

Software Risk and Autonomy

NASA Autonomy Workshop Oct 11, 2018

Prof. Philip Koopman

Carnegie Mellon University

Overview

Carnegie Mellon University

Control & Planning safety

• Breaking robots for fun and profit

Perception safety

It's a bird. It's a plane.
 It's ... what the heck is that?

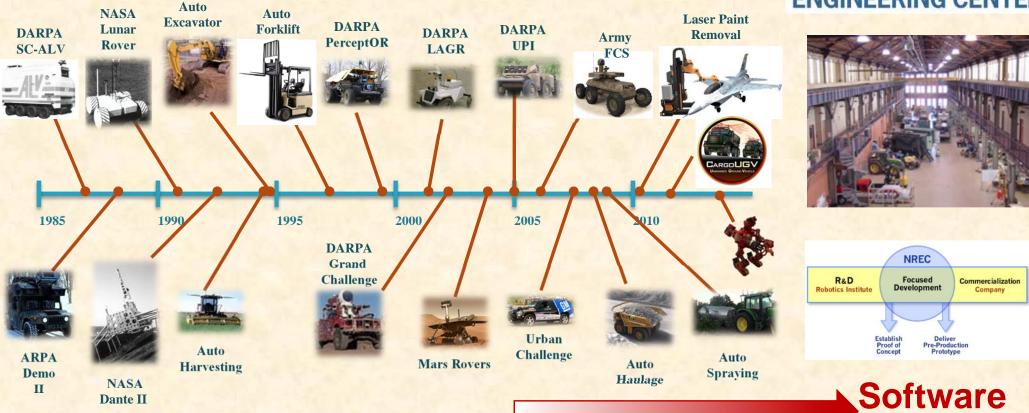
Edge cases

 Back to breaking robots for fun and profit



[General Motors]

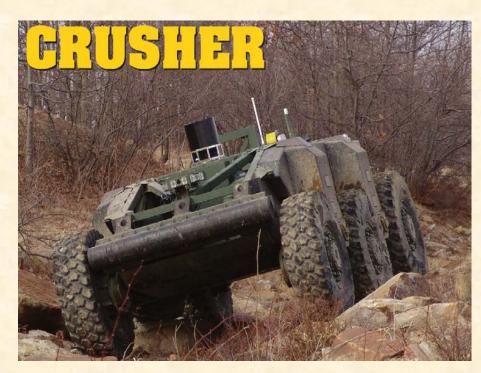
NREC: 30+ Years Of Cool Robots



Carnegie Mellon University Faculty, staff, students Off-campus Robotics Institute facility Safety

Before Autonomy Software Safety

The Big Red Button era



Carnegie Mellon

University

APD (Autonomous Platform Demonstrator)

Safety critical speed limit enforcement

TARGET GVW: 8,500 kg TARGET SPEED: 80 km/hr

Approved for Public Release. TACOM Case #20247 Date: 07 OCT 2009

Traditional Validation Meets Machine Learning

Carnegie Mellon University

Use traditional software safety where you can

..BUT..

- Machine Learning (inductive training)
 - No requirements

Time

- Training data is difficult to validate
- No design insight

- Generally inscrutable; prone to gaming and brittleness

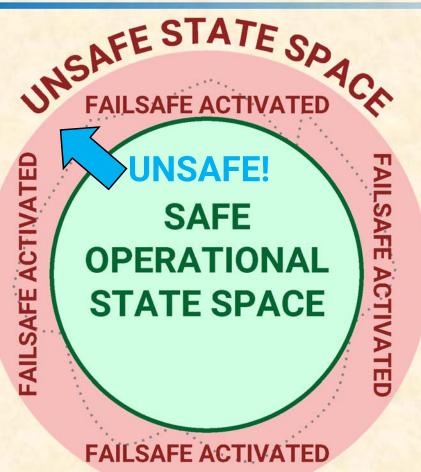
Safety Envelope Approach to ML Deployment

Specify unsafe regions

Specify safe regions

Under-approximate to simplify

Trigger system safety response upon transition to unsafe region



Architecting A Safety Envelope System

"Doer" subsystem

• Implements normal, untrusted functionality

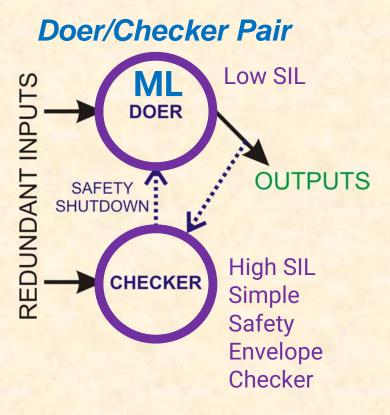
"Checker" subsystem – Traditional SW

Implements failsafes (safety functions)

Checker entirely responsible for safety

- Doer can be at low Safety Integrity Level
- Checker must be at higher SIL

(Also known as a "safety bag" approach)



Robustness Testing

Carnegie Mellon University

ASTAA: Automated Stress Testing of Autonomy Architectures

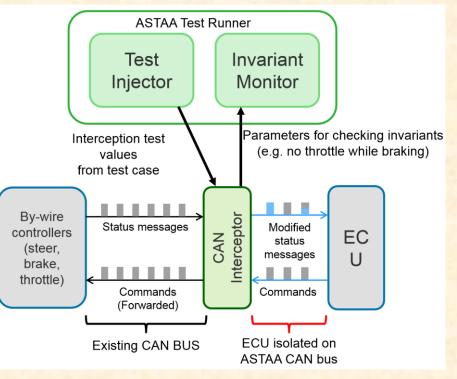
Key idea: combination of exceptional & normal inputs to an interface

Example: Ground Vehicle network

- Test Injector
 - Selectively modifies CAN messages on the fly
 - Modification based on data type information
- Invariant monitor
 - Reads messages for invariant evaluation
 - "Checker" invariant monitor detects failures

Commercial tool build-out:

• Edge Case Research Switchboard (software & hardware interface testing)



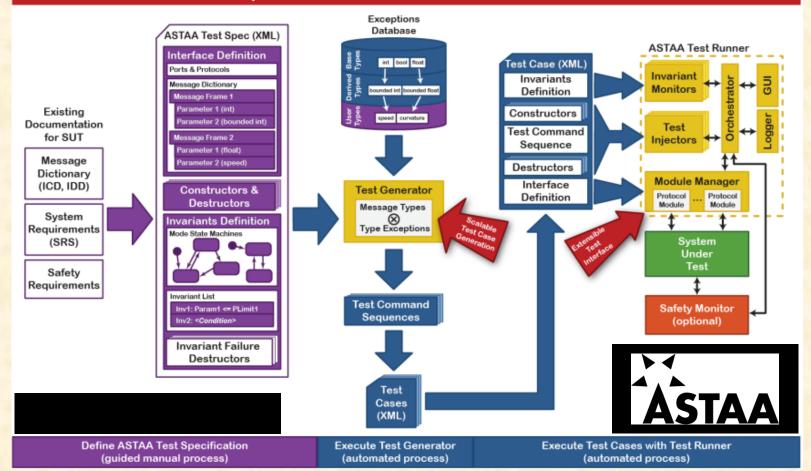
DISTRIBUTION A – NREC case number STAA-2013-10-02

Robustness Test + Monitor -> ASTAA

Carnegie Mellon University

Automated Stress-Testing for Autonomy Architectures

Test Specification and Execution Overview



DISTRIBUTION A – NREC case numbers STAA-2012-10-23, STAA-2013-10-02

Researchers evaluated 150 bugs from 11 distinct projects over 4 years [ICSE 2018]

From "RIOT Expanded Technical Brief, NAVAIR Public Release- 2016-842 'Approved for Public Release; distribution is unlimited'.

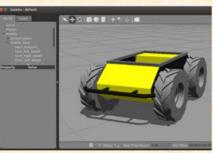
Robustness Testing Finds Problems

Carnegie Mellon University

- Improper handling of floating-point numbers:
 - Inf, NaN, limited precision
- Array indexing and allocation:
 - Images, point clouds, etc...
 - Segmentation faults due to arrays that are too small
 - Many forms of <u>buffer overflow</u> with complex data types
 - Large arrays and memory exhaustion

Time:

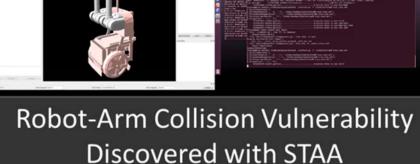
- Time flowing backwards, jumps
- Not rejecting stale data
- Problems handling dynamic state:
 - For example, lists of perceived objects or command trajectories
 - Race conditions permit improper insertion or removal of items
 - Garbage collection causes crashes or hangs



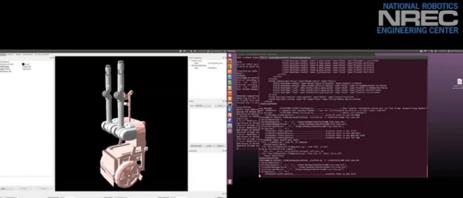
Non-Machine Learning Robustness Lessons

Protect your robots from data assumptions

- Don't trust that your configuration is valid
- Time is not always monotonic
- Semantically redundant field mismatches
- Floats and NaNs useful but dangerous
 - Do not use floats as iterators
 - NaNs propagate
- Plan for the system to fail
 - Nodes should not fail silent
 - Good logging is invaluable
- **Common sense?**
 - (Not so common it turns out)

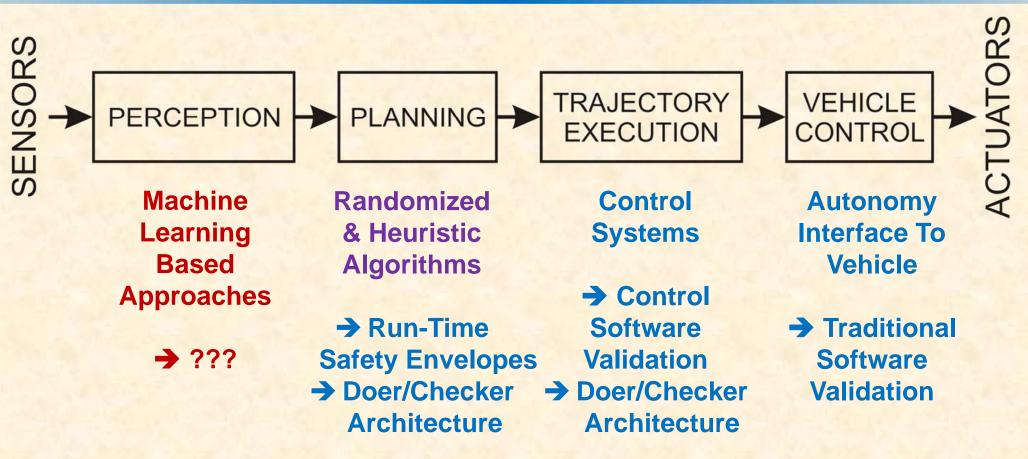


Send of "infinity" floating point joint angle



Carnegie Mellon University

Validating an Autonomous Vehicle Pipeline



Perception presents a uniquely difficult assurance challenge

Carnegie

Mellon University

Brute Force Road Testing

If 100M miles/critical mishap...

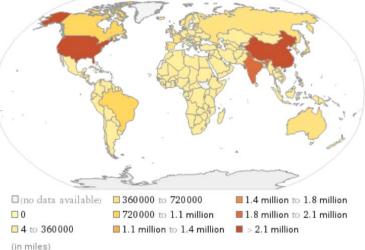
Test 3x−10x longer than mishap rate
 → Need 1 Billion miles of testing

That's ~25 round trips on every road in the world

...

• With fewer than 10 critical mishaps

Total road length map:



© 2018 Philip Koopman 13

University

Carnegie

Mellon

Brute Force AV Validation: Public Road Testing

Carnegie Mellon University

Good for identifying "easy" cases

• Expensive and potentially dangerous

Did We Learn The Right Lesson from Tempe?

Carnegie Mellon University

NOT: Blame the victim

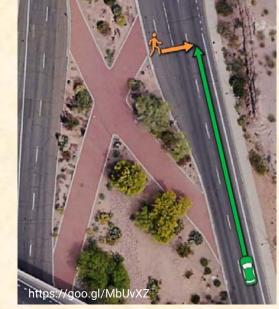
Pedestrian in road is expected

NOT: Blame the technology

Immature technology under test
 <u>Failures are expected!</u>

NOT: Blame the driver

• A solo driver drop-out is **expected**



The real AV testing lesson: Ensure safety driver is engaged

Safety argument: Driver alert; time to respond; disengagement works

Can Safety Driver React In Time?

Safety Driver Tasks:

- Mental model of "normal" AV
- Detect abnormal AV behavior
- React & recover if needed

Example: obstructed lane

- Does driver know when to take over?
- Can driver brake in time?
 - Or is sudden lane change necessary?

Example: two-way traffic

• What if AV commands sudden left turn into traffic?

Jan 20, 2016; Handan, China

Closed Course Testing

Safer, but expensive

- Not scalable
- Only tests things you have thought of!

Carnegie Mellon

University

Simulation

Carnegie Mellon University

Highly scalable; less expensive

- Scalable; need to manage fidelity vs. cost
- Only tests things you have thought of!

What About Edge Cases?

Carnegie Mellon University

You should expect the extreme, weird, unusual

- Unusual road obstacles
- Extreme weather
- Strange behaviors

PREDICTED CONCEPT	PROBABILITY
bird	0.997
no person	0.990
one	0.975
feather	0.970
nature	0.963
poultry	0.954
outdoors	0.936
color	0.910
animal	0.908

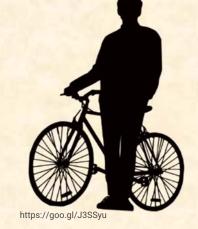
https://www.clarifai.com/demo

- Edge Case are surprises
 - You won't see these in testing
 Edge cases are the stuff you didn't think of!

Just A Few Edge Cases

Unusual road obstacles & obstacles

Extreme weatherStrange behaviors



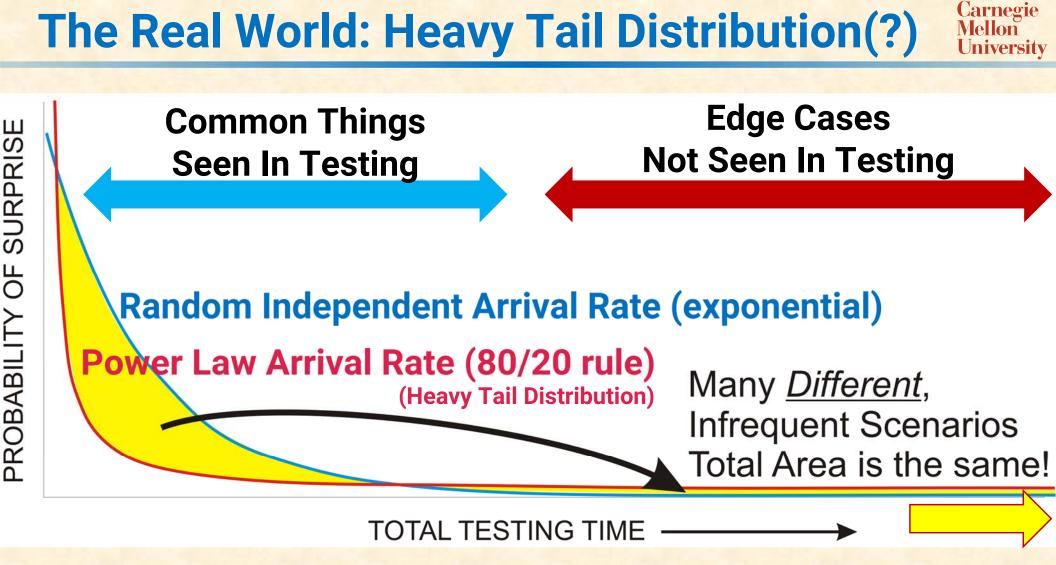
Carnegie Mellon University

Why Edge Cases Matter

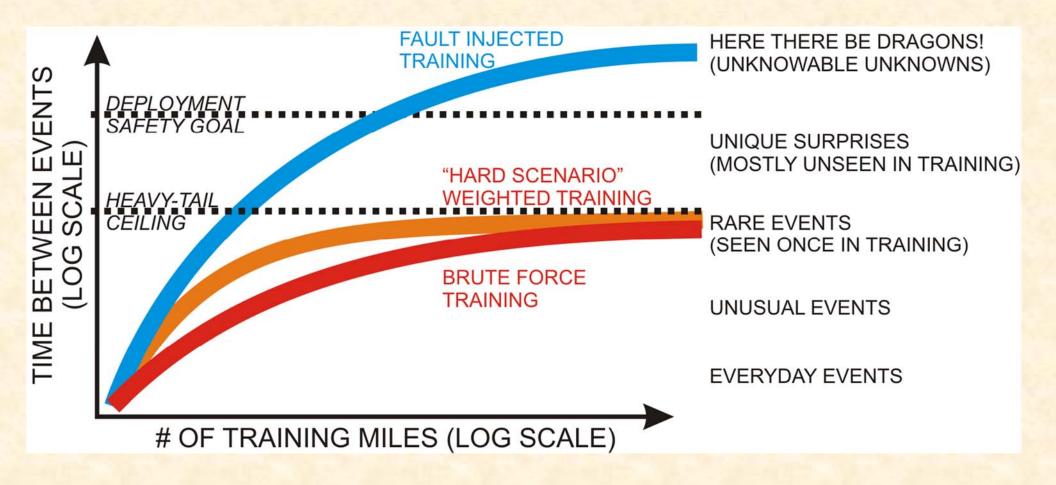
Where will you be after 1 Billion miles of validation testing?

Assume 1 Million miles between unsafe "surprises"

- Example #1: 100 "surprises" @ 100M miles / surprise
 - All surprises seen about 10 times during testing
 - With luck, all bugs are fixed
- Example #2: 100,000 "surprises" @ 100<u>B</u> miles / surprise
 - Only 1% of surprises seen during 1B mile testing
 - Bug fixes give no real improvement (1.01M miles / surprise)



The Heavy Tail Testing Ceiling

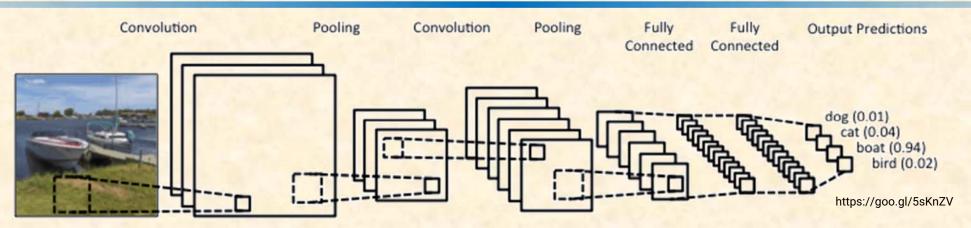


© 2018 Philip Koopman 25

Carnegie

Mellon University

Malicious Image Attacks Reveal Brittleness



QuocNet:

Car Not a Magnified Car Difference **AlexNet:**

Bus

Magnified Not a Difference Bus

Szegedy, Christian, et al. "Intriguing properties of neural networks." arXiv preprint arXiv:1312.6199 (2013).

Carnegie

Mellon University

ML Is Brittle To Environment Changes

Sensor data corruption experiments

Synthetic Equipment Faults

Correct detection

Gaussian blur

False negative

Carnegie

Mellon University

 $u_f = 1m, \kappa = 2$ Defocus

 $u_V = 97.8 \text{m}$ Haze

Contextual Mutators

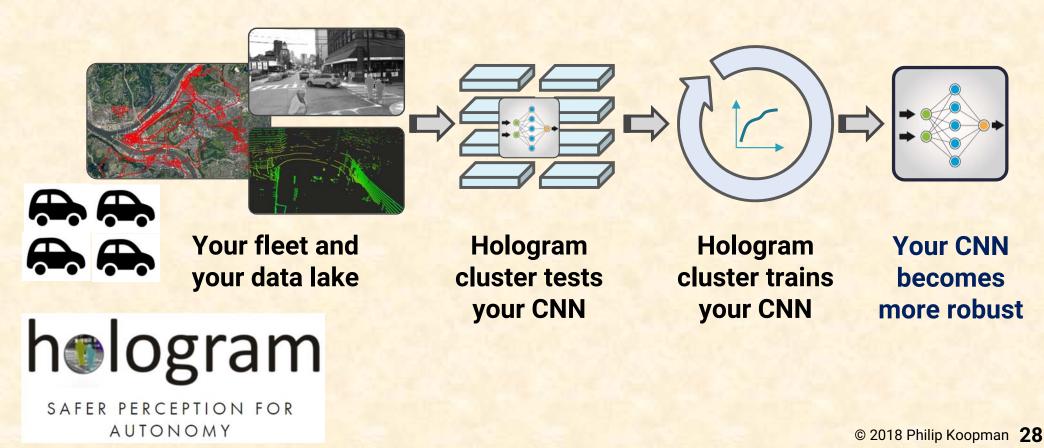
Defocus & haze are similarly a significant issue

Exploring the response of a DNN to environmental perturbations from "Robustness Testing for Perception Systems," RIOT Project, NREC, DIST-A.

What We're Learning With Hologram

Edge Case Research

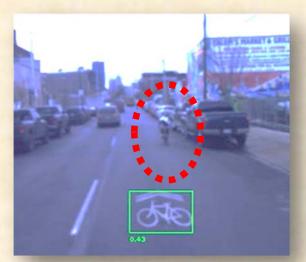
A scalable way to test & train on Edge Cases

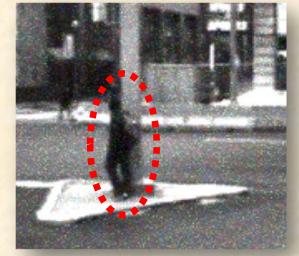


Context-Dependent Perception Failures

Perception failures are often context-dependent

- False positives and false negatives are both a problem
- This is an active research area ... technology still in development





False positive on lane marking False negative real bicyclist

False negative when person next to light pole

False negative when in front of dark vehicle

Will this pass a "vision test" for bicyclists?

Ways To Improve AV Safety

More safety transparency

- Independent safety assessments
- Industry collaboration on safety

Minimum performance standards

- Share data on scenarios and obstacles
- Safety for on-road testing (driver & vehicle)

Autonomy software safety standards

- Traditional software safety ... PLUS ...
- Dealing with uncertainty and brittleness
- Data collection and feedback on field failures

Carnegie

niversity

lelon