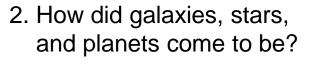
National Aeronautics and Space Administration

Astrophysics

Big Data Task Force of the NAC Science Committee Washington DC February 16, 2016 **Paul Hertz**

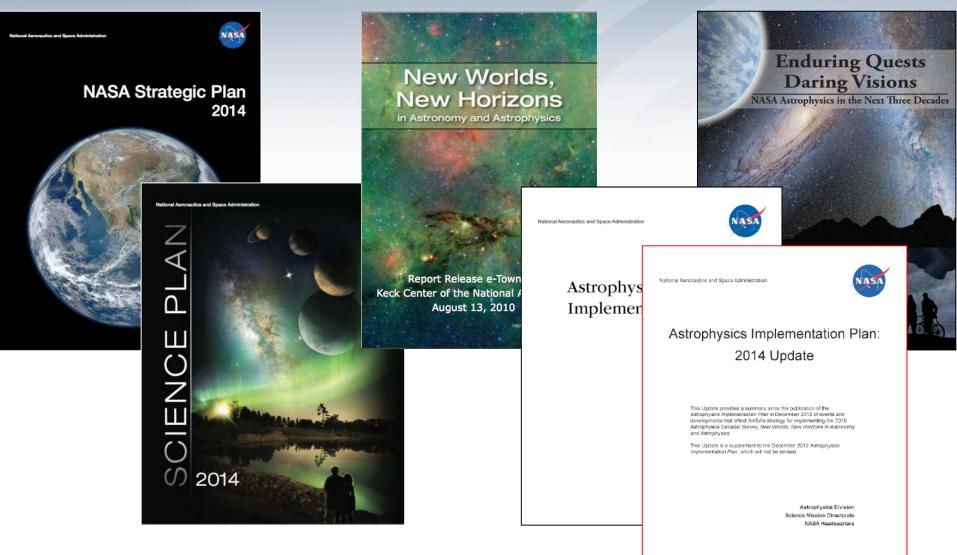
Director, Astrophysics Division Science Mission Directorate @PHertzNASA Why Astrophysics?

Astrophysics is humankind's scientific endeavor to understand the universe and our place in it.



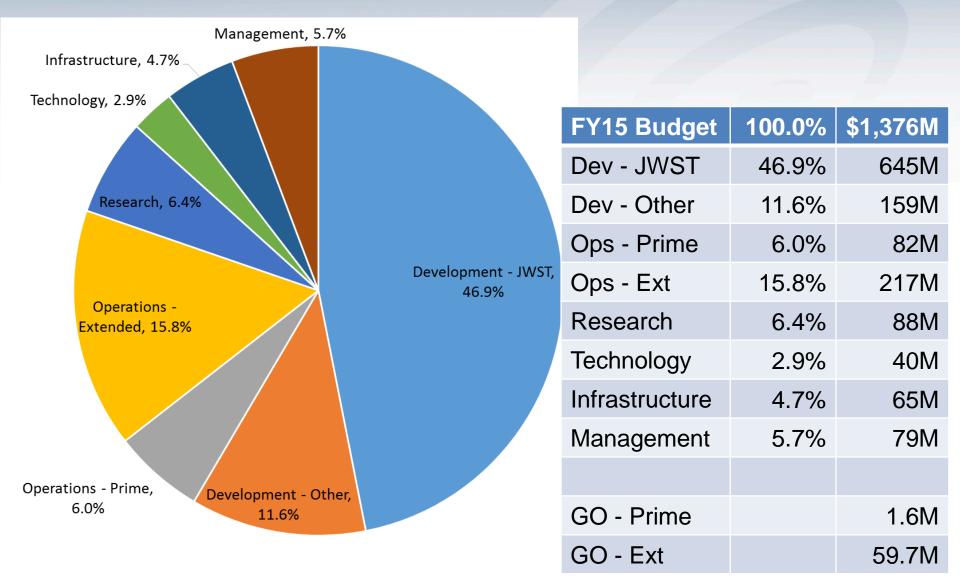
- 1. How did our universe begin and evolve?

3. Are We Alone?


These national strategic drivers are enduring

Astrophysics Driving Documents

December 2014


http://science.nasa.gov/astrophysics/documents

Astrophysics Overview

- Strategic Objective: Discover how the universe works, explore how it began and evolved, and search for life on planets around other stars.
- In addition to space missions, the NASA Astrophysics portfolio includes basic research and technology development, development and stewardship of national capabilities for conducting space astrophysics, and suborbital investigations.
- Investment choices are informed by the Decadal Surveys, other NRC studies, and other science community input especially advisory committees and peer reviews.
- Major activities:
 - Building, launching, and operating space observatories, many with international partners.
 - Developing technologies to enable future observatories.
 - Basic R&D as well as focused technology development.
 - Conducting and sponsoring cutting-edge research, mission enabling studies, technology demonstrations, and workforce development.
 - Suborbital-class projects using scientific balloons, sounding rockets, International Space Station, and other platforms.
 - Analysis of data from NASA and partner space observatories.
 - Theoretical and computational investigations.
 - Laboratory experiments in support of astrophysical understanding.

FY15 Astrophysics Budget Fractions

Astrophysics Missions

	LRD	Prime	Phase	Provenance	Next SR
Hubble	1990	5 yrs	E-ext	Strategic – large (1972 DS)	2016
Chandra	1999	5 yrs	E-ext	Strategic – large (1982 DS)	2016
XMM-Newton (ESA)	1999	5 yrs	E-ext	Strategic - partnership	2016
Spitzer	2003	5 yrs	E-ext	Strategic – large (1991 DS)	2016
Swift	2004	2 yrs	E-ext	PI-led competed - MIDEX	2016
Suzaku (JAXA)	2005	2 yrs	F (closeout)	PI-led competed – MO	
Fermi	2008	5 yrs	E-ext	Strategic – medium (2000 DS)	2016
Kepler/K2	2009	4 yrs	F/E-ext	PI-led competed - Discovery	2016
Herschel (ESA)	2009	4 yrs	F (closeout)	Strategic - partnership	
Planck (ESA)	2009	4 yrs	F (closeout)	Strategic - partnership	
NuSTAR	2012	2 yrs	E-ext	PI-led competed - SMEX	2016
SOFIA	2014	5 yrs	E-prime	Strategic – medium (1991 DS)	2018
LISA Pathfinder (ESA)	2015	9 mos	E-prime	PI-led competed – New Millennium	Ad Hoc
ASTRO-H (JAXA)	2016	3 yrs	C/D	PI-led competed - MO	NET 2018
NICER	2016	18 mos	C/D	PI-led competed - MO	NET 2018
TESS	2017	2 yrs	C/D	PI-led competed - MIDEX	NET 2018
Webb	2018	5 yrs	C/D	Strategic – large (2000 DS)	NET 2022
SMEX/MO	~2020		A/B	PI-led competed – SMEX and MO	
Euclid (ESA)	2020		C/D	Strategic - partnership	
Athena (ESA)	2028		Pre-A	Strategic - partnership	
WFIRST	Mid-2020s	6 yrs	A/B	Strategic – large (2010 DS)	
L3 GW Obs (ESA)	2034		Pre-A	Strategic - partnership	

WFIRST Wide-Field Infrared Survey Telescope

Wide-Field Infrared Survey Telescope

Top priority of 2010 Decadal Survey

Science themes: Dark Energy, Exoplanets, Large Area Near Infrared Surveys

Mission: 2.4m widefield telescope at L2; using existing hardware, images 0.28deg² at 0.8-2µm

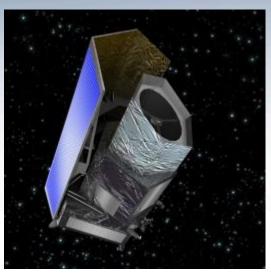
Instruments (design reference mission):

Wide Field Instrument (camera plus IFU), Coronagraph Instrument (imaging/IFS)

Phase: Currently in pre-formulation

http://wfirst.gsfc.nasa.gov/

CURRENT STATUS:


- Completed Mission Concept Review (MCR) held in December 2015
- Formulation Science Investigation Teams selected in December 2015; first Formulation Science Working Group meeting in February 2016
- Planning for Key Decision Point A (KDP-A) in Feb 2016
 - Official start of formulation phase
 - Supported by FY16 appropriations
 - SMD Program Management Council January 26, 2016
 - Agency Program Management Council on February 17, 2016
- Industry RFI released July 2015; RFP for industry studies released in January 2016
- Other activities include:
 - Technology development for detectors and coronagraph (with STMD); prototyping key parts
 - Assessment of telescopes + risk mitigation
 - Mission design trades; performance simulations
- Maturing key technologies by FY19
 - H4RG infrared detectors for widefield imager
 - Internal coronagraph for exoplanet characterization
 - Milestones on road to achieve TRL-5 by end of CY16, TRL-6 by end of CY18; reports made public

WFIRST starts Formulation in February 2016

Euclid

A visible and near-infrared telescope to explore cosmic evolution

- ESA Cosmic Vision 2015-2025 Mission, M-Class with NASA participation.
- 1.2-m mirror, visible & near-IR images, spectra
- Launch Date: Dec 2020

• Science Objectives:

- Euclid will look back 10 billion years into cosmic history.
- Probe the history of cosmic expansion (influenced by dark energy and dark matter) and how gravity pulls galaxies together to form the largest structures.
- The shapes of distant galaxies appear distorted because the gravity of dark matter bends their light (gravitational lensing). Measuring this distortion tells us how the largest structures were built up over cosmic time.
- Measuring how strongly galaxies are clumped together tells us how gravity influences their motions, and how dark energy has affected the cosmic expansion.

CURRENT STATUS:

- Currently in implementation phase.
- NASA providing Sensor Chip Systems for Near Infrared Spectrometer and Photometer (NISP) instrument
- ~80 U.S. scientists are members of the Euclid Science Team that will analyze the data, and make maps of the sky.
- NASA has initiated the buy for the flight infrared detectors. NASA will test and characterize the near-IR flight detectors.
 - .Flight elements have begun fabrication
 - First sensor chip assemblies have completed screening, remaining are in assembly
 - Remaining hardware elements are beginning production
 - NASA on track for delivery on schedule
- NASA is developing the ENSCI (Euclid NASA Science Center at IPAC). ENSCI will:
 - Support all segments of US community on Euclid to enhance science utilization
 - Integrate into Euclid Science Ground System provided by the Euclid consortium to gain/contribute expertise in pipelines

- NSF construction award made in August 2014
- Strong NSF/DOE partnership in construction and operations
- NRC committee studied OIR system in LSST era (more later)

Large Synoptic Survey Telescope

- The LSST is an integrated survey system designed to conduct a decade-long, deep, wide, fast time-domain survey of the optical sky. It consists of an 8-meter class wide-field ground based telescope, a 3.2 Gpix camera, and an automated data processing system.
- Over a decade of operations the LSST survey will acquire, process, and make available a collection of over 5 million images and catalogs with more than 37 billion objects and 7 trillion sources. Tens of billions of time-domain events will be detect and alerted on in real-time.

Astrophysics: WFIRST, Euclid, and LSST

- LSST, Euclid, and WFIRST are all wide, deep imaging survey missions operating in the optical/IR.
- A combined analysis of the data from all three will provide a significant enhancement in scientific return for cosmological studies. For reduction of systematics, this will probably require joint processing at the pixel level.

The Whole is Greater than the Sum of the Parts: Optimizing the Joint Science Return from LSST, Euclid and WFIRST (Jain et al., http://arxiv.org/abs/1501.07897)

Astrophysics: Science and Data Archives

NASA Astrophysics supports an integrated system of science data archives

- Astrophysics Data System (ADS)/SAO
- High Energy Astrophysics Science Archive Research Center (HEASARC)/GSFC
- Infrared Science Archive (IRSA) at Infrared Processing and Analysis Center (IPAC)/Caltech
- Mikulski Archive for Space Telescopes (MAST)/STScl
- NASA Exoplanet Archive (NEA) at NASA Exoplanet Science Institute (NExScI)/Caltech
- NASA Extragalactic Database (NED) at IPAC/Caltech
- NASA Astrophysics Virtual Observatory (NAVO)

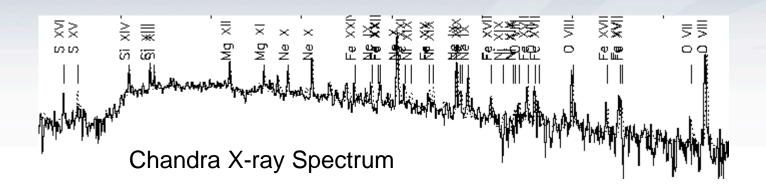
http://science.nasa.gov/astrophysics/astrophysics-data-centers/

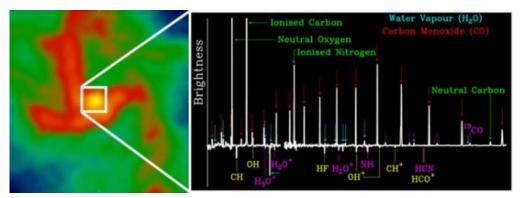
Astrophysics: Science and Data Archives

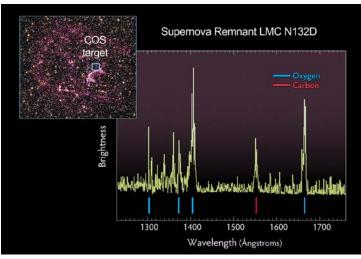
Challenges identified by 2015 Senior Review:

- The infrastructure and the technological approaches that are being used will certainly be obsolete at the end of the next 4-5 year review cycle.
- Network bandwidths available to the data centers will soon be two generations behind the current standard for research internet.
- Data centers need to raise concerns about sustainability where they exist, regardless of budgetary constraint

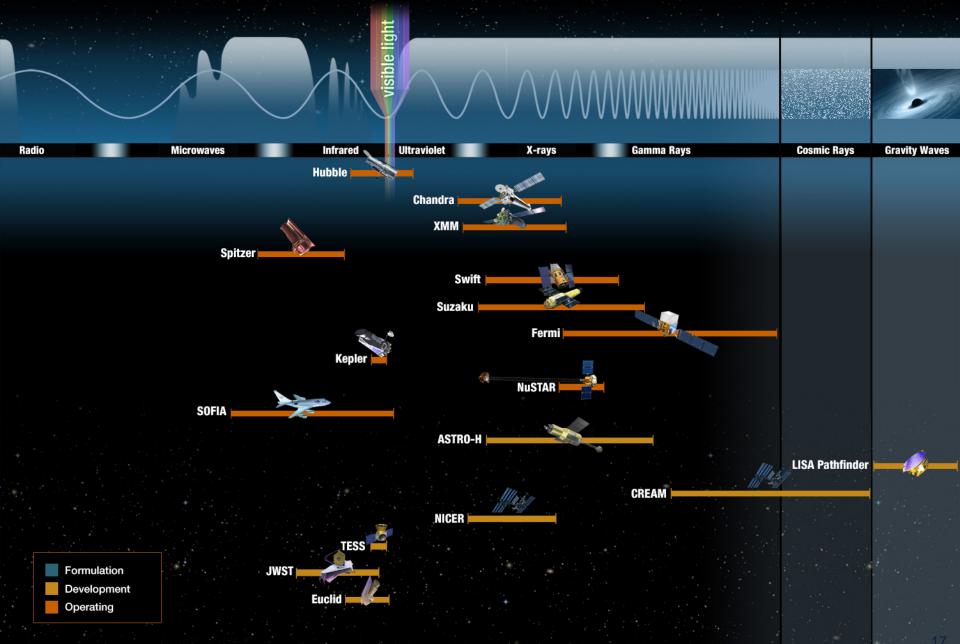
http://science.nasa.gov/media/medialibrary/2015/07/08/NASA-AAPR2015-FINAL.pdf


- Cloud computing and associated commercial services.
 - It is clear that some of our services cannot be migrated yet, while we do utilize clouds for some services.
 - It may well be that cloud computing is a good fit for creating the huge simulations we need (for Euclid and WFIRST, and incidentally also LSST), and also for running joint processing.
 - It is a matter of how well matched the science requirements are to the commercial services, first their technical services but also their charging model (it may be cheaper to work with DOE supercomputers).


Astrophysics: Theoretical and Computational Astrophysics Networks


Project title	PI	Institution	Topic / Agency	
Multi Saala Diaama Elawa	J. McKinney	U Maryland	black hole	
Multi-Scale Plasma Flows Around Black Holes	R. Narayan	Harvard	accretion	
Alound black holes	D. Psaltis	U Arizona	NASA	
From the ISM to the IMF: Multi-	E. Ostriker	Princeton	star formation	
Scale, Multi-Physics Modelling	M. Krumholz	UC Santa Cruz		
of Star Formation	C. McKee	UC Berkeley	NASA	
The SPIDER Network:	L. Bildsten	UC Santa Barbara	supernovae	
Supernova Progenitor, Internal	F. Timmes	Arizona State U		
Dynamics & Evolution	R. Townsend	U Wisconsin-Madison	NASA	
Research	J. Toomre	U Colorado at Boulder		
Extracting Astrophysics and	C. Ott	Caltech	mergers of black	
Fundamental Physics from	D. Brown	Syracuse U	holes and neutron	
Multi-Messenger Observations	S. Teukolsky	Cornell U	stars	
of Compact Objects	S. Reddy	U Washington	NSF	
The multi-scale physics of	C. Reynolds	U Maryland	black holes in	
massive black hole formation,	P. Natarajan	Yale U	galaxies	
fueling, and feedback	P. Laguna	Georgia Inst Tech	NSF	
Disal Lists Assession Theory	C. F. Gammie	U Illinois	black hole	
Black Hole Accretion Theory	E. Quataert	UC Berkeley	accretion	
and Computation Network	J. M. Stone	Princeton U	NSF	

Astrophysics: Laboratory Astrophysics Investigations

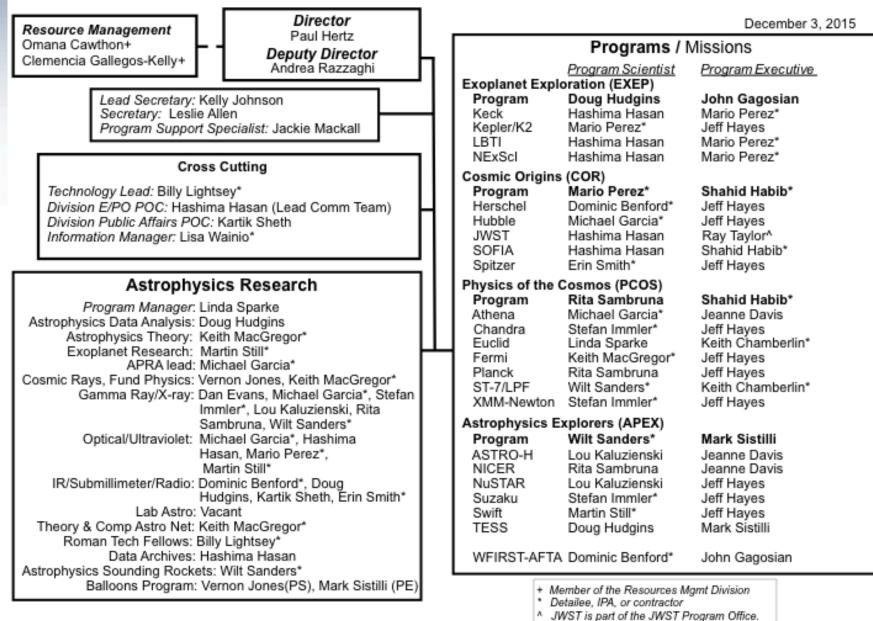


Herschel Far Infrared Spectrum

Hubble Visible/Ultraviolet Spectrum

Astrophysics Mission Portfolio 2015

National Aeronautics and Space Administration


Astrophysics

BACKUP

Astrophysics Division - SMD

