SPHEREX: An All-Sky Spectral Survey

Designed to Explore

 The Origin of the Universe The Origin and History of Galaxies The Origin of Water in Planetary Systems

The First All-Sky **Near-IR Spectral Survey**

A Rich Legacy Archive for the Astronomy Community with 100s of Millions of Stars and Galaxies

Low-Risk Implementation

No Moving Parts Single Observing Mode Large Technical & Scientific Margins Follows successful CIT/JPL mgt. model of NuSTAR

What are the Most Important Questions in Astrophysics?

As Stated in the NASA 2014 Science Plan

How Did the Universe Begin?

"Probe the origin and destiny of our universe, including the nature of black holes, dark energy, dark matter and gravity"

How Did Galaxies Begin?

"Explore the origin and evolution of the galaxies, stars and planets that make up our universe"

What are the Conditions for Life Outside the Solar System?

"Discover and study planets around other stars, and explore whether they could harbor life"

SPHEREx Creates an All-Sky Legacy Archive

Notable Features of the SPHEREx All-Sky Survey

- High S/N spectrum for every 2MASS source
- Solid detection of faintest WISE sources
- Catalogs ideal for JWST observations

New ideas recently brought to our attention

- Redshifts for the all-sky eRosita X-Ray survey
- Photo baselines for wide-field transient survey
- Mapping 3D distribution of Galactic ices

Legacy Science Opportunities: A Few Examples

Object	# Sources	Legacy Science	Reference
Detected galaxies	1.4 billion	Properties of distant and heavily obscured galaxies	
Galaxies σ(z)/(1+z) < 0.03	120 million	Study (H, CO, O, S, H ₂ O) line and PAH emission by galaxy type. Explore galaxy and AGN life cycle	Simulation based on COSMOS and
Galaxies σ(z)/(1+z) < 0.003	9.8 million	Cross check of Euclid photo-z. Measure dynamics of groups and map filaments.	Pall-STARKS
QSOs	> 1.5 million	Understand QSO lifecycle, environment, and taxonomy	Ross et al.
QSOs at z > 7	0-300	Determine if early QSOs exist. Follow-up spectro- scopy probes EOR through Lyα forest	(2013) plus simulations
Clusters with ≥ 5 members	25,000	Redshifts for all X-ray clusters. Viral masses and merger dynamics	Geach et al., 2011, SDSS counts
Main sequence stars	>100 million	Test uniformity of stellar mass function within our Galaxy as input to extragalactic studies	2MASS catalogs
Mass-losing, dust forming stars	Over 10,000 of all types	Spectra of M supergiants, OH/IR stars, Carbon stars. Stellar atmospheres, dust return rates, and composition of dust	Astro-physical Quantities, 4 th edition [ed. A.Cox] p. 527
Brown dwarfs	>400, incl. >40 of types T and Y	Atmospheric structure and composition; search for hazes. Informs studies of giant exoplanets	dwarfarchives. org and J.D. Kirkpatrick, priv. comm.
Stars with hot dust	>1000	Discover rare dust clouds produced by cataclysmic events like the collision which produced the Earth's moon	Kennedy & Wyatt (2013)
Diffuse ISM	Map of the Galaxy	Study diffuse emission from interstellar clouds and nebulae; (H, CO, S, H ₂ O and PAH emission)	GLIMPSE survey (Churchwell et al. 2009)

SPHEREx: Simple Instrument, Large Margins

Instrument Specifications

Parameter	Value
Telescope Effective Aperture	20 cm
Pixel Size	6.2" x 6.2"
Field of View	2 x (3.5° x 7.0°); dichroic
Spectrometer	Linear-Variable Filters
Resolving Power and	R=41.5 λ=0.75 - 4.1 μm
Wavelength Coverage	R=150 λ=4.1 - 4.8 μm
Arrays	2 x Hawaii-2RG 2.5 μm 2 x Hawaii-2RG 5.3 μm
Point Source Sensitivity	18.5 AB mag (5σ) with
(MEV Performance)	300% margin to req't
Cooling	All-Passive

Large Resource Margins	
Observatory Mass	53 %

Observatory wass	55 /0
Observatory Power	36 %
Pointing stability	43 %
Cooling power	450 %
Science overall	300 %

Replicates successful Caltech-JPL management structure of NuSTAR

Why Study Ices?

Gas and dust in molecular clouds are the reservoirs for new stars and planets

- In molecular clouds, water is 100-1000x more abundant in ice than in gas
- Herschel observations of the TW Hydrae disk imply the presence of 1000s of Earth oceans in ice (Hogerheijde *et al.* 2011)
- Models suggest water and biogenic molecules reside in ice in the disk mid-plane and beyond the snow line
- Ideal λs to study ices: 2.5 5 μm
- Includes spectral features from H₂O, CO and CO₂
- Plus chemically important minor constituents NH₃, CH₃OH, X-CN, and ¹³CO₂

Schematic of a protoplanetary disk

ISO absorption spectrum

SPHEREx Galactic Ice Survey

SPHEREx will be a game changer to resolve long-standing questions about the amount and evolution of key biogenic molecules through all phases of star and planet formation

- SPHEREx increases the number of ice spectra from ~200 to >> 20,000
- Band 4 spectral resolving power $\lambda/\Delta\lambda = 150$ chosen to isolate the absorption from each ice species

The SPHEREx ice catalog will:

- Contain molecular clouds, YSOs, and 1000s of protoplanetary disks
- Determine the role of environment (T, n, radiation field, cosmic rays) in forming ices
- Determine if ices in disks come from the parent cloud or are reformed
- Measure the abundance of water and biogenic ices in disks that is available to new planets

Ices in each Phase of Star Formation

One Million Targets with $|b| < 1^{\circ}$

Why Study the Extragalactic Background Light?

Epoch of Reionization

When did it begin? When did it end? What were the first sources like?

Observables

Free Electrons: Scatter CMB photons Neutral Gas: HI 21 cm, Ly absorption Galaxies: Stellar light, line emission

Measure Extragalactic Background Via Spatial Variations

Successful Applications at Longer Wavelengths

Herschel EBL: Viero *et al.*Planck EBL: Planck C. *et al.*Planck EBL x CMB Lensing: Planck C. *et al.*Herschel EBL x CMB Lensing: Many

Measuring Cosmic Light Production

What Constitutes Cosmic Light Production?

- SPHEREx has ideal wavelength coverage and high sensitivity
- Multiple bands enable correlation tests sensitive to redshift history
- Method demonstrated on CIBER, Spitzer, AKARI, Herschel, Planck

How to Probe the Physics that Caused Inflation?

Observables:

Inflationary gravitational waves – CMB "B-mode" polarization Spectral index of fluctuations – CMB and large-scale structure **Non-Gaussianity** – Sensitive to **Inflaton field** (single-field vs. multi-field)

← 300 *h*⁻¹ Mpc →

Large-scale structure will give the tightest constraints on non-Gaussianity Effect is on largest scales: <u>Need large volume survey</u>

Measuring Primordial Non-Gaussianity to $\sigma(f_{NL}) < 1$

A test to distinguish between single- and multi-field Inflation

Non-Gaussianity Produces Two Signatures

Modulated small-scale power $\Phi_{\rm L}$ on large scales $\Phi_{\rm L}$ due to non-linear mode coupling

- measured with galaxy bispectrum

Enhanced galaxy clustering on large spatial scales

 measured with galaxy power spectrum and bispecttrum

SPHEREx Large Volume Galaxy Survey

SPHEREx Surveys Maximum Cosmic Volume

Catalog Split into Redshift Accuracy Bins

SPHEREx Large-Volume Redshift Catalog

- Largest effective volume of any survey, near cosmic limit
- Excels at z < 1, complements dark energy missions (Euclid, WFIRST) targeting z ~ 2
- SPHEREx + Euclid measures gravitational lensing and helps calibrate Euclid photo-zs
- Survey Designed for Two Tests of Non-Gaussianity
 - Large scale power from **power spectrum**: large # of low-accuracy redshifts
 - Modulation of fine-scale power from **bispectrum**: fewer high-accuracy redshifts

SPHEREx Tests Inflationary Non-Gaussianity

- Non-Gaussianity distinguishes between multi- and single-field models
- Projected SPHEREx sensitivity is $\delta f_{NL} < 1$ (2 σ)
 - Two *independent tests* via power spectrum and bispectrum
- Competitively tests running of the spectral index
- SPHEREx low-redshift catalog is complementary for dark energy

Thanks for Listening!

SPHEREx:

Designed to Explore

The Origin of the Universe The Origin and History of Galaxies The Origin of Water in Planetary Systems

The First All-Sky Near-IR Spectral Survey

A Rich Legacy Archive for the Astronomy Community with 100s of Millions of Stars and Galaxies

Low-Risk Implementation

No Moving Parts Single Observing Mode Large Technical & Scientific Margins Follows successful CIT/JPL mgt. model of NuSTAR

