 
Embedding for galaxy colors:  fast
estimates of galaxy parameters 
(redshift, mass, age).

o Classification of Periodic Variable 
Stars.
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Lesson:  Machine Learning

From Masci et al., ApJ
2014:
Using Machine 
Learning to classify 
periodic variable stars 
detected by WISE.
Upper Left:  example 
light curves.
Left:  Matrix of scatter 
plots for three 
variable types for all 
pairs of metrics.
Upper Right:  
Accuracy vs. 
Completeness of 
classification.

Machine Learning helps IPAC solve Big Data challenges



Case Study:  ML for NEOCAM Tracklets (1/2)

Bad tracklet, 
comprised of spurious
detections

Good tracklet, 
comprised of reliable
detections

Training Set Examples
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The dominant source of spurious detections 
for NEOCam is expected to be residuals in the 
difference images due to small registration 
errors and PSF mismatches between the visit 
and static sky images.

Case Study:  ML for NEOCAM Tracklets (2/2)

• NEOCam adapts the ML automatic 
classification algorithms operated in the PTF 
transient detection pipeline to identify and 
filter out spurious detections of difference 
image residuals

o PTF detected ~1M transient candidates 
each day

o The ML classifier filtered out ~94% of these 
as spurious 

o The remaining candidate detections had a 
demonstrated reliability of 99% and 
completeness of ~97%

o NEOCam will have fewer spurious 
detections, but  100K real detections daily.

IPAC must use ML to process transient events from its telescopes.
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• Co-registration of data sets:  IRSA 
(and soon, NED) allow 
simultaneous viewing of different 
data sets.

• Time-domain:  light curves, 
folded-viewing, periodograms, 
moving objects.

• For massive sets we have to go 
from symbol representation to 
continuous quantities:  density 
plots, histograms.

• Data Cubes
• The IPAC Visualization Group 

(iViz) is exploring data viewing 
approaches:
o 3-dim / N-dim 

representations
o Will VR be useful?
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Lesson:  Data Visualization
Interactive graphics provide intuition about the data.

IRSA Viewer uses a density plot when the number of points becomes too great to show 
individually.  The number of points in each bin in the plot is provided on hover.
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Case:  Parallax for Ultra-Cool Dwarf Stars

M

L

T

Y

Davy Kirkpatrick, 2016, fitting parallax and proper motion using Spitzer on WISE Y0 dwarf:  6 pc
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Data Cubes

Full-resolution mosaic of the 
central 256 frequency planes of 
30 GALFA-HI images, centered 

on 0h Right Ascension. The RGB 
color is derived by combining 3 
adjacent frequency planes. All 

gaps, such as that around 20 
degrees declination, are due to 

incomplete coverage in the 
input images.

Generated by IPAC's 
Montage Open-Source 
Toolkit running on AWS.



• The use of data in NASA archives can double the science 
of the original mission.

• NAVO is a collaboration of NASA archives to provide 
uniform access to data via VO protocols.
• NAVO has evaluated having a single portal for access 

to all NASA astrophysics data.
• A single portal is less effective and more expensive 

than archives dedicated to supporting a specific 
community with tools, formats, services, and 
expertise.

• NAVO provides the machinery to do data discovery 
via its Registry.

• NED and Exoplanet archive are data discovery engines:
o Attempt to provide all known information about a 

particular object and/or region in the sky.
o All listings have links back to published research and 

to primary observational data (e.g. other NASA 
archives). 

• IRSA provides comprehensive data discovery for its 
holdings, and plans to increase integration with VO 
discovery.

Ease of access is more important than a single point of access.

11/02/17Big Data at IPAC / imel 31

Lesson:  Data Discovery
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• Important step in making analysis 
available near the data:  safe environment.

o IPAC Herschel provided virtual 
machines for US scientists to run the 
very memory-intensive and 
complicated HIPE analysis software.

• Improves reliability for pipeline 
processing, system maintenance in 
context of 24/7 operations.

• Helpful for moving to cloud, or cloud-
hybrid datacenter.

• Euclid is virtualizing the entire processing 
system:  identical science data centers at 9 
locations around the world, including IPAC.

• May use as data-delivery mechanism for 
Joint Data Processing activity.
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Lesson:  Virtualization

Progression from 
Herschel Level-2 
to Level-3 data.



• The IPAC Datacenter is cost-effective 
for systems in long-term and mostly 
full-time use.
o Backups to AWS Glacier would 

currently cost ~$2M/year, and even 
more for data on S3.

o Processing pipelines are long-term 
24/7 operations.

• Cloud-computing is cost-effective for 
ephemeral processing:
o Preliminary development
o Sandboxes & experiments
o Debugging and automated 

integration testing
o Surge computing needs:  

reprocessing, urgent and 
parallelizable tasks, one-off 
simulations, Sagan Workshop
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Lesson:  The Commercial Cloud

5°×5° 18k x 18k pixel section (1.2, 3.4 and 8.8 μm) of 
16-wavelength Infrared Atlas of Galactic Plane using 
Montage on the Amazon Cloud.

The Cloud does not necessarily reduce system administration costs.



• Generate ~20M light curves from UKIRT survey 
imagery to estimate microlensing event rate for 
WFIRST.

• Research project with a deadline:  would have taken 
weeks to run on original 4-core system.  Easily 
parallelizable task:  separable analysis of multiple 
datasets.

• Rather than order expensive hardware, configured 
AWS AMI on compute-optimized system to execute 
analysis.

• After verifying function on a single VM, duplicated 
twelve times:  analysis ran over 1–2 days.

• 1 of the 12 crashed:  apparently the allocated 
memory was insufficient.  Took 5 min to create VM 
with double the memory, which  succeeded.  Very 
agile approach!

• Total bill was ~$300; 2/3 was for TB data transfers, 
1/3 for CPU.
o Longer term data storage would have been 

$50/month (about 2 TB).
o Subsequent work done using JPL Supercomputing 

cluster––better price for keeping data longer, 
though less optimized compute systems.
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Case Study:  Surge Computing
The Cloud can provide an agile approach to compute-intensive tasks.



• Take advantage of work that has already 
been done:

• NED now using ADS for bibliographic 
info

• NED using Image Viewer from IRSA / 
LSST (Firefly):  comes not only with 
image manipulation and coordinate 
info, but also source table & plotting 

• IRSA using NED data tables (enabled 
by VO protocols).

• Publishing archives to VO registry and 
providing protocols greatly expanded 
access through VO discovery tools.

• Collaboration between IRSA and MAST:  
overlay of Spitzer/Hubble/JWST 
footprints on data for observation 
planning.

Increasing interoperability can allow a divide-and-conquer approach to Big Data.
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Lesson:  Interoperability

NGC 1333 WISE 3μm:  IRAC/MIPS; PACS/SPIRE;  HST

JWST/NIRCAM 1 module

This figure shows 
overlays of areas 

surveyed by Spitzer 
(blue and green), 

Herschel (red),and 
HST (purple) in the 
region of NGC 133.  

The background 
image is the WISE 3 

micron image of 
the region.



• NED used Aladin Java applet 
for FITS image viewing; not 
supported by modern 
browsers.

• For release next month:  NED 
adopted open-source Firefly 
image viewer service, 
developed for IRSA, LSST, 
WISE, PTF, ZTF and others. 

• Firefly capability brings not 
only image viewing, but will 
add catalog overlays, 
selection, and plotting.

A broken service leads to better functionality and common look-and-feel across IPAC archives.
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Case Study:  NED Adopts IRSA Firefly Visualization

Images available 
for this NED object

Image 
Viewer

Tri-View with all 
NED sources 
selected



Big Data at IPAC:
Opportunities and Challenges



• The quantity and complexity of archival 
data now available has led to the use of 
Astronomy Archives as Virtual 
Observatories.

• NASA Archives are cooperating to create a 
synergistic “Virtual Observatory” across 
individual archives using VO protocols.
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Opportunity:  Archive as Observatory

A visualization of the redshift-independent distance measurement techniques used in 
extragalactic research, as available in NED, from Steer et al. (2017, AJ, 153, 37). The 
data are sorted by median distance, showing the 25th and 75th percentiles (boxes) and full 
range of each distribution.

Discovery of a new class of super-luminous spiral galaxies (Ogle et al. 2016) based 
entirely on data synthesized within NED demonstrates its power as a discovery engine.

Combining data from multiple missions (WISE+2MASS+PanSTARRS) data 
may reveal super-void in CMB cold spot seen by Planck; (Szapudi et al. 2015, 
MNRAS, 450, 288)

WISE+2MASS galaxies Planck 



• The science opportunities from joint analysis of data 
from Euclid, LSST, and WFIRST go well beyond the 
science enabled by each survey alone.
o Many of the goals of a joint analysis require 

pixel-level co-processing to address the 
complexity and subtlety of systematics 
confusion, and astrophysics.

o The resources for joint analysis are beyond 
NSF/DOE budget for LSST and NASA budget for 
Euclid & WFIRST.

• IPAC is leading to scope an approach for this kind of 
processing:
o Target specific science goals to scope 

requirements:  tools and architecture will pay off 
well beyond those goals.

o Products of joint processing may be “objects” 
rather than just data sets:  data embedded in 
environments (VMs or Docker containers) with 
methods to access and analyze them––
compatible with cloud-based distribution for on-
demand scalability. 
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Opportunity:  Joint Processing for Large Surveys

Joint Processing Enables:
Improved Photo-Z estimates
Improved weak-lensing shear field estimates
Better galaxy cluster mass estimates
Star-formation history for millions of galaxies
Cross-mission systematics checks
Suppress spurious objects
Separating blended sources

Left:  HST view of a galaxy cluster.  Right:  Subaru Suprime Cam view of the 
same cluster.  Green ellipses are HST extracted sources, red are the Subaru 
extracted sources.  Combining data sets of different resolutions and wavelengths 
can lead to science results not available from analysis of the individual sets 
alone.

HST Subaru



• IPAC is implementing high-performance connectivity 
(10-100 Gbps) via the NSF-funded Pacific Research 
Platform (PRP) node at Caltech
o Deployed "perfsonar" performance testing 

endpoints on IPAC's PRP and regular networks
o Deploying two data transfer nodes on PRP for 

prototyping and project experimentation
o Developing a plan for properly integrated access 

to PRP from IPAC's core networks
• This will be important to fulfill IPAC’s role as the 

Euclid U.S. Science Data Center in a widely distributed 
system
o Update: Demonstrated the use of our PRP node 

to transfer 60 TB of reprocessed Planck data from 
NERSC.  First attempt yielded factor of 3 speedup.

o Current limitation in rate is now from disk I/O 
rather than network bandwidth.

• Evaluating the option of implementing a permanent 
Globus endpoint on our PRP node.
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Opportunity:  Pacific Research Platform
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Opportunity:  Open Science Grid

Open Science Grid:  “distributed High-
Throughput Computing”
• Sort of a “SETI-at-Home” for data centers:  

keeps CPUs busy.
• Advantage over commercial cloud:  data 

transfer is “free”.
• Access to computing related to computing 

resources provided

IPAC Evaluating Participation
• Meetings with OSG participants at IPAC and 

at OSG Conference; exchange of 
presentations.

• Implementing general purpose shared VM 
compute cluster

• Need to plan security policies (i.e., firewall 
rules) to allow outside users to run tasks on 
internal IPAC compute cluster.



• IPAC uses both google/apache analytics 
as well as query logging:
o Metrics reported to funding 

agencies:  number of hits, unique 
IPs.

o Identification of “most popular 
archive queries”, bad-actor IP 
addresses, popularity by archive API 
“service”, geographic location of hits 
(easily spoofed, however), most 
popular IPAC website pages.

• We have yet to fully use data analytics 
related to IPAC data services:
o Not yet a priority from funding 

agency and science community 
o Once those use cases are identified, 

services may need to be modified to 
record useful analytics data.
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Challenge:  Analytics

NED access 
by service

Data analytics can inform strategic investment.



As part of IPAC’s briefing to the Big Data Task Force Subcommittee 
of the NASA Advisory Council Science Committee in 2016, we 
highlighted a paradox confronting NASA Archives:

Reminder:  The Archive Dilemma
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• NASA’s Astrophysics Archives have 
focused on curation and online 
query/access services for science 
datasets. Resources available for custom 
processing and analysis are limited.

• Operating Missions are primarily focused 
on generation and distribution of 
standard products for many applications.

• Many users have indicated interest in 
deeper analysis and mining of those 
products.

• Most users do not have resources to 
download entire data sets for special-
purpose analysis.

Scientists need 
to analyze data

Archive cannot 
support analysis 

of data in-situ

Too large for 
astronomers to 
analyze locally

Data cannot be 
analyzed:  

science lost



• Complex and high-impact queries
o Efficient billion-row multi-table queries, with 

VO protocols and optimized local 
performance

o Enhanced statistical views of query results;      
leverage ongoing visualization work

o Sustainable implementation                              
(queuing, asynchronous TAP)

o Alternate DBMS options, e.g. LSST’s Qserv, 
multiple instances of DB

• Test integrating standard pixel analysis packages 
(source extraction, PSF-fitting, quantitative 
morphology)

• User-optimization of algorithms:  Python 
notebooks, e.g. IPython, Jupyter, for 
collaboration, record keeping, and publishing to 
the cloud

• Coordination of user access to intensive 
computation on Archive hardware (VMs, Docker)
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Challenge and Opportunity:  Analysis Near the Data

Finn et al. measure cluster galaxy gas disks using Spitzer and WISE, and 
stellar disks in the optical.  Expanding to the entire WISE all-sky data set, 
this technique will inform models of star formation truncation as a 
function of environmental density. 

Lang (2014) reprocessed WISE single-exposure images to 
optimize measurements of extended sources. Other science 

objectives will require alternate processing.



IPAC Team is integrating the three LSST Science Platform Aspects.
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The LSST Science Platform

Firefly Servers

JupyterLab Servers 
(managed by JupyterHub) DAX

Web Portal

Jupyter Client

External Users 
of LSST APIs

Firefly Widgets

Browser

Browser

https:

TAP, SIA…

User Storage

DB
(QServ, 
Other)

User

Image
Storage

User

Identity Provider

IPython
Kernel

Firefly Python 
microservices

Parallel/Batch 
Computing

User 
Computing

https:
VOSpace
(WebDAV)

• Provides access to LSST data 
via three “Aspects”:

• API:  IVOA-standard 
access to catalogs and 
images; support for user 
data

• Web Portal:  Structured 
access to all data with viz
and discovery tools

• Notebooks:  Interactive 
Python environment 
based on JupyterLab

• Aspects are integrated:
• Near-data user 

computing and storage
• Workflows can cross 

aspects



• Archives double or more the 
science return from a mission:   
data discovery and archive 
interoperability enhance this.

• IPAC is learning to use Big Data 
techniques to serve modern 
astronomical data sets and support 
their exploitation.

• Organization is the key to managing 
Big Data:  must account for how 
data are transferred, queried, 
accessed, and analyzed.

• Processing at the Archive is already 
under development.  The next 
challenge will be processing at 
multiple archives.
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Summary
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