National Aeronautics and Space Administration

2021 Small Spacecraft Virtual Forum NASA Earth Science Division SmallSats: Constellations and Technology Validation via SmallSats/CubeSats

> Sachidananda Babu Technology Validation Program Manager sachi.babu@nasa.gov Pamela Millar, ESTO Program Director Robert Bauer, ESTO Deputy Program Director

NASA

Earth Science Technology Program Elements

ESTO manages, on average, 120 active technology development projects. Most are funded through the primary program lines below. Over 800 projects have completed since 1998.

Advanced Technology Initiatives: ACT and InVEST

Advanced Component Technologies (ACT) Critical components and subsystems for advanced instruments and observing systems

12 projects awarded in 2020 Solicitations planned in FY22, and FY24 Average selection rate: 16.4%

In-Space Validation

On-orbit technology validation and risk reduction for small instruments and instrument systems.

Four projects selected in FY18 **Solicitation open in FY21** Solicitations planned in FY24 and FY27 Average selection rate: 18.3%

Instrument Incubator Program (IIP)

Earth remote sensing instrument development from concept through breadboard and demonstration

19 projects awarded in FY19 **Solicitation open in FY21** Solicitations planned in FY23 and FY25 Average selection rate: 23.2%

Advanced Information Systems Technology (AIST)

Innovative on-orbit and ground capabilities for communication, processing, and management of remotely sensed data and the efficient generation of data products

22 projects awarded in FY18 **Solicitation open in FY21** Solicitations planned in FY23, and FY25 Average selection rate: 19.3%

Decadal Incubation

Maturation of observing systems, instrument technology, and measurement concepts for Planetary Boundary Layer and Surface Topography and Vegetation observables through technology development, modeling/system design, analysis activities, and small-scale pilot demonstrations

Two Study Teams selected in FY20 **Solicitations planned in FY21** and FY24

NASA

A Flexible, Science-driven Strategy

- Competitive, peer-reviewed proposals enable selection of best-of-class technology investments
- Risks are retired before major dollars are invested: a cost-effective approach to technology development and validation
- Successful partnering establishes leveraging opportunities
- This approach has resulted in:
 - a portfolio of emerging technologies that will enhance and/or enable future science measurements
 - a growing number of infusion successes into science campaigns, instruments, applications, ground systems, and missions

ESTO Enables – Science Selects

ESTO InVEST 2012 Program

U-Class Satellites Advancing TRLs for Future Earth Science Measurements

MiRaTA MIT / MIT-LL Launched: July 2017

3 Frequency Radiometer and GPSRO Validate new microwave radiometer and GPSRO technology for allweather sounding

IceCube

GSFC Launched: March 2017

> 883 GHz submm-Wave radiometer Validate sub-mm radiometer for space borne cloud ice remote sensing

RAVAN

APL Launched: Nov 2016

Vertically Aligned Carbon Nanotubes (VACNTs) Demonstrate VACNTs as radiometer absorbing material and calibration standard for total outgoing radiation

HARP UMBC Launch to ISS: November 2019

Wide FOV Rainbow Polarimeter Demonstrate 2-4 km wide FOV hyperangular polarimeter for cloud & aerosol characterization

ESTO InVEST 2015 Program / Venture Tech

U-Class Satellites Advancing TRLs for Future Earth Science Measurements

Venture Tech

TEMPEST-D

Colorado State University Launched June 2018

5 Frequency mm-Wave Radiometer Technology demonstrator measuring the transition of clouds to precipitation

ESTO InVEST 2015 Program

Jet Propulsion Lab

Precipitation Radar Validate a new architecture for Ka-band radars on CubeSat platform and an ultra-compact deployable Ka-band antenna

CubeRRT

The *Ohio State University* Launched: June 2018

Radiometer RFI Demonstrate wideband RFI mitigating backend

technologies vital for future spaceborne microwave radiometers

CIRiS

Ball Aerospace Launch to ISS: December 2019

Infrared Radiometer Validate an uncooled imaging infrared (7.5 um to 13 um) radiometer designed for high radiometric performance

ESTO InVEST 2017 Program

U-Class Satellites Advancing TRLs for Future Earth Science Measurements

SNoOPI Purdue University

HyTl University Of Hawaii **C-TIM FD** LASP-Univ of Colorado **NACHOS** Los Alamos National Laboratory

SigNals of Opportunity: P-band Investigation

Demonstrate measurement of the reflection coefficient and phase of land surface reflections from Pband communication satellite signals of opportunity

Hyperspectral Thermal Imager

Demonstrate a 6U CubeSat based LEO thermal infrared ITIR) hyperspectral imager with agile onbard processing

Infrared Radiometer

Validate and demonstrate science performance validate 6U CubeSat system against existing TSIS instrument

NanoSat Atmospheric Chemistry Hyperspectral Observation System Compact high-resolution tracegas hyperspectral imagers, with agile on-board processing

6

Earth Venture Opportunities

Mission	Mission Type	Release Date	Selection Date	Major Milestone	
EVS-1 (EV-1) (AirMoss, ATTREX, CARVE, DISCOVER-AQ, HS3)	5 Suborbital Airborne Campaigns	2009	2010	Completed KDP-F	
EVM-1 (CYGNSS)	Class D SmallSat Constellation	2011	2012	Launched Dec. 2016	
EVI-1 (TEMPO)	Class C Geostationary Hosted Instrument	2012	2012	Delivered to storage Dec. 2018	
EVI-2 (ECOSTRESS & GEDI)	Class C & Class D ISS-hosted Instruments	2013	2014	Launched June & Dec. 2018	
EVS-2 (ACT-America, ATOM, NAAMES, ORACLES, OMG, CORAL)	6 Suborbital Airborne Campaigns	2013	2014	CORAL, NAAMES, ORACLES completed KDP-F	
EVI-3 (MAIA & TROPICS)	Class C LEO Hosted Instrument & Class D CubeSat Constellation	2015	2016	TROPICS Launch scheduled between Jan. 8 and July 31, 2022,	
EVM-2 (GeoCarb)	Class D Geostationary Hosted Instrument	2015	2016	Launch ~2022	
EVI-4 (EMIT & PREFIRE)	Class C ISS-hosted Instrument & Class D Twin CubeSats	2016	2018	Delivery NLT 2021	
EVS-3 (ACTIVATE, DCOTTS, IMPACTS, Delta-X, SMODE)	5 Suborbital Airborne Campaigns	2017	2018	Passed Initial Confirmation Review, 2 began deployments	
EVI-5 (GLIMR)	Class C Geostationary Hosted Instrument	2018	2019	Delivery NLT 2024	
EVC-1 (Libera)	Class C JPSS-Hosted Radiation Budget Instrument	2018	2020	Delivery NLT 2025	
EVM-3	Full Orbital	2020	2021	Launch ~2026	
EVI-6	Instrument Only	2021	2022	Delivery NLT 2027	
EVC-2	Continuity Measurements	2022	2023	Delivery NLT 2028	
EVS-4	Suborbital Airborne Campaigns	2023	2024	N/A	
EVI-7	Instrument Only	2024	2025	Delivery NLT 2030	
EVM-4	Full Orbital	2024	2025	Launch ~2030	
EVC-3	Continuity Measurements	2025	2026	Delivery NLT 2031	
EVS-5	Suborbital Airborne Campaigns	2027	2028	N/A	

EVS Sustained sub-orbital investigations (~4 years)

EVM Complete, self-contained, small missions (~4 years)

EVI Full function, facility-class instruments Missions of Opportunity (MoO) (~3 years)

EVC Complete missions or hosted instruments targeting "continuity" measurements (~3 years)

Open solicitation - In Review

Completed solicitation

8 Smallsats exploiting Global GNSS network to measure sea surface winds to improve Hurricane forecasts

Over land it can measure soil moisture and flooding

CYGNSS and SMAP

Nov 2018 – CYGNSS constellation high resolution SNR map identifies flooded regions in central and northern Iraq

USDA uses SMAP data to report on regional droughts, floods, and crop forecasts

IRUPIC5

Time-Resolved Observation of Precipitation Structure and Storm Intensity with a Constellation of CubeSats

Measuring environmental and inner core dynamics of tropical cyclones

6 CubeSats to study the development of tropical cyclones through rapid-revisit sampling

PREFIRE

Discoveries impact the overall global Earth system, including Greenland ice retreat

Oct. 2018 to Apr. 2019 – 7 months of ICESat-2 observations over Antarctica

CubeSats, SmallSats, and Constellations

Small Satellite Solutions:

- Venture Class Launch Services: Investment in new, low-cost (<\$15M/launch), commercial launch vehicles capable of orbiting small payloads to LEO – science control of launch schedule and orbits
- CYGNSS (Cyclone Global Navigation Satellite System): Homogeneous tropical constellation of 8 micro-satellites using reflected GPS to measure surface winds/air-sea interactions, especially valuable/unique in the precipitation-dominated, dynamic, eyewalls of tropical storms and hurricanes – frequent tropical sampling from 1 orbit plane
- TROPICS (Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of SmallSats): Homogeneous tropical constellation of 6 CubeSats to measure atmospheric profiles in storms/hurricanes – frequent sampling from 2-3 orbit planes
- **PreFIRE:** 2-satellite CubeSat constellation to measure Far-IR emissions primarily from the Arctic
- In-Space Validation of Earth Science Technologies (InVEST): On-orbit CubeSat-based technology validation and risk reduction that could not otherwise be fully tested using ground/airborne systems; leading to miniaturized science payload development
 - CSIM/CTIM provide a new SmallSat architecture approach for future TSI and SSI continuity measurements
 - SLI-T instrument development for Landsat-10+, future SLI consideration (6 projects ongoing)
 - Tempest-D and RainCube produced exceptional precipitation measurements of Hurricanes
 - Five CubeSats from InVEST-19 are planned to launch in next 12 months

About us: https://esto.nasa.gov

Contact: sachi.babu@nasa.gov

INNOVATE and EXPLORE with us

Earth Science Technology Office