JPL Machine Learning

For Earth Science

Dr. Lukas Mandrake (JPL 398, 8x/NST/

CL#: 17-0845 Copyright 2017 California Institute of Technology. U.S. Government sponsorship acknowledged.

25%

30%

Context

What is Machine Learning? Algorithms that inductively self-assemble from examples.

Machine Learning simplifies & systematizes the building and updating of Autonomy / Advisory systems

Higher Level Questions / Actions

"Where should I start looking?"

"Show me more like this."

"What is likely to happen next?"

"(Re)optimize my system."

"How many kinds are there?"

"Show me the most interesting first."

"What inputs are most informative?"

"Show me new things."

JPL DS / ML Applications

Science-driven use cases
Explanability
"Let Me Help"

Holographic Life Detection

Drs. Lukas Mandrake, Gary Doran, Brian Bue

- Digital Holographic Microscopes
 - Big data (4D, ~GB/s), rare findings
- Motility ~ Life (composition agnostic!)
- HELM ML system detects, tracks, and classifies in messy, raw 2D holograms

AVIRIS-NG Hyperspectral

Dr. David Thompson, Dr. Brian Bue, et al

Scan line

Airborne Imaging Spectrometer

Multiple gas pipelines shut down / repaired Machine Learning "That Matters"

CH4 detection in four corners

Enabled ground team to find underground pipe leaks

Current OCO-2 Quality Estimation Product / NASA Software of the Year runner-up

9

Orbital Spectral Analysis

Superpixel segmentation

SMACC Endmembers

Kruse/Grant Kr manual analysis m (AVIRIS) (H

Kruse/Grant manual analysis (Hyperion)

Similar orbital tech used for

- Minerology maps
- Identifying crop-types
- Recognizing diseased citrus
- Estimating hurricane damage

Spectral Minority Targets

- Borup Fiord sulfur springs
- Biosignature analog site for Europa
- Detect and track from orbit (EO-1)
 - Support vector machine (SVM) classifier
 - 26 detections as of May 31, 2016

Sulfur detection (yellow)

How to Supercharge NASA Data Science

The Growth of DS Concepts

- \$30-\$50k
- Proof of Principle
- Single Problem

- \$150k-\$300k
- Extensive Validation
- Single User Focus

- \$400k-\$1M
- Mission Funding
- Flight Readiness

- \$1M \$5M
- Multiple Mission
- Becomes Heritage

- JPL has this under control
- R&TD system
- Engineering Improvement
- Data Science Working Group

- Major bottleneck
- Can try for AMMOS Tech
- Needed for approaching missions
- Try to navigate science-based R&TD process
- Missions ~receptive
- Require extensive validation for entry
- Need to translate to "onboard" reqs
- Each mission different "captain" of own ship
- Often afraid NASA won't like Data Science / ML
- Fear becomes main challenge

Mission AO specifically requesting new DS / ML techniques¹³

Shared Repositories for past DS / ML datasets & labels Pot of Money to validate DS / ML systems to mission ready status

Thank You!