

The Science DMZ Design Pattern

Eli Dart Network Engineer ESnet Science Engagement Lawrence Berkeley National Laboratory

NASA Mountain View, CA October 1, 2016

Overview

- Science DMZ Motivation and Introduction
- Science DMZ
 - Architecture
 - Network Monitoring For Performance
 - Data Transfer Nodes & Applications
 - Science DMZ Security
- Larger Context, Platform
 - Science Engagement
 - Pacific Research Platform
 - Data Portal Discussion
 - Petascale DTN Project

Motivation

- Networks are an essential part of data-intensive science
 - Connect data sources to data analysis
 - Connect collaborators to each other
 - Enable machine-consumable interfaces to data and analysis resources (e.g. portals), automation, scale

Performance is critical

- Exponential data growth
- Constant human factors
- Data movement and data analysis must keep up
- Effective use of wide area (long-haul) networks by scientists has historically been difficult

The Central Role of the Network

- The very structure of modern science assumes science networks exist: high performance, feature rich, global scope
- What is "The Network" anyway?
 - "The Network" is the set of devices and applications involved in the use of a remote resource
 - This is not about supercomputer interconnects
 - This is about data flow from experiment to analysis, between facilities, etc.
 - User interfaces for "The Network" portal, data transfer tool, workflow engine
 - Therefore, servers and applications must also be considered
- What is important? Ordered list:
 - 1. Correctness
 - 2. Consistency
 - 3. Performance

TCP – Ubiquitous and Fragile

- Networks provide connectivity between hosts how do hosts see the network?
 - From an application's perspective, the interface to "the other end" is a socket
 - Communication is between applications mostly over TCP
- TCP the fragile workhorse
 - TCP is (for very good reasons) timid packet loss is interpreted as congestion
 - Packet loss in conjunction with latency is a performance killer
 - Like it or not, TCP is used for the vast majority of data transfer applications (more than 95% of ESnet traffic is TCP)

A small amount of packet loss makes a huge difference in TCP performance

10000 9000 8000 With loss, high performance Throughput (Mbits/sec) Local 7000 (LAN) beyond metro distances is 6000 essentially impossible International 5000 Metro Area Regional 4000 Continental 3000 2000 1000 0 10 50 60 90 0 20 30 40 70 80 100 Round Trip Time (milliseconds) Measured (TCP Reno) Measured (HTCP) **Theoretical (TCP Reno)** Measured (no loss)

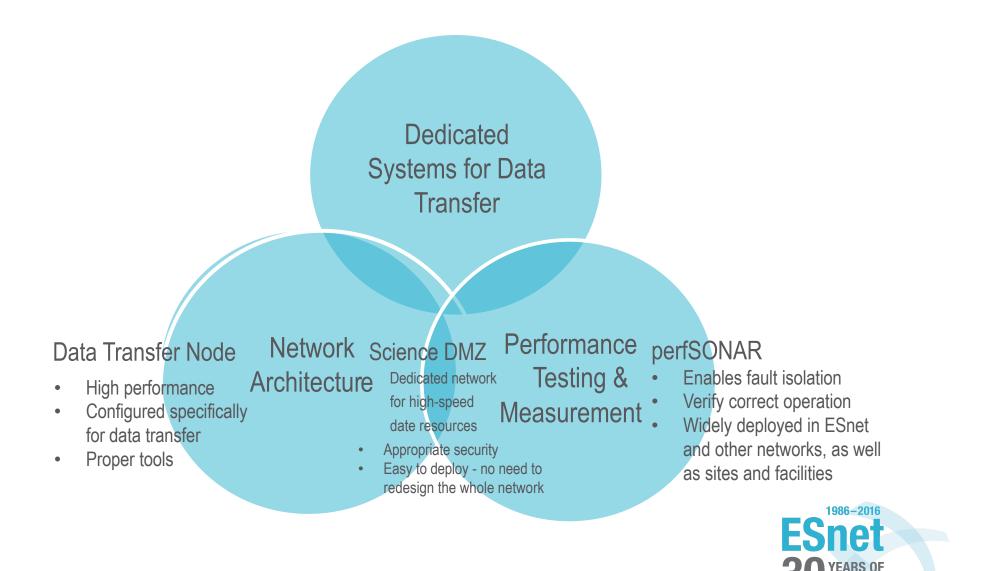
Throughput vs. Increasing Latency with .0046% Packet Loss

6 – ESnet Science Engagement (engage@es.net) - 7/13/17

^{© 2016,} Energy Sciences Network

Working With TCP In Practice

- Far easier to support TCP than to fix TCP
 - People have been trying to fix TCP for years limited success
 - Like it or not we're stuck with TCP in the general case
- Pragmatically speaking, we must accommodate TCP
 - Sufficient bandwidth to avoid congestion
 - Zero packet loss
 - Verifiable infrastructure
 - Networks are complex
 - Must be able to locate problems quickly
 - Small footprint is a huge win small number of devices so that problem isolation is tractable



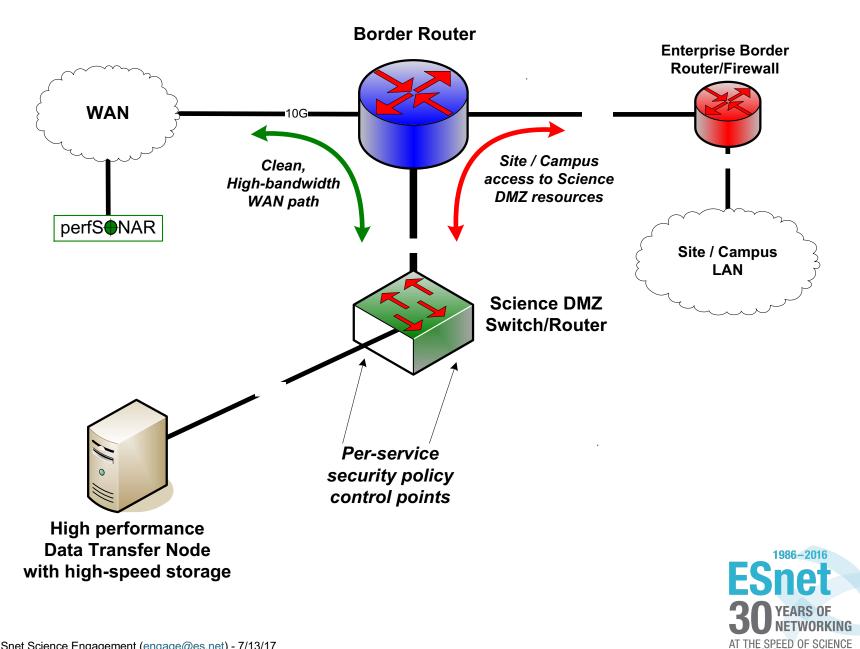
Putting A Solution Together

- Effective support for TCP-based data transfer
 - Design for correct, consistent, high-performance operation
 - Design for ease of troubleshooting
- Easy adoption is critical
 - Large laboratories and universities have extensive IT deployments
 - Drastic change is prohibitively difficult
- Cybersecurity defensible without compromising performance
- Borrow ideas from traditional network security
 - Traditional DMZ
 - Separate enclave at network perimeter ("Demilitarized Zone")
 - Specific location for external-facing services
 - Clean separation from internal network
 - Do the same thing for science Science DMZ

The Science DMZ Design Pattern

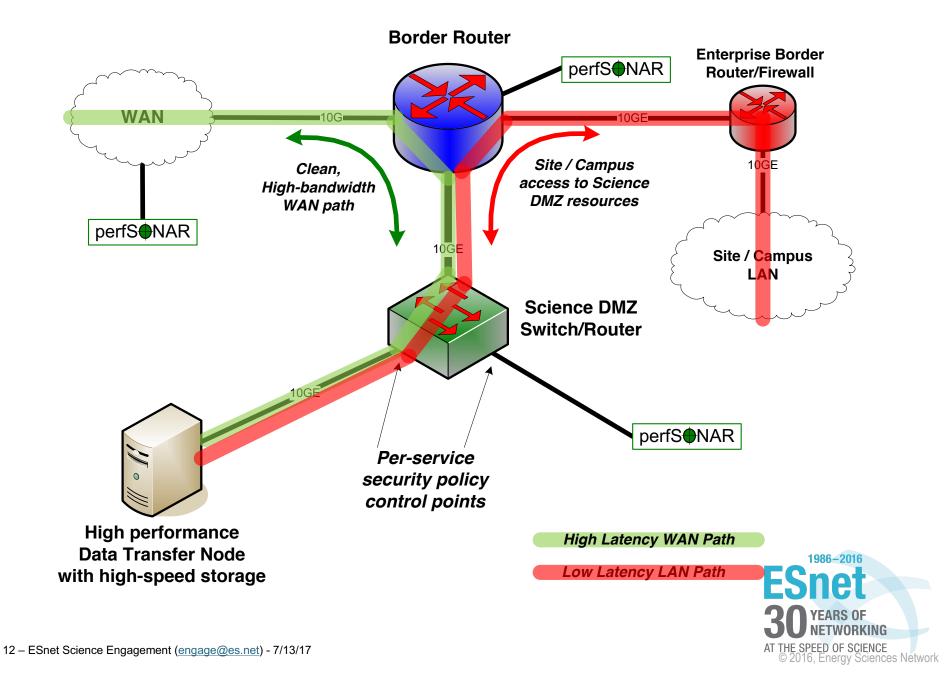
AT THE SPEED OF SCIENCE

2016, Energy Sciences Nétwork


9 – ESnet Science Engagement (engage@es.net) - 7/13/17

Abstract or Prototype Deployment

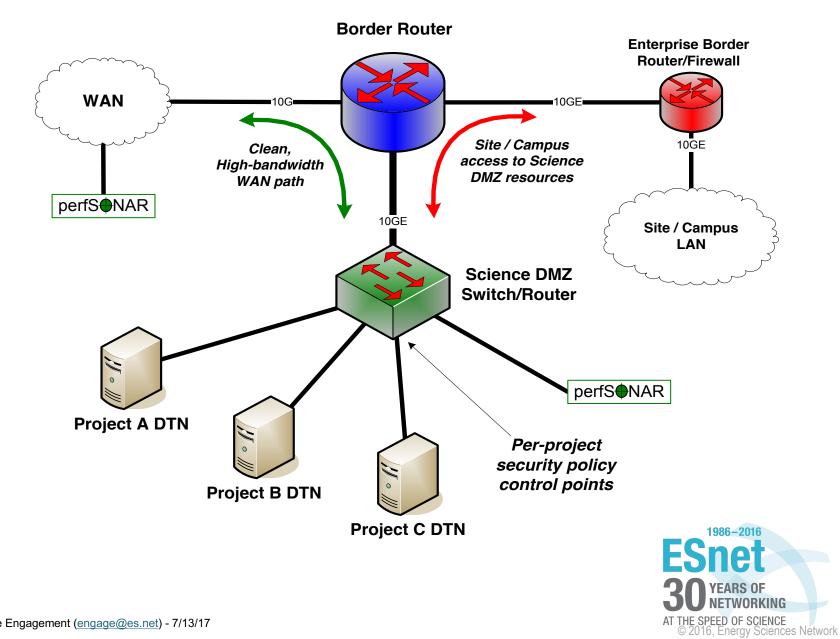
- Add-on to existing network infrastructure
 - All that is required is a port on the border router
 - Small footprint, pre-production commitment
- Easy to experiment with components and technologies
 - DTN prototyping
 - perfSONAR testing
- Limited scope makes security policy exceptions easy
 - Only allow traffic from partners
 - Add-on to production infrastructure lower risk



Science DMZ Design Pattern (Abstract)

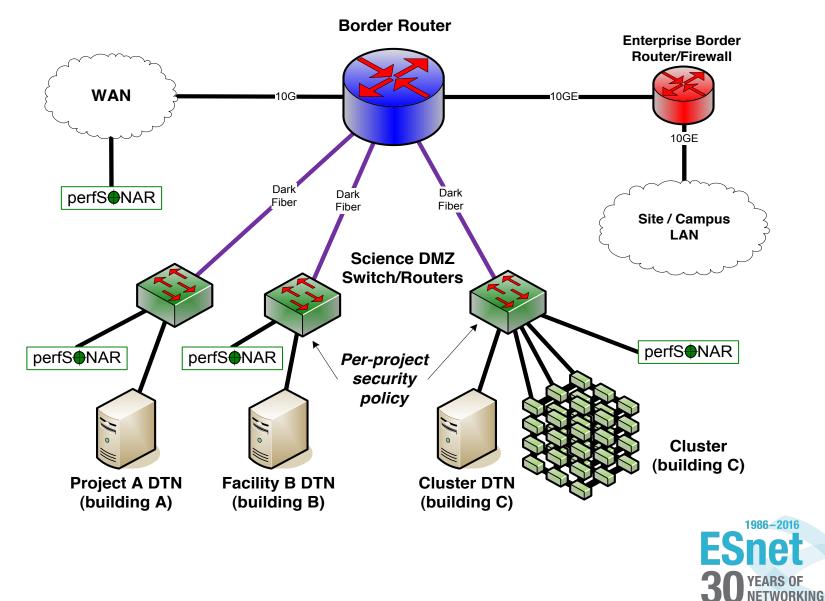
© 2016, Energy Sciences Network

Local And Wide Area Data Flows



Support For Multiple Projects

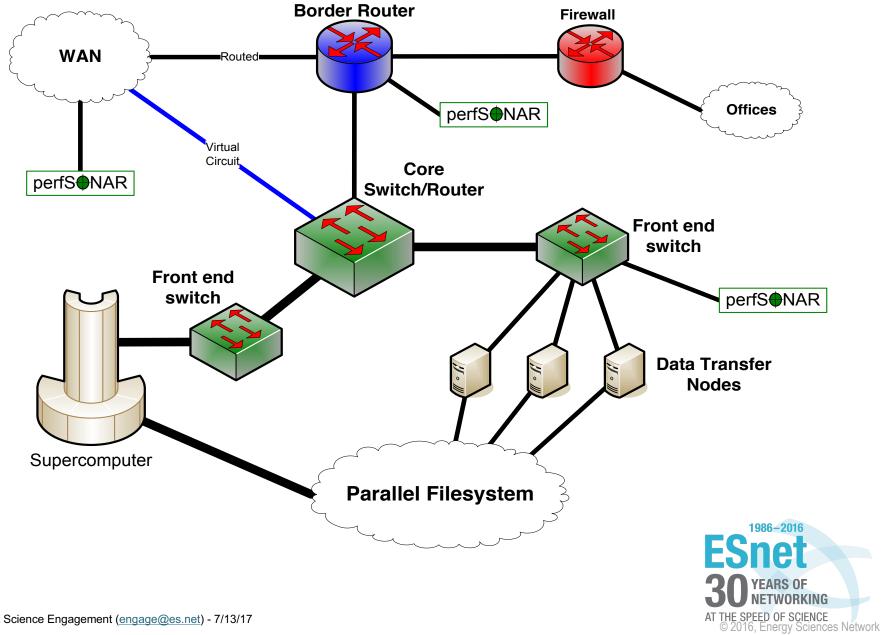
- Science DMZ architecture allows multiple projects to put DTNs in place
 - Modular architecture
 - Centralized location for data servers
- This may or may not work well depending on institutional policies
 - Sometimes individual groups deploy their own servers, and centralization is hard
 - Sometimes centralization is a strategic goal
- On balance, this can provide a cost savings it depends
 - Central support for data servers vs. carrying data flows
 - How far do the data flows have to go?
- Dark fiber asses can be a huge win



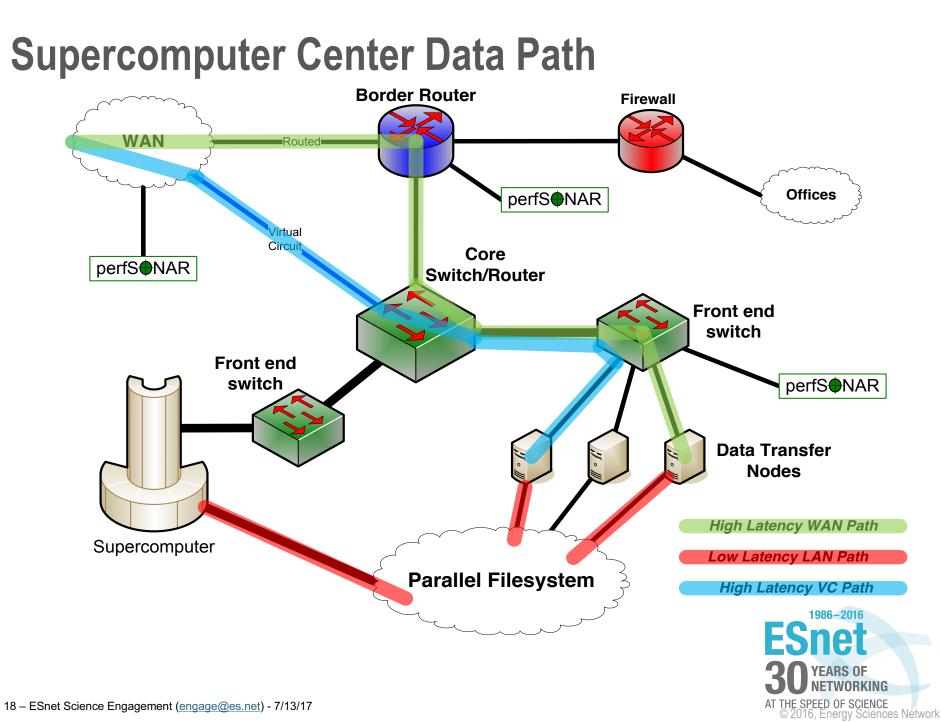
Multiple Projects

14 - ESnet Science Engagement (engage@es.net) - 7/13/17

Multiple Science DMZs – Dark Fiber

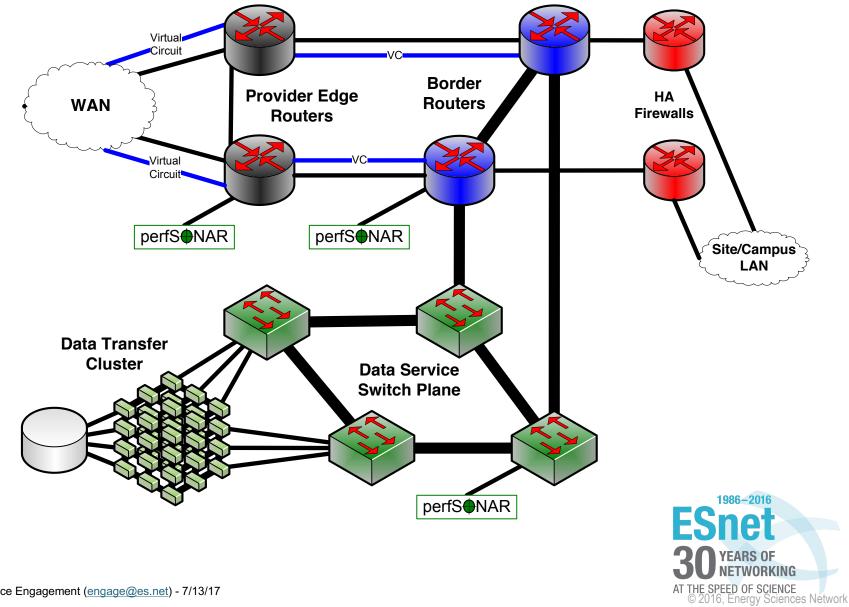

AT THE SPEED OF SCIENCE © 2016, Energy Sciences Network

Supercomputer Center Deployment


- High-performance networking is assumed in this environment
 - Data flows between systems, between systems and storage, wide area, etc.
 - Global filesystem often ties resources together
 - Portions of this may not run over Ethernet (e.g. IB)
 - Implications for Data Transfer Nodes
- "Science DMZ" may not look like a discrete entity here
 - By the time you get through interconnecting all the resources, you end up with most of the network in the Science DMZ
 - This is as it should be the point is appropriate deployment of tools, configuration, policy control, etc.
- Office networks can look like an afterthought, but they aren't
 - Deployed with appropriate security controls
 - Office infrastructure need not be sized for science traffic

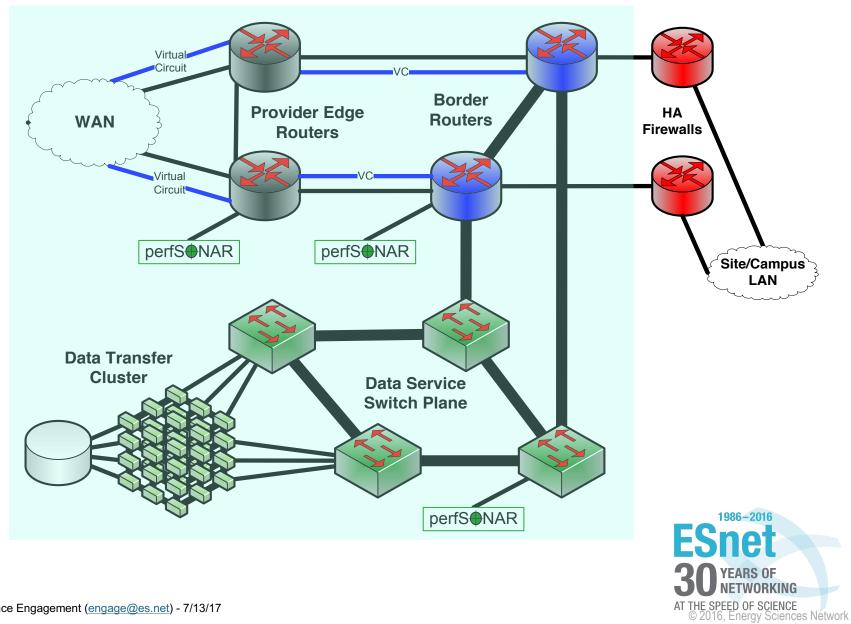
Supercomputer Center

17 - ESnet Science Engagement (engage@es.net) - 7/13/17



Major Data Site Deployment

- In some cases, large scale data service is the major driver
 - Huge volumes of data (Petabytes or more) ingest, export
 - Large number of external hosts accessing/submitting data
- Single-pipe deployments don't work
 - Everything is parallel
 - Networks (Nx10G LAGs, soon to be Nx100G)
 - Hosts data transfer clusters, no individual DTNs
 - WAN connections multiple entry, redundant equipment
 - Choke points (e.g. firewalls) just cause problems



Data Site – Architecture

20 - ESnet Science Engagement (engage@es.net) - 7/13/17

Data Site – Data Path

Common Threads

- Two common threads exist in all these examples
- Accommodation of TCP
 - Wide area portion of data transfers traverses purpose-built path
 - High performance devices that don't drop packets
- Ability to test and verify
 - When problems arise (and they always will), they can be solved if the infrastructure is built correctly
 - Small device count makes it easier to find issues
 - Multiple test and measurement hosts provide multiple views of the data path
 - perfSONAR nodes at the site and in the WAN
 - perfSONAR nodes at the remote site

Performance Monitoring

- Everything may function perfectly when it is deployed
- Eventually something is going to break
 - Networks and systems are complex
 - Bugs, mistakes, ...
 - Sometimes things just break this is why we buy support contracts
- Must be able to find and fix problems when they occur
- Must be able to find problems in other networks (your network may be fine, but someone else's problem can impact your users)
- TCP was intentionally designed to hide all transmission errors from the user:
 - "As long as the TCPs continue to function properly and the internet system does not become completely partitioned, no transmission errors will affect the users." (From RFC793, 1981)

Testing Infrastructure – perfSONAR

- perfSONAR is:
 - A widely-deployed test and measurement infrastructure
 - ESnet, Internet2, US regional networks, international networks
 - Laboratories, supercomputer centers, universities
 - Individual Linux hosts at key network locations (POPs, Science DMZs, etc.)
 - A suite of test and measurement tools
 - A collaboration that builds and maintains the toolkit
- By installing perfSONAR, a site can leverage over 2000 test servers deployed around the world
- perfSONAR is ideal for finding soft failures
 - Alert to existence of problems
 - Fault isolation
 - Verification of correct operation

Dedicated Systems – The Data Transfer Node

- The DTN is dedicated to data transfer
- Set up **specifically** for high-performance data movement
 - System internals (BIOS, firmware, interrupts, etc.)
 - Network stack
 - Storage (global filesystem, Fibrechannel, local RAID, etc.)
 - High performance tools
 - No extraneous software

Limitation of scope and function is powerful

- No conflicts with configuration for other tasks
- Small application set makes cybersecurity easier
 - Limitation of application set is often a core security policy component

Science DMZ Security

- Goal disentangle security policy and enforcement for science flows from security for business systems
- Rationale
 - Science data traffic is simple from a security perspective
 - Narrow application set on Science DMZ
 - Data transfer, data streaming packages
 - No printers, document readers, web browsers, building control systems, financial databases, staff desktops, etc.
 - Security controls that are typically implemented to protect business resources often cause performance problems
- Separation allows each to be optimized

Science DMZ As Security Architecture

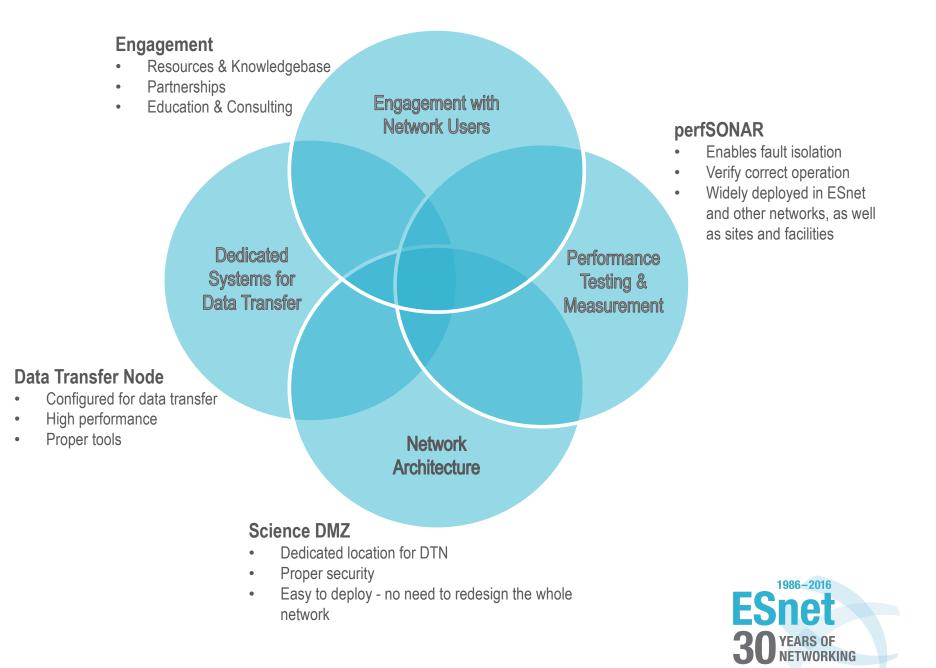
- Allows for better segmentation of risks, more granular application of controls to those segmented risks.
 - Limit risk profile for high-performance data transfer applications
 - Apply specific controls to data transfer hosts
 - Avoid including unnecessary risks, unnecessary controls
- Remove degrees of freedom focus only on what is necessary
 - Easier to secure
 - Easier to achieve performance
 - Easier to troubleshoot

Performance Is A Core Requirement

- Core information security principles
 - Confidentiality, Integrity, Availability (CIA)
 - Often, CIA and risk mitigation result in poor performance
- In data-intensive science, performance is an additional core mission requirement: CIA → PICA
 - CIA principles are important, but *if performance is compromised the science mission fails*
 - Not about "how much" security you have, but how the security is implemented
 - Need a way to appropriately secure systems without performance compromises

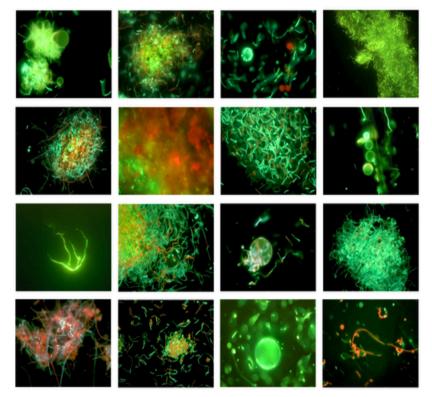
Placement Outside the Firewall

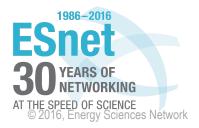
- The Science DMZ resources are placed outside the enterprise firewall for performance reasons
 - The meaning of this is specific Science DMZ traffic does not traverse the firewall data plane
 - Packet filtering is fine just don't do it with a firewall
- Lots of heartburn over this, especially from the perspective of a conventional firewall manager
 - Lots of organizational policy directives mandating firewalls
 - Firewalls are designed to protect converged enterprise networks
 - Why would you put critical assets outside the firewall???
- The answer is that firewalls are typically a poor fit for high-performance science applications



Security Without Firewalls

- Data intensive science traffic interacts poorly with firewalls
- Does this mean we ignore security? **NO!**
 - We **must** protect our systems
 - We just need to find a way to do security that does not prevent us from getting the science done
- Key point security policies and mechanisms that protect the Science DMZ should be implemented so that they do not compromise performance
- Traffic permitted by policy should not experience performance impact as a result of the application of policy


The Data Transfer Superfecta: Science DMZ Model



AT THE SPEED OF SCIENCE © 2016, Energy Sciences Network

Context Setting

- DOE, NSF, and other agencies are investing billions of dollars in state-of-the-art cyberinfrastructure to support data-intensive science.
- Many researchers do not understand the value of these services and have difficulty using them.
- A proactive effort is needed to drive adoption of advanced services and accelerate science output: Science Engagement

ESnet Science Engagement Team Vision

Collaborations at every scale, in every domain, will have the **information and tools** they need to achieve maximum benefit from global networks through the creation of scalable, community-driven strategies and approaches.

ESnet vision: Scientific progress is **completely unconstrained** by the physical location of instruments, people, computational resources, or data.

Science Engagement

- Science Engagement team works in several areas at once
 - Understand key elements which contribute to desired outcomes
 - Requirements analysis what is needed
 - Also identify choke points, road blocks, missing components
 - Network architecture, performance, best practice
 - Systems engineering, consulting, troubleshooting
 - Collaboration with others
 - Workshops and webinars
- Important bridge between cyberinfrastructure and scientists

Science DMZ Wrapup

- The Science DMZ design pattern provides a flexible model for supporting high-performance data transfers and workflows
- Key elements:
 - Accommodation of TCP
 - Sufficient bandwidth to avoid congestion
 - Loss-free IP service
 - Location near the site perimeter if possible
 - Test and measurement
 - Dedicated systems
 - Appropriate security
 - Science Engagement to foster adoption


Overview

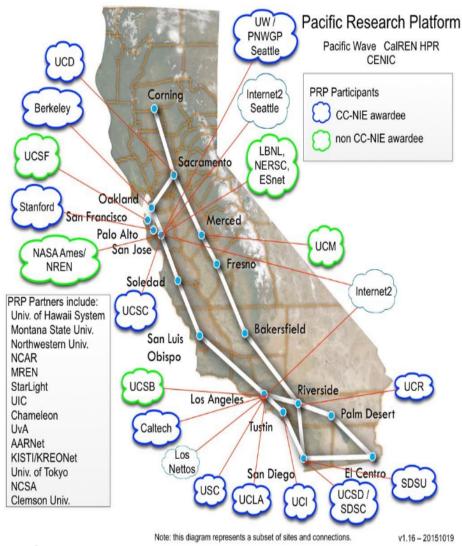
- Science DMZ Motivation and Introduction
- Science DMZ
 - Architecture
 - Network Monitoring For Performance
 - Data Transfer Nodes & Applications
 - Science DMZ Security
 - Science Engagement
- Larger Context, Platform
 - Pacific Research Platform
 - Data Portal Discussion
 - Petascale DTN Project

Context: Science DMZ Adoption

- DOE National Laboratories
 - HPC centers, LHC sites, experimental facilities
 - Both large and small sites
- NSF CC* programs have funded many Science DMZs
 - Significant investments across the US university complex
 - Big shoutout to the NSF these programs are critically important
- Other US agencies
 - NIH
 - USDA Agricultural Research Service
- International
 - Australia https://www.rdsi.edu.au/dashnet
 - Brazil
 - UK

Strategic Impacts

- What does this mean?
 - We are in the midst of a significant cyberinfrastructure upgrade
 - Enterprise networks need not be unduly perturbed \odot
- Significantly enhanced capabilities compared to 3 years ago
 - Terabyte-scale data movement is much easier
 - Petabyte-scale data movement possible outside the LHC experiments
 - ~3.1Gbps = 1PB/month
 - ~14Gbps = 1PB/week
 - Widely-deployed tools are much better (e.g. Globus)
- Metcalfe's Law of Network Utility
 - Value of Science DMZ proportional to the number of DMZs
 - n² or n(log_n) doesn't matter the effect is real
 - Cyberinfrastructure value increases as we all upgrade



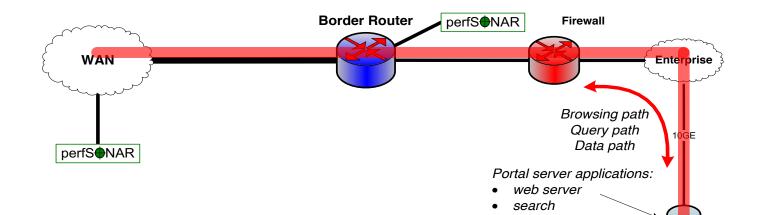
Next Steps – Building On The Science DMZ

- Enhanced cyberinfrastructure substrate now exists
 - Wide area networks (ESnet, GEANT, Internet2, Regionals)
 - Science DMZs connected to those networks
 - DTNs in the Science DMZs
- What does the scientist see?
 - Scientist sees a science application
 - Data transfer
 - Data portal
 - Data analysis
 - Science applications are the user interface to networks and DMZs
- The underlying cyberinfrastructure components (networks, Science DMZs, DTNs, etc.) are part of the instrument of discovery
- Large-scale data-intensive science requires that we build larger structures on top of those components

The Pacific Research Platform Creates a Regional End-to-End Science-Driven "Big Data Freeway System"

Source: John Hess, CENIC NSF CC*DNI Grant \$5M 10/2015-10/2020

- PI: Larry Smarr, UC San Diego Calit2
- Co-Pls:
 - Camille Crittenden, UC Berkeley CITRIS,
 - Tom DeFanti, UC San Diego Calit2,
 - Philip Papadopoulos, UC San Diego SDSC,
 - Frank Wuerthwein, UC San Diego Physics and SDSC



Science Data Portals

- Large repositories of scientific data
 - Climate data
 - Sky surveys (astronomy, cosmology)
 - Many others
 - Data search, browsing, access
- Many scientific data portals were designed 15+ years ago
 - Single-web-server design
 - Data browse/search, data access, user awareness all in a single system
 - All the data goes through the portal server
 - In many cases by design
 - E.g. embargo before publication (enforce access control)

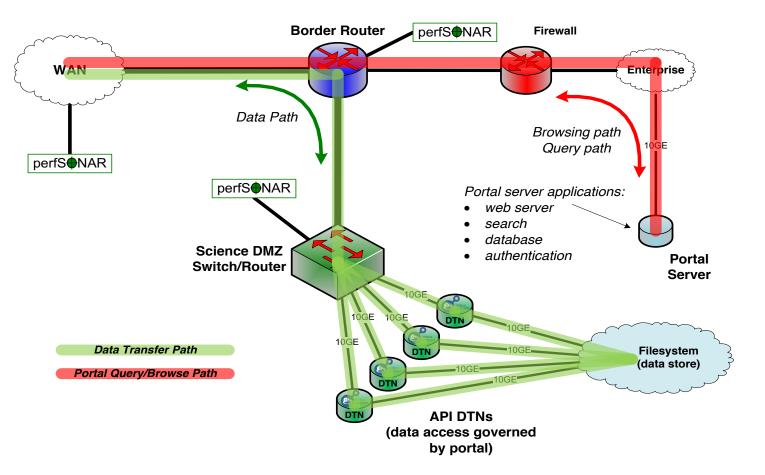
Legacy Portal Design

database

authentication

data service

- Very difficult to improve performance without architectural change
 - Software components all tangled together
 - Difficult to put the whole portal in a Science
 DMZ because of security
 - Even if you could put it in a DMZ, many components aren't scalable
- What does architectural change mean?


Portal

Server

Filesystem

(data store)

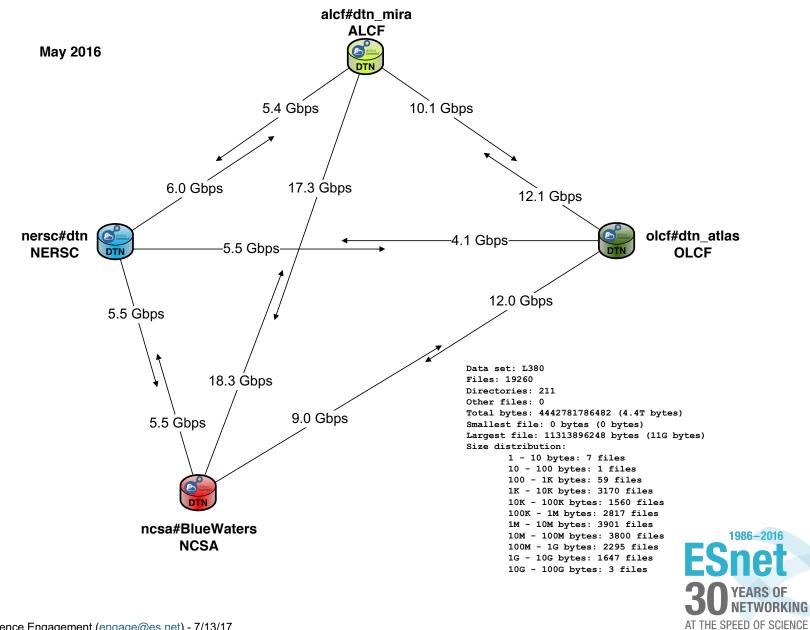
Next-Generation Portal Leverages Science DMZ

Put The Data On Dedicated Infrastructure

- We have separated the data handling from the portal logic
- Portal is still its normal self, but enhanced
 - Portal GUI, database, search, etc. all function as they did before
 - Query returns pointers to data objects in the Science DMZ
 - Portal is now freed from ties to the data servers (run it on Amazon if you want!)
- Data handling is separate, and scalable
 - High-performance DTNs in the Science DMZ
 - Scale as much as you need to without modifying the portal software
- Outsource data handling to computing centers or campus central storage
 - Computing centers are set up for large-scale data
 - Let them handle the large-scale data, and let the portal do the orchestration of data placement

Ecosystem Is Ready For This

- Science DMZs are deployed at Labs, Universities, and computing centers
 - XSEDE sites
 - DOE HPC facilities
 - Many campus clusters
- Globus DTNs are present in many of those Science DMZs
 - XSEDE sites
 - DOE HPC facilities
 - Many campus clusters
- Architectural change allows data placement at scale
 - Submit a query to the portal, Globus places the data at an HPC facility
 - Run the analysis at the HPC facility
 - The results are the only thing that ends up on a laptop or workstation



Petascale DTN Project

- Another example of building on the Science DMZ
- Supports all data-intensive applications which require large-scale data placement
- Collaboration between HPC facilities
 - ALCF, NCSA, NERSC, OLCF
- Goal: per-Globus-job performance at 1PB/week level
 - 15 gigabits per second
 - With checksums turned on, etc.
 - No special shortcuts, no arcane options
- Reference data set is 4.4TB of astrophysics model output
 - Mix of file sizes
 - Many directories
 - Real data!

Petascale DTN Project

© 2016, Energy Sciences Nétwork

Links and Lists

- ESnet fasterdata knowledge base
 - http://fasterdata.es.net/
- Science DMZ paper
 - http://www.es.net/assets/pubs_presos/sc13sciDMZ-final.pdf
- Science DMZ email list
 - Send mail to <u>sympa@lists.lbl.gov</u> with subject "subscribe esnet-sciencedmz"
- perfSONAR
 - <u>http://fasterdata.es.net/performance-testing/perfsonar/</u>
 - http://www.perfsonar.net
- Globus
 - https://www.globus.org/

Thanks!

Eli Dart dart@es.net Energy Sciences Network (ESnet) Lawrence Berkeley National Laboratory

http://my.es.net/ http://www.es.net/ http://fasterdata.es.net/

Extra Slides

Science DMZ Security

- Goal disentangle security policy and enforcement for science flows from security for business systems
- Rationale
 - Science data traffic is simple from a security perspective
 - Narrow application set on Science DMZ
 - Data transfer, data streaming packages
 - No printers, document readers, web browsers, building control systems, financial databases, staff desktops, etc.
 - Security controls that are typically implemented to protect business resources often cause performance problems
- Separation allows each to be optimized

Science DMZ As Security Architecture

- Allows for better segmentation of risks, more granular application of controls to those segmented risks.
 - Limit risk profile for high-performance data transfer applications
 - Apply specific controls to data transfer hosts
 - Avoid including unnecessary risks, unnecessary controls
- Remove degrees of freedom focus only on what is necessary
 - Easier to secure
 - Easier to achieve performance
 - Easier to troubleshoot

Performance Is A Core Requirement

• Core information security principles

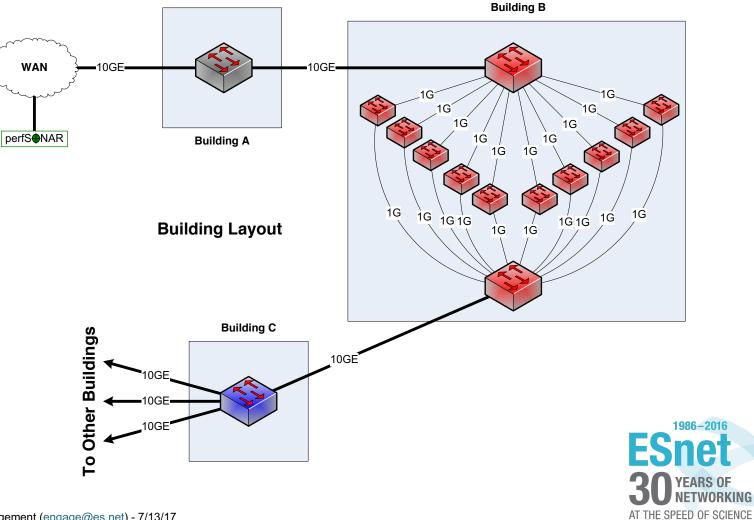
- Confidentiality, Integrity, Availability (CIA)
- Often, CIA and risk mitigation result in poor performance
- In data-intensive science, performance is an additional core mission requirement: CIA → PICA
 - CIA principles are important, but *if performance is compromised the science mission fails*
 - Not about "how much" security you have, but how the security is implemented
 - Need a way to appropriately secure systems without performance compromises

Placement Outside the Firewall

- The Science DMZ resources are placed outside the enterprise firewall for performance reasons
 - The meaning of this is specific Science DMZ traffic does not traverse the firewall data plane
 - Packet filtering is great just don't do it with an enterprise firewall
- Lots of heartburn over this, especially from the perspective of a conventional firewall manager
 - Lots of organizational policy directives mandating firewalls
 - Firewalls are designed to protect converged enterprise networks
 - Why would you put critical assets outside the firewall???
- The answer is that enterprise firewalls are typically a poor fit for highperformance science applications

Typical Firewall Internals

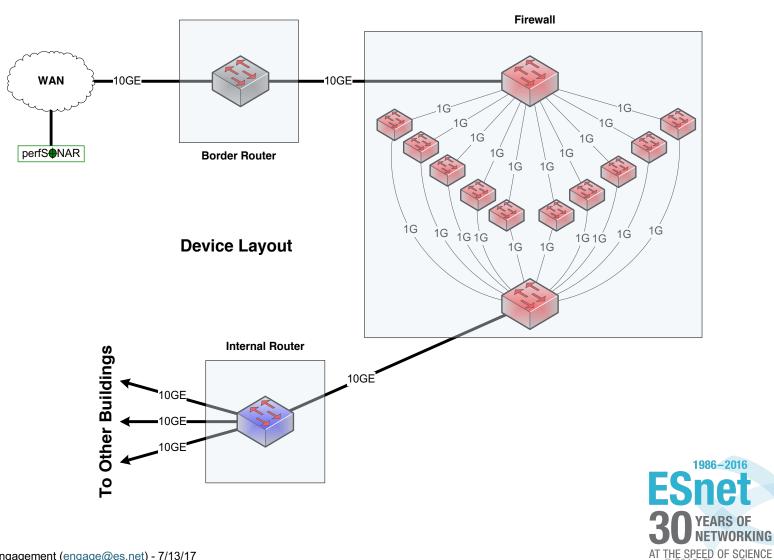
- Typical firewalls are composed of a set of processors which inspect traffic in parallel
 - Traffic distributed among processors such that all traffic for a particular connection goes to the same processor
 - Simplifies state management
 - Parallelization scales deep analysis
- Excellent fit for enterprise traffic profile
 - High connection count, low per-connection data rate
 - Complex protocols with embedded threats
- Each processor is a fraction of firewall link speed
 - Significant limitation for data-intensive science applications
 - Overload causes packet loss performance crashes



Thought Experiment

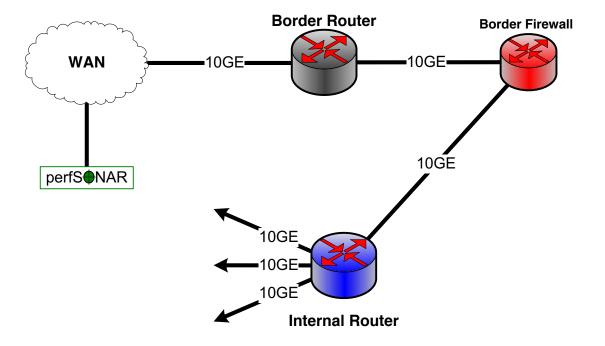
- We're going to do a thought experiment
- Consider a network between three buildings A, B, and C
- This is supposedly a 10Gbps network end to end (look at the links on the buildings)
- Building A houses the border router not much goes on there except the external connectivity
- Lots of work happens in building B so much that the processing is done with multiple processors to spread the load in an affordable way, and results are aggregated after
- Building C is where we branch out to other buildings
- Every link between buildings is 10Gbps this is a 10Gbps network, right???

Notional 10G Network Between Buildings


© 2015, Energy Sciences Network

Clearly Not A 10Gbps Network

- If you look at the inside of Building B, it is obvious from a network engineering perspective that this is not a 10Gbps network
 - Clearly the maximum per-flow data rate is 1Gbps, not 10Gbps
 - However, if you convert the buildings into network elements while keeping their internals intact, you get routers and firewalls
 - What firewall did the organization buy? What's inside it?
 - Those little 1G "switches" are firewall processors
- This parallel firewall architecture has been in use for years
 - Slower processors are cheaper
 - Typically fine for a commodity traffic load
 - Therefore, this design is cost competitive and common



Notional 10G Network Between Devices

© 2015, Energy Sciences Network

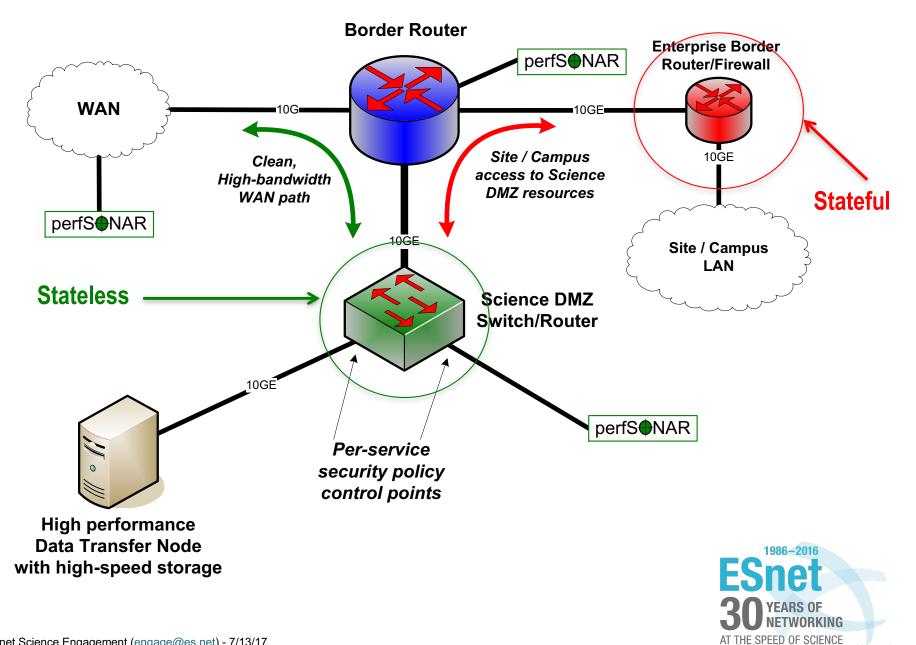
Notional Network Logical Diagram

Firewall Capabilities and Science Traffic

- Commercial firewalls have a lot of sophistication in an enterprise setting
 - Application layer protocol analysis (HTTP, POP, MSRPC, etc.)
 - Built-in VPN servers
 - User awareness
- Data-intensive science flows typically don't match this profile
 - Common case data on filesystem A needs to be on filesystem Z
 - Data transfer tool verifies credentials over an encrypted channel
 - Then open a socket or set of sockets, and send data until done (1TB, 10TB, 100TB, ...)
 - One workflow can use 10% to 50% or more of a 10G network link
- Do we have to use a commercial firewall?

Firewalls As Access Lists

- When you ask a firewall administrator to allow data transfers through the firewall, what do they ask for?
 - IP address of your host
 - IP address of the remote host
 - Port range
 - That looks like an ACL to me!
- No special config for advanced protocol analysis just address/port
- Router ACLs are better than firewalls at address/port filtering
 - ACL capabilities are typically built into the router
 - Router ACLs typically do not drop traffic permitted by policy



What Is A Firewall?

- Marketplace view
 - Specific security appliance, with "Firewall" printed on the side
 - Lots of protocol awareness, intelligence
 - Application awareness
 - User awareness (VPN, specific access controls, etc.)
 - Designed for large concurrent user count, low per-user bandwidth (enterprise traffic)
- IT Organization view
 - "Firewall" appliance, purchased from the commercial marketplace
 - The place in the network where security policy gets applied
 - Owned by the security group, *not* by the networking group
 - Primary risk mitigation mechanism
- NIST view (Publication 800-41 rev. 1, Sep. 2009)
 - "Firewalls are devices or programs that control the flow of network traffic between networks or hosts that employ differing security postures"
 - This is very general, and does not match marketplace view or IT org. view

NIST Sees Two Firewalls, IT Shop Sees One

© 2015, Energy Sciences Network

Stateful Inspection For Science DMZ Traffic?

- Science DMZ traffic profile
 - Small number of connections or flows
 - Large per-connection data rate (Gigabit scale or higher)
 - Large per-connection data volume (Terabyte scale or higher)
- Stateless firewall
 - Address/port filtering (which systems use which service)
 - TCP connection initiation direction (ACK flag)
- Stateful firewall adds
 - TCP sequence number tracking (but Linux stack is as good or better compared to firewall TCP mitigations)
 - Protocol/app analysis (but not for the apps used in DMZ)
 - DoS protection (but the Science DMZ assets are filtered already)

Security Without Enterprise Firewalls

- Data intensive science traffic interacts poorly with enterprise firewalls
- Does this mean we ignore security? **NO!**
 - We **must** protect our systems
 - We just need to find a way to do security that does not prevent us from getting the science done
- Key point security policies and mechanisms that protect the Science DMZ should be implemented so that they do not compromise performance
- Traffic permitted by policy should not experience performance impact as a result of the application of policy

Systems View Of Science Infrastructure

- Security is a component, not a gatekeeper
- Think about the workflows
- Think about the interfaces to data (tools, applications)
 - How do collaborators access data?
 - How could they access data if the architecture were different?
- Think about costs/benefits
 - What is a new cancer breakthrough worth?
 - \$30k for a few DTNs what is that in context?
- Think about risks
 - What risks do specific technologies mitigate?
 - What are opportunity costs of poor performance?

Other Technical Capabilities

- Intrusion Detection Systems (IDS)
 - One example is Bro <u>http://bro-ids.org/</u>
 - Bro is high-performance and battle-tested
 - Bro protects several high-performance national assets
 - Bro can be scaled with clustering: <u>http://www.bro-ids.org/documentation/cluster.html</u>
 - Other IDS solutions are available also
- Netflow and IPFIX can provide intelligence, but not filtering
- Openflow and SDN
 - Using Openflow to control access to a network-based service seems pretty obvious
 - This could significantly reduce the attack surface for any authenticated network service
 - This would only work if the Openflow device had a robust data plane

Other Technical Capabilities (2)

Aggressive access lists

- More useful with project-specific DTNs
- If the purpose of the DTN is to exchange data with a small set of remote collaborators, the ACL is pretty easy to write
- Large-scale data distribution servers are hard to handle this way (but then, the firewall ruleset for such a service would be pretty open too)
- Limitation of the application set
 - One of the reasons to limit the application set in the Science DMZ is to make it easier to protect
 - Keep desktop applications off the DTN (and watch for them anyway using logging, netflow, etc – take violations seriously)
 - This requires collaboration between people networking, security, systems, and scientists

Collaboration Within The Organization

- All stakeholders should collaborate on Science DMZ design, policy, and enforcement
- The security people have to be on board
 - Remember: security people already have political cover it's called the firewall
 - If a host gets compromised, the security officer can say they did their due diligence because there was a firewall in place
 - If the deployment of a Science DMZ is going to jeopardize the job of the security officer, expect pushback
- The Science DMZ is a strategic asset, and should be understood by the strategic thinkers in the organization
 - Changes in security models
 - Changes in operational models
 - Enhanced ability to compete for funding
 - Increased institutional capability greater science output

