

PRAXyS

Astrophysics Subcommittee Oct 23, 2015

Principal Investigator: Keith Jahoda Project Scientist: Tim Kallman Science Team Lead: Chryssa Kouveliotou

Spacecraft Provider: Orbital ATK Instrument Developer: GSFC

Science Leadership: Jahoda (PI), Kallman (PS) Kouveliotou (Science Team lead)

Co-I Organizations: University of Iowa, APL, JAXA

Science Team: Arizona, CfA, Clemson, Copernicus Ctr, Cornell, GWU, Iowa, JHU, Maryland, Nagoya, NASA's ARC, NASA's GSFC, NC State, Rice, RIKEN, Stanford

- Of all the observables for any photon, only the *E*-field orientation is asymmetric with respect to photon trajectory.
 - No surprise that polarization measures geometry
 - Very few celestial sources are truly round, but few can be imaged directly: polarization provides a means to see geometry on length scales orders of magnitude smaller than imaging can probe
- Polarization is a probe of exotic physics: strong fields
 - GR predicts bending of light and thus alters the polarization vector
 - Bending dependent on potential, so energy dependent effects are expected
 - Radius, distance of Cyg X-1: r ~ 20 R_{sun}, d ~ 2000 pc, θ ~ 50 micro arcsec; ($\theta_{event horizon}$ < 1 nano arcsec)
 - QED predicts birefringent opacity for large fields
 - observed polarization measures affect of magnetic field along line of sight
 - For hot spot on the surface of a NS, phase resolved intensity probes the surface while phase resolved polarization probes the atmosphere.
 - For emission generated above the surface (rotation powered pulsars), phase resolved polarization probes height of emission
 - Crab: $r \sim 10 \text{ km}$, $d \sim 2000 \text{ pc}$, $\theta \sim 30 \text{ pico arcsec}$
- Polarization is also affected by interactions with matter
 - Large angle scattering has polarization dependence

History

MCW (center) at Wallops Island in

- SXRP geometry
- IMAGING PROPORTIONAL COUNTER

- Observations of astrophysical X-ray polarization began with sounding rockets in 1971; continued with OSO-8 (mid 1970s), obtaining measurements of the Crab Nebula and upper limits
- Interest remains high, observations/results unavailable
- SXRP built in 1990s but not flown
- GEMS reached PDR (2012), \bullet but not confirmed

PRAXyS – Relationship to GEMS

- GEMS
 - Proposed January 2008
 - Selected June 2009
 - Polarimeter TRL-6 review in Oct 2011
 - Technically Successful PDR Feb 2012
 - Not confirmed at KDP-C in May 2012
 - Concern over adequacy of project budget/schedule relative to independent estimates and cost-cap
 - GEMS team directed to capture polarimeter development for possible future opportunities (Explorer or otherwise) *without prejudice or benefit*
- PRAXyS
 - Builds on the GEMS design and experience
 - Payload development is advanced; procurement and assembly durations are known from GEMS engineering and protoflight units
 - Many lessons learned and applied about doing small missions at a large NASA center
 - Expanded Science Team
 - Expanded opportunities for community participation
 - Data will be made public upon validation

- T(R) increases towards BH
- $T(R) \sim M^{-1/2} \dot{M}^{1/4}$
- most of the flux from $R \lesssim 10 R_{
 m S}$
- GR → last stable orbit (ISCO)
- position of ISCO function of BH mass, spin

Emission characteristics depend on Environment (M-dot), Black Hole (Spin), and geometry (inclination). Special/General Relativity are important.

Newtonian disk - face on

Newtonian disk – High Inclination

Newtonian disk – include special relativity

Newtonian disk – and light bending

Newtonian disk – spin

Newtonian disk – returning radiation

Two regimes in black hole polarization behavior -

- At lower X-ray energies, photons are emitted far from the black hole
- Relativistic effects are weak
- Position angle is parallel to disk plane and is a function of inclination, as predicted by Chandrasekhar

- At higher energies, relativistic effects become important
- polarization direction becomes perpendicular to disk and fractional polarization increases

Strength of return radiation is sensitive to spin

- Strength of return radiation depends on spin
- Therefore, transition energy between the direct and returndominated regimes, and strength of high energy polarization, depend on spin

- Soft state is most straightforward for measurement of black hole spin, inclination
- Black hole sources do not stay in soft state
- Simulations in 2 energy bands (2-4 keV, 4-8 keV) show that spin and inclination determination is robust against changes in black hole intensity state
 - Low energy polarization fraction separates inclination
 - Low vs high polarization angle separates spin

- In the ultrahigh fields of *magnetars,* birefringence leads to measurements of **B**.
- For synchrotron emission from electrons and positrons travelling along field of *Rotation powered pulsars*, polarization is diagnostic of emission location
- In Accretion Powered pulsars, energy resolved polarization probes *B* and ρ, constrains shock conditions and geometry

Magnetars

- Ultrahigh **B** fields of magnetars are birefringent
 - Polarization rotates as photon travels from surface to r_{plr}
 - Intensity probes surface; polarization probes field
 - Diagnostic of *B* and viewing angles
 - Figure adapted from Fernandez and Davis 2011 (4-12 keV)

Rotation powered Pulsars - Crab

- Polarization probes height of emission, within or beyond light cylinder.
- Depolarization of peaks and orientation outside of peaks are both diagnostic

Traceability to Strategic Plans

Black Holes and Neutron Stars are laboratories for Physics and Astrophysics, continually identified as priorities by National advisory committees:

- •Connecting Quarks with the Cosmos; NRC (2003)
- New Worlds, New Horizons, NAS Decadal survey (2010)
- Enduring Quests, Daring Visions (2013)

X-ray Polarimetry addresses these questions, and provides some answers to the question: "How does the universe work?"

- Measurements are demanding
 - Fractional polarization may be small
 - Photoelectric polarimeters require ~2 x 10⁶ photons to detect 1% signals (~2 x 10⁴ to detect 10%)
 - Instrumentalist claims about the value of simultaneous spectral, temporal, spatial resolution must be measured against number of expected counts and signal per energy band, phase bin, or image pixel
 - PRAXyS provides
 - Proportional counter energy resolution: $\Delta E/E \sim 20\% (E_{keV}/6)^{-0.5}$
 - Probes gravitational potential of accretion disks
 - Sub millisec timing resolution
 - Probes field structure and emission geometry of NS
 - Several arc minute spatial resolution (defined by field of view)

SUMMARY: PRAXyS Breakthrough Capabilities

- Substantially greater sensitivity (2-10 keV) than the only previous X-ray polarimetry instrument, OSO-8.
- Energy range and sensitivity to measure general relativistic (GR) effects around black holes (BHs)
- Energy range, sensitivity and timing resolution to detect vacuum polarization in pulsars and magnetars
- Very low-risk implementation (based on work done for successful GEMS technical PDR and subsequent development)

All PRAXyS prime mission data will be made public as soon as they are validated.