

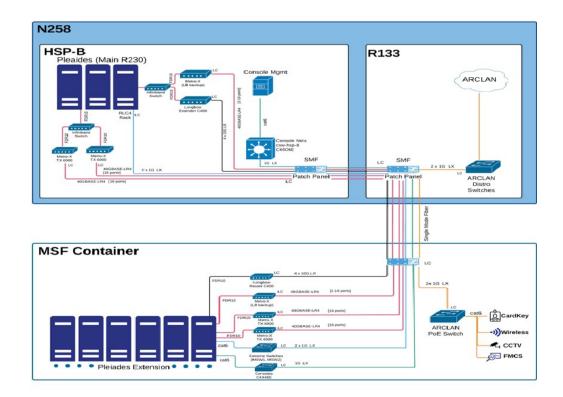
Update on NASA High End Computing (HEC) & Survey of Federal HEC Capabilities

March 6, 2017

Tsengdar Lee HEC Portfolio Manager Science Mission Directorate

Modular Supercomputing Facility (MSF)

- Status
 - MSF is operational
 - Site is monitored by security 24x7 over cctv
 - Site is secured with 9' fence with card controlled gate access
 - Module status is monitored by control room 24x7 and inspected each shift
 - Electra is operational as of 1 January 2017
 - Congress has just approved the 2nd module be installed in 2017.
 - Electra
 - 16 SGI ICE-X Racks with Intel Xeon processors E5-2680v4 (Broadwell processors) (1.24 PF**; 147 TB+; 4,654 SBUs++/hr)
 - 1,152 nodes (dual-socket blades)
 - 2,304 processors (32,256 cores)
 - Dual-plane fully populated 7D hypercube InfiniBand FDR^ Network with Metro-X IB extenders



* TF = Teraflops = one million million (10^{12}) floating-point operations per second; ** PF = 10^{3} TF; + TB = 10^{12} Bytes; ++ SBU = Standard Billing Unit for tracking computing usage (<u>https://hec.nasa.gov/user/policies/sbus.html</u>); ^ FDR = 56Gb/s serial high bandwidth links

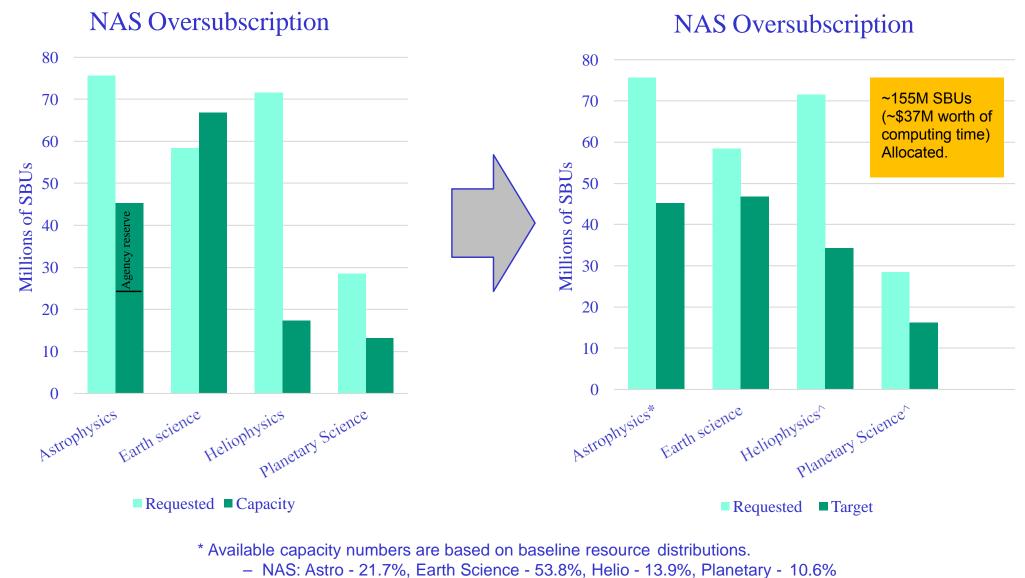
MSF Initial Test Results

- Benchmark Tests
 - LINPACK+ 1.096 petaflops (PF) –
 96th on November 2016 TOP500 List
 - HPCG⁺⁺ 25.188 teraflops (TF) 46th on November 2016 HPCG List
- Application Tests
 - Extensive testing was conducted in November and December identifying performance issues focused on connectivity with the remote I/O infrastructure.
 - After system modifications, there is minimal to no impact on job run times.
- Operational Facility Early Results
 - Numerous facility tests were conducted in November and December with modifications made to improve the efficiency of the module.
 - PUE numbers are consistently below 1.03, greatly exceeding our 1.06 target.

+ LINPACK = linear algebra benchmark suite to measure computational speed; ++ HPCG = high performance conjugate gradient benchmark to measure computational speed; * PUE = power usage effectiveness

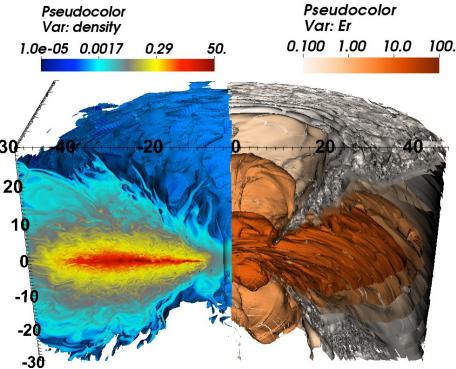
HECC Growth - Last Calendar Year

Systems	Systems Racks		Cores		TF*		SBU ⁺ /hr	
	Jan-16	Feb-17	Jan-16	Feb-17	Jan-16	Feb-17	Jan-16	Feb-17
Pleiades	163	160	211,872	245,400	5,340	7,232	26,020	32,230
Electra		16		32,256		1,239		4,654
Merope	36	56	13,824	21,504	162	252	1,152	1,792
Total	199	232	225,696	299,160	5,502	8,723	27,172	38,676
Growth		16.58%		32.55%		58.54%		42.34%



- * TF = Teraflops = one million million (10¹²) floating-point operations per second
- + SBU = Standard Billing Unit for tracking computing usage (https://hec.nasa.gov/user/policies/sbus.html)

2017 Capacity Oversubscription



Astrophysics allocation includes ~20M SBUs from the Agency reserve

Application Support: ATHENA

- Magnetohydrodynamics (MHD) code used to simulate black holes
- Previous I/O characterization
 - Identified bottleneck with IOT tool
 - Sped up I/O
 - 10x in 3264-rank case
 - 36x in 5968-rank case
- Current Performance Characterization
 - Developed set of kernels from full code
 - Using tools: Vector Advisor, Paraver, op_scope MPIprof
 - Transformations to reduce memory pressure yielded 12% improvement in a kernel
 - Investigating performance on Intel Xeon Phi cluster
- Next Steps
 - Conduct formal interview with PI
 - Investigate issues identified in interview
 - Write summary report

Snapshot of the global structure of a radiation-dominated black hole accretion disk with super-Eddington accretion rate from a global 3D radiation MHD simulation done in Pleiades. Left image shows the density, and the right shows the radiation energy density (both in units of the initial maximum value). Coordinate axes are labeled in units of Schwarzschild⁶ radius. Pleiades has been used for Athena/Athena++ code to perform simulations to study various astrophysical systems, including properties of black hole accretion disks, stability and structures of massive star envelopes as well as stream-stream collision in tidal disruption events.

Survey of Federal Agency HEC Capabilities DoD, DoE, NSF

Response to Heliophysics Subcommittee, NASA Advisory Council Survey Conducted by NASA HEC NCCS, NASA Goddard Space Flight Center

February 27, 2017 L. Parnell, NCCS Consultant

- DoD HPCMP
 - AFRL, ARL, ERDC, Navy/SSC, MHPCC
- DoE
 - NNSA (LLNL)
 - SC (ALCF, OLCF, NERSC)
- NSF
 - Centers: NCSA, PSC, SDSC, TACC
 - XSEDE

DoD HPCMP HEC Systems Summary

Agency	Compute	Aggregated TFLOPS	
	# Nodes	# Cores	
DoD HPCMP	30,406	843,318	20,076
DOE ASCR	87,232	6,644,623	78,650
DOE NNSA	28,932	516,370	8,817
NSF Centers	38,288	1,042,360	26,338
NSF XSEDE	?	220,548	16,556
NASA	11,472	246,048	7,250

Caveats:

- Not all systems are reported.
- Inconsistent reporting especially when accelerators are used.

Agency FY 2017 Budget Requests and Prior-Year HEC Funding (\$M)

High-Capability Computing Systems Infrastructure & Applications

Agency \ PCA	2017 HCSIA	2016 HCSIA Estimates	2015 HCSIA Actuals	Enabling R&D (EHCS)	Software & Systems (HCSS)
NSF	183.2	180.4	189.0	131.0	86.5
DoD ^b	81.9	80.8	80.8	216.4	12.9
DOE °	393.6	374.4	378.8	208.3	17.5
NIH ^d	194.6	194.6	194.6	23.1	30.0
NIST	8.1	8.1	8.1	18.0	15.7
NASA	60.9	62.8	67.3	11.0	4.9
NOAA	36.0	29.7	23.0		
NNSA				30.0	
Total ^{a, d}	958.3	930.8	941.6	647.5	167.5

Headings Key: PCA – Program Component Area

EHCS – Enabling R&D for High-Capability Computing Systems

HCSIA – High-Capability Computing Systems Infrastructure & Applications

HCSS – High Confidence Software & Systems

Source: FY2017 NITRD Supplement to the President's Budget

Agency	Site	FY 16 Funding (\$M)	Number of Projects	Number of Users	Allocations	Allocation Policy, Process (Methodology is very similar across all agencies and sites)
НРСМР	Various*	230		~1,800	Users: 95% MPO: 5%	Policy: Allocate 90-95% of user-
	LLNL			3,000+		available machine resources.
	ALCF	77	350	990	INCITE: 60%	Retain 5-10% for discretionary use.
DoE	OLCF	104	316	1176	Challenge:30	Process
	NERSC	86	750	5000+	% Sites: 10%	Process: 1.Projects submit proposals
	NCSA					(quarterly to annually)
	PSC			1		2.Requirements are validated
	SDSC					3.Proposals are evaluated &
	TACC				Users: >90%	ranked
NSF	XSEDE	3,500+ 3,500+ Sites: <= 10%			4.Allocations are made toapproved proposals (quarterly toannually)5.Progress is reviewed, assessed	

Backup Information

List of Acronyms

- ALCF = Argonne Leadership Computing Facility
- DoD = Department of Defence
- DoE = Department of Energy
- FDR = 56Gb/s serial high bandwidth links
- HPCMP = High Performance Computing Modernization Program
- LLNL = Los Alamos National Laboratory
- NERSC = National Energy Research Scientific Computing Cente
- NCSA = National Center for Supercomputing Applications
- NNSA = National Nuclear Security Administration
- NSF = National Science Foundation
- OLCF = Oak Ridge Leadership Computing Facility
- PF = Petaflops = 10¹⁵ floating-point operations per second
- PSC = Pittsburgh Supercomputing Center
- SBU = Standard Billing Unit for tracking computing usage (https://hec.nasa.gov/user/policies/sbus.html)
- SDSC = San Diego Supercomputing Center
- TACC = Texas Advanced Computing Center
- TB = 10¹² Bytes
- TF = Teraflops = one million million (10¹²) floating-point operations per second
- XSEDE = Extreme Science and Engineering Discovery Environment

Survey of Federal Agency HEC Capabilities DoD, DoE, NSF

Response to Heliophysics Subcommittee, NASA Advisory Council Survey Conducted by NASA HEC NCCS, NASA Goddard Space Flight Center

February 27, 2017 L. Parnell, NCCS Consultant

- DoD HPCMP
 - AFRL, ARL, ERDC, Navy/SSC, MHPCC
- DoE
 - NNSA (LLNL)
 - SC (ALCF, OLCF, NERSC)
- NSF
 - Centers: NCSA, PSC, SDSC, TACC
 - XSEDE

DoD HPCMP HEC Systems Summary Number of users: ~1,800

Vendor / Model	(St	Peak TFLOPS		
-	# Nodes	# Cores	GB Memory / Node	
Cray XC30	1,215 / 8 + 124	30,592	64 128	786
Cray XC30	2,370/ 0 + 32	57,200	64	1280
Cray XC30	1,183 / 8 + 156	30,144	64 128	822
Cray XC40	1,523 / 8 + 168	51,008	128 512	2000
Cray XC40	3,098/32+ 32	101,184	128 512	3770
Cray XC40	1,523 / 8 + 168	51,008	128 512	2000
Cray XE6	4,716	150,912	64	1500
Cray XE6m	460	14,720	64	135
IBM IDPx	1,220 / 4 + 12	19,776	32 256	411
IBM IDPx	756	12,096	32	252
SGI ICE X	4,590	73,440	32	1500
SGI ICE X	3,216 / 4 + 356	125,888	128 768	5620
SGI ICE X	3,456 / 4 + 32	125,440	128 1	4660

DoE ASCR HEC Systems Summary

Number of users: 7,166+

	Vandar /	C	ompute Node	S		Netes
Site / System	Vendor / Model	# Nodes	# Cores	GB Memory / Node	Peak TFLOPS	Notes
ORNL	- LCF					
Titan - Cray X	(K7	18,688	AMD: 4,784,128	32GB + 6GB	27,000	+GPUs: 18,688
Eos - Cray X	Eos - Cray XC30		11,776	64		Titan Support
ANL	LCF					
Mira - IBM / E	Blue Gene/Q	49,152	786,432	16	10,000	
Theta - Intel (X Phi)/Cray	eon	>2,500	231,935	208	9,650	
NEF	RSC					
CORI - Cray XC40 (Xeon, Phi)		Xeon: 1,988 / Phi: 9,304	Haswell: 63,616 Phi: 632,672	Haswell: 203 TB Phi: 1 PB (aggregate)	30,000	+ PDSF & Genepool – dedicated sys
Edison - Cra	ay XC30	5.600	134,064	64	2,000	

DoE NNSA HEC Systems Summary

Livermore Computing General Availability Compute Platforms

Number of Users: 3,000+

System	Nodes	Total Cores	Total Memory (GB)	TFLOPS Peak	Vendor	Program(s)
Ansel	324	3,888	7,776	43.5	Dell	M&IC
Cab	1,296	20,736	41,472	431.3	Appro	ASC, M&IC
Vulcan	24,576	393,216	393,216	5,033.2	IBM	ASC, M&IC, HPCIC
Quartz	2,688	96,768	344,064	3,251.4	Penguin	ASC, M&IC
Borax	48	1,762	6,144	58.1	Penguin	ASC

NSF Centers HEC Resources NCSA, PSC, SDSC, TACC

Site	Vendor/	(Regular)	Compute N / Large / Ext	Peak	Notes		
	Model	# Nodes	# Cores	GB Memory/ Node	TFLOPS		
NCSA: Blue Waters	Cray XE6 / XK7 hybrid	22,640 / 4,228	396,032	32 / 64	13,340	XK: +4,228 GPUs	
PSC: Bridges*	Intel Xeon	800 / 42 / 4	27,040	128 / 3,000 / 12,000	895 / 895		
SDSC:							
Comet*	Dell Intel Xeon	1,944 / 4	47,776	128 (+ 320 Flash) /1,500	2,000	+ 144 GPUs	
Gordon*	Appro/Intel	1,024	16,384	64	341	300 TB flash	
Triton shared cluster	Vars.			~4,000	100+	UCSD/UC "condo"	
TACC:							
Stampede*	Dell Intel	6,400	522,080	40	9,600	Xeon + PHI	
Lonestar 5	Cray XC40	1,252 /2 /8	30,048	64 /1,000 / 512		Academic	
Wrangler*	Dell/ EMC (10PB DSSD)		3,000+		62	Data Analysis, IU,UC - Replicated	

*Access and allocations provided through XSEDE

NSF XSEDE Compute Resources & Usage* Number of Users: 3,500+

Name	Site	CPUs	Peak TFlops	Utilization	Running Jobs	Queued Jobs	Other Jobs
Stampede	UT Austin	102400	9600	86%	814	281	108
Comet	SDSC	47616	2000	91%	1734	2334	137
XStream	Stanford	1300	1012	52%	68	9	86
SuperMIC	LSU CCT	7200	925				
Bridges Reg. Mem	PSC	21056	895				
Bridges Large Mem	PSC	160	895				
Jetstream	Indiana	15360	516				
Gordon Cluster	SDSC	16384	341	20%	123	32	19
Beacon	NICS	768	210				
Red	UN Lincoln	6000	100				
Wrangler	UT Austin	2304	62				

XSEDE: a single, virtual cyberinfrastructure that scientists use to interactively share computing resources, data, and expertise. *Usage provided real time. Sample shown obtained 2/13/17 at 3:00 EST.

Agency FY 2017 Budget Requests and Prior-Year HEC Funding (\$M)

High-Capability Computing Systems Infrastructure & Applications

Agency \ PCA	2017 HCSIA	2016 HCSIA Estimates	2015 HCSIA Actuals	Enabling R&D (EHCS)	Software & Systems (HCSS)
NSF	183.2	180.4	189.0	131.0	86.5
DoD ^b	81.9	80.8	80.8	216.4	12.9
DOE c	393.6	374.4	378.8	208.3	17.5
NIH ^d	194.6	194.6	194.6	23.1	30.0
NIST	8.1	8.1	8.1	18.0	15.7
NASA	60.9	62.8	67.3	11.0	4.9
NOAA	36.0	29.7	23.0		
NNSA				30.0	
Total ^{a, d}	958.3	930.8	941.6	647.5	167.5

Headings Key: PCA – Program Component Area

EHCS – Enabling R&D for High-Capability Computing Systems

HCSIA – High-Capability Computing Systems Infrastructure & Applications

HCSS – High Confidence Software & Systems

Source: FY2017 NITRD Supplement to the President's Budget

Agency	Site	FY 16 Funding (\$M)	Number of Projects	Number of Users	Allocations	Allocation Policy, Process (Methodology is very similar across all agencies and sites)		
НРСМР	Various*	230		~1,800	Users: 95% MPO: 5%	Policy: Allocate 90-95% of user-		
	LLNL			3,000+		available machine resources.		
	ALCF	77	350	990	INCITE: 60%	Retain 5-10% for discretionary use.		
DoE	OLCF	104	316	1176	Challenge:30	Process:		
	NERSC	86	750	5000+	% Sites: 10%	1.Projects submit proposals		
	NCSA					(quarterly to annually)		
	PSC					2.Requirements are validated		
	SDSC					3.Proposals are evaluated &		
NCE	TACC			2 500.	Users: >90%	ranked		
NSF	XSEDE			3,500+	Users: >90% Sites: <= 10%	4.Allocations are made to approved proposals (quarterly to annually)5.Progress is reviewed, assessed		

A. Department of Defense HPCMP

1. Requirements Determination

- Each DoD Service/Agency defines a set of computational projects supporting RDT&E program
 - DoD Services: Army, Navy, Air Force
 - DoD Agencies: DTRA, DARPA, MDA
- Project requirements are captured in an annual survey of computational project leaders
 - Survey captures requirements for upcoming fiscal year and four years into the future
 - Extensive data collected on each project
 - Project description
 - Hardware requirements core-hours per year per system
 - Applications software requirement
 - Individual job requirements
 - Training requirements
- Each Service/Agency validates its overall requirements through HPC Advisory Panel Principals of each Service and Agency Requirements tend to exceed available HPC cycles by 3X

Detailed Agency HEC Resource Allocation Process Descriptions A. DoD HPCMP, continued

2. Allocation Management Process

- 100% of all available computational resources at DOD Supercomputing Resource Centers are allocated
 - Based on theoretical maximum of 8,760 hours per year
- 5% reserved for HPCMPO allocations
- 25% allocated to Frontier Projects
 - These are high-impact, computationally-intensive projects
 - Selections based on technical merit review as well as Service/Agency prioritization
- 70% allocated to Services/Agencies for distribution
 - 30/30/30/10 (Army/Navy/Air Force/Agencies) split
 - Mechanisms in place support Service/Agency allocations for high priority, advance reservations, and dedicated workloads
- Overall limit on high-priority work of 35%
 - Frontier and Service/Agency high priority projects

B. Department of Energy's National Laboratories

- The Office of Science computers are dedicated to tackling the modeling, simulation, and big datasets behind ambitious research.
 - The projects that use these facilities range from needing 10 million to more than 100 million hours of computing time.
- The DoE-SC user facilities' dedication to the larger research community makes them particularly unique.
 - They allocate time to researchers based on the strength of competitive scientific proposals.
 - As with all DOE user facilities, they are free to use as long as the scientist makes their data available to the larger scientific community. Discretionary allocations consume 10% of resources.
- The DOE's INCITE program provides 60% of allocations to computationally intensive, large-scale research projects that aim to address "grand challenges" in science and engineering.
 - The program conducts a two-part review of all proposals: a peer review by an international panel of experts and a computational-readiness review.
 - The annual call for proposals is issued in April, and the allocations are awarded in millions of core-hours for one to three years.

B. DoE National Laboratories, continued

- The DOE's ALCC program allocates 30% of resources to projects directly related to the DOE's energy mission, national emergencies, or for broadening the community of researchers capable of using leadership computing resources.
 - The DOE conducts a peer review of all proposals based on scientific and technical merit of the project; appropriateness of the proposed method or approach; competency and adequacy of personnel and proposed resources; and the reasonableness and appropriateness of the proposed allocation request.
 - The yearlong allocation cycle runs from July 1 to June 30.
- The NNSA unclassified Livermore Computing facilities are allocated in a manner similar to that of the DoD HPCMP.
 - Project leaders submit proposals for resources based on their requirements. Proposals are evaluated and available appropriate facility resources are allocated based on the requirements

C. National Science Foundation

- Allocations are made through the Extreme Science and Engineering Discovery Environment (XSEDE), which is composed of multiple partner institutions known as Service Providers, each of which contributes one or more allocatable services.
 - Resources include High Performance Computing (HPC) machines, High Throughput Computing (HTC) machines, visualization, data storage, testbeds, and services.
- An XSEDE allocation is a grant that provides approved research projects with 12 months of access to the XSEDE cyberinfrastructure.
 - Allocations may include computing and visualization time, data storage space, and extended collaborative support services at one or more XSEDE service provider sites.
 - Allocations are awarded to researchers who serve as principal investigators (PIs) of approved projects.
 - After receiving an allocation, each project's PI can create XSEDE accounts for other researchers on the project team, giving them access to the project's allocated digital services.

C. National Science Foundation, continued

XSEDE offers four types of allocations to accommodate various use cases:

- **Startup allocations** -intended primarily for researchers who are new to the XSEDE environment, enabling them to quickly gain access to XSEDE digital services.
 - They are well suited for researchers who need to develop their codes, test their applications, or experiment with XSEDE systems.
 - Faculty members and postdoctoral researchers at US academic research institutions, as well as K-12 teachers, are welcome submit requests for Startup allocations at any time
 - Startup allocations provide each project with a maximum of 200,000 service units to be used within the 12-month time limit, on either a single computational system or a combination of systems.
- Education allocations specifically designed for academic instruction or training activities, and are intended for faculty who want to incorporate XSEDE digital services into to their courses about the use of advanced cyberinfrastructure technologies.
 - PIs on Education allocations must be faculty at a US academic institution. You are welcome to submit a request for an Education allocation at any time through the XSEDE User Portal.
 - Education allocations provide each project with a maximum of 200,000 service units to be used within the 12-month time limit.
 - You may request time on either a single computational system or a combination of systems.

C. National Science Foundation, continued

- **Research allocations -** reserved for projects with requirements that Startup allocations cannot accommodate.
 - With a Research allocation, an approved project can make extensive use of XSEDE's highperformance and high-throughput compute systems, scientific visualization systems, and data storage systems, and receive expert consulting and support from Extended Collaborative Support Service (ECSS) staff.
 - Requests for Research allocations are reviewed four times a year by the XSEDE Resource Allocations Committee (XRAC).
 - Research allocation requests may be submitted using the XSEDE User Portal, but each request must include a detailed document that describes the work the project plans to accomplish and justifies the need for the requested resources.
- **Campus Champions allocations** reserved for the Campus Champions program which establishes representatives at US educational institutions who distribute knowledge of XSEDE's advanced cyberinfrastructure technologies to the researchers, educators, and students on their campuses.
 - Campus Champions help users on their campuses set up Startup allocations and provide them with the XSEDE contacts they need to resolve any problems.
 - Campus Champions are also responsible for hosting training and information sharing sessions on their campuses to make researchers, faculty, and students aware of XSEDE's resources and services, and how XSEDE can help them achieve their research goals.

Additional/Backup Information

DoE ASCR Computing Upgrades At a Glance

System attributes	NERSC Now	OLCF Now	ALCFNow		NERSC Upgrade	OLCF Upgrade	ALCF Upgrades
Name Planned Installation	Edison	TITAN	MIRA	Theta 2016	Cori 2016	Summit 2017-2018	Aurora 2018-2019
System peak (PF)	2.6	27	10	>8.5	> 30	200	180
Peak Power (MW)	2	9	4.8	1.7	< 3.7	13.3	13
Total system memory	357 TB	710TB	768TB	>480 TB DDR4 + High Bandwidth Memory (HBM)	~1 PB DDR4 + High Bandwidth Memory (HBM)+1.5PB persistent memory	> 2.4 PB DDR4+ HBM + 3.7 PB persistent memory	> 7 PB High Bandwidth On-Package Memory Local Memory and Persistent Memory
Node performance (TF)	0.460	1.452	0.204	>3	>3	>40	> 17 times Mira
Node processors	Intel Ivy Bridge	AMD Opteron Nvidia Kepler	64-bit PowerPC A2	Intel Knights Landing Xeon Phi many core CPUs	Intel Knights Landing many core CPUs Intel Haswell CPU in data partition	Multiple IBM Power9 CPUs & multiple Nvidia Voltas GPUS	Knights Hill Xeon Phi many core CPUs
System size (nodes)	5,600 nodes	18,688 nodes	49,152	>2,500 nodes	9,300 nodes 1,900 nodes in data partition	~4,600 nodes	>50,000 nodes
System Interconnect	Aries	Gemini	5D Torus	Aries	Aries	Dual Rail EDR-IB	2 nd Generation Intel Omni-Path Architecture
File System	7.6 PB 168 GB/s, Lustre [®]	32 PB 1 TB/s, Lustre [®]	26 PB 300 GB/s GPFS™	10PB, 210 GB/s Lustre initial	28 PB 744 GB/s Lustre®	120 PB 1 TB/s GPFS™	150 PB 1 TB/s Lustre [®]

Livermore Computing Systems Summary

			Avg Power								
	Тор500		Manufacture/	Processor		Inter-	Demand			Memory	Peak
Suctors	Rank	Drogram	Model	Architecture	OS		(KW)	Nodes	Coros	(GB)	I Can
System		Program	woder	Architecture	05	connect	(KVV)	Nodes	Cores	(GD)	
	TFLOP/										
Unclassified Ne		,									
Vulcan	21	ASC+M&IC+HPCIC	IBM BGQ	IBM PowerPCA2	RHEL/CNK	5D Torus	TBD	24,576	393,216	393,216	5,033.2
Cab (TLCC2)		ASC+M&IC+HPCIC	Appro	Intel Xeon E5-2670	TOSS	IBQDR	564	1,296	20,736	41,472	426.0
Quartz (CTS-1)	41	ASC+M&IC	Penguin	Intel Xeon E5-2695v4	TOSS	Omni-Path	TBD	2,688	96,768	344,064	3251.4
Ansel		M&IC	Dell	Intel Xeon EP X5660	TOSS	IBQDR	TBD	324	3,888	7,776	43.5
RZMerl (TLCC2)		ASC+ICF	Appro	Intel Xeon E5-2670	TOSS	IBQDR	TBD	162	2,592	5,184	53.9
RZZeus		M&IC	Appro	Intel Xeon E5530	TOSS	IBDDR	143	267	2,144	6,408	20.6
RZManta		ASC	IBM	IBMPower8+	RHEL	IBEDR	TBD	36	720	11,520	597.6
Ray		ASC+M&IC	IBM	IBMPower8+	RHEL	IBEDR	TBD	54	1,080	17,280	896.4
Catalyst		ASC+M&IC	Cray	Intel Xeon E5-2695v2	TOSS	IBQDR	TBD	324	7,776	41,472	149.3
Syrah		ASC+M&IC	Cray	Inetl Xeon E5-2670	TOSS	IBQDR	TBD	324	5,184	20,736	107.8
Surface		ASC+M&IC	Cray	Intel Xeon E5-2670	TOSS	IB FDR	TBD	162	2,592	41,500	451.9
Borax (CTS-1)		ASC+M&IC	Penguin	Intel Xeon E5-2695v4	TOSS	N/A	TBD	48	1,728	6,144	58.1
RZTrona (CTS-1)		ASC	Penguin	Intel Xeon E5-2695v4	TOSS	N/A	TBD	48	1,728	6,144	58.1
Herd		M&IC	Appro	AMD Opteron 8356, 6128 Intel EX E7-4850	TOSS	IBDDR	7	9	256	1,088	1.6
OCFTotals	Systems	14									11,149.4
Classified Netw	ork (SCF)										
Pinot(TLCC2, SNSI)		M&IC	Appro	Intel Xeon E5-2670	TOSS	IBQDR	TBD	162	2,592	10,368	53.9
Sequoia	4	ASC	IBM BGQ	IBM PowerPCA2	RHEL/CNK	5DTorus	TBD	98,304	1,572,864	1,572,864	20132.7
Zin (TLCC2)	164	ASC	Appro	Intel Xeon E5-2670	TOSS	IBQDR	TBD	2,916	46,656	93,312	961.1
Jade (CTS-1)	42	ASC	Penguin	Intel Xeon E5-2695v4	TOSS	Omni-Path	TBD	2,688	96,768	344,064	3251.4
Shark		ASC	IBM	IBMPower8+	RHEL	IBEDR	TBD	36	720	11,520	597.6
Max		ASC	Appro	Intel Xeon E5-2670	TOSS	IB FDR	TBD	324	5,184	82,944	107.8
Agate(CTS-1)		ASC	Penguin	Intel Xeon E5-2695v4	TOSS	N/A	TBD	48	1,728	6,144	58.1
SCFTotals	Systems	7	- 0.			,					25,162.6
Combined Totals		21									36,312.0

System		%of
Category	TFLOP/s	Total

