Cosmic Origins Program Analysis Group (COPAG)
Report to Astrophysics Advisory Committee (APAC)
October 17-18 2022

Dr. Rachael Beaton
Lead, COPAG Stars Science Interest Group
Lead, COPAG Retention Study
1. COPAG EC Overview
 + Charge
 + Membership & Staffing; SIG/STIG Structure

2. COPAG Activities
 + Community Engagement: Monthly Activities, AAS

3. Cosmic Origins Analysis Activities: Supporting Informed Leadership in a Rapidly Changing World and Scientific Landscape
 + Study: retention and recruitment of technical expertise
COPAG EC lead analysis and coordinate PAG activities; members should span breadth of COR science, technology

Executive Secretary: Stephanie Clark
COR Chief Scientist: Peter Kurczynski
Program Scientist: Eric Tollestrup → Manuel Bautista

Get involved to represent your communities:
NASA Program Analysis Groups (PAGs) serve as community-based, interdisciplinary forums for soliciting and coordinating community analysis and input in support of NASA SMD Science Program objectives and of their implications for architecture planning, activity prioritization, for future exploration. It provides findings of analyses to the NASA Astrophysics Division Director.

Pathways to Discovery in Astronomy and Astrophysics for the 2020s

Key Scientific Challenges for the Next Decade

Worlds and Suns in Context
Priority Area: Pathways to Habitable Worlds
Exoplanet Exploration Executive Comm. (ExoPAG EC)
Chair: Ilaria Pascucci

New Messengers and New Physics
Priority Area: New Windows on the Dynamic Universe
Physics of the Cosmos Executive Comm. (PhysPAG EC)
Chair: Grant Tremblay

Cosmic Ecosystems
Priority Area: Unveiling the Drivers of Galaxy Growth
Cosmic Origins Executive Comm. (COPAG EC) Chair: Janice C. Lee
COPAG EC lead analysis and coordinate PAG activities; members should span breadth of COR science, technology
COSMIC ORIGINS EXECUTIVE COMMITTEE:
Review of charge and organization

Janice Lee
(Chair)
November 2017–October 2022
Chair-elect/Chair Jan 2021
Gemini/NOIRLab

Stephan McCandliss
November 2018–October 2022
Johns Hopkins University

Alexandra Pope
November 2018–October 2022
University of Massachusetts

Alina Kiessling
February 2020–October 2022
Jet Propulsion Laboratory

Christine Chen
November 2020–January 2024
Space Telescope Science Institute

Chris Hayward
November 2020–January 2024
Flatiron Institute

Lisbeth Gavilan-Marín
November 2020–January 2024
NASA Ames Research Center

Sabrina Stierwalt
November 2020–January 2024
Occidental College

Hsiao-Wen Chen
April 2022–October 2024
University of Chicago

Shouleh Nikzad
April 2022–October 2024
Jet Propulsion Laboratory

Enrique Lopez Rodríguez
April 2022–October 2024
Stanford University

- N=11
- 4 members ending terms in Oct incl Chair (Lee, McCandliss, Pope, Kiessling)

New members
Instrumentation; IR; UV; IGM

Rotating Off
IR and UV STIGS: active since 2000s; established networks and participation

New SIGs proposed by former EC Chair Meixner to prepare for analysis of Astro2020
- Galaxies, Stars active
- New AGN SIGs activated by Cosmic Origins Program Office

From Oct 2021 APAC Report:

NASA HQ

via Eric Tollestrup

Cosmic Origins Program

Management for NASA HQ the Strategic Astrophysics Technology (SAT)
(Thai Pham + team)

Manages for NASA HQ the COPAG, SIGs, STIGs, S/TAGs + Community Engagement
(Peter Kurczynski + team)

COPAG Executive Committee

Science Interest Groups (SIGs)
mirror Decadal Panels

Science/Technology Interest Groups
(STIGs) mirror HQ PRAP bins

Galaxies

Infrared / Radio

ISM & Planet formation

Ultraviolet / Optical

Stars, Sun and Stellar Pops

Science/Technology Analysis Groups
(S/TAGs) are short term groups that are spun off when a specific analysis and a
coherent effort is needed.
IR and UV STIGS: active since 2000s; established networks and participation

New SIGs formed by Meixner EC to prepare for analysis of Astro2020

Galaxies and Stars SIGs now active

STIG/SIG Leadership

- IRSTIG: M. MacGregor (Colorado), J. Connors (NIST)
- UVSTIG: S. McCandliss (JHU), J. Tumlinson (STScI)
- Galaxies SIG: B. Holwerda (Louisville)
- Stars SIG: R. Beaton (STScI)
- AGN SIG: S. Satyapal (GMU)
Infrared Science Technology Integration Group: Highlights (Connor, MacGregor et al.)

Restarted Webinar Series in October 2022
• Incorporated ‘Far-IR Great Observatory Technology Updates’
• Two talks per webinar – one each focusing on science and technology
• Will continue to meet on the first Monday of each month at 3pm Eastern
• Attendance growing, typically 30-60 scientists from around the globe.
• All recordings posted to YouTube channel and website.

Continuing Biannual Newsletter
• Released latest version Aug 2022; next release ~Jun 2022.
• Mix of news and views, science and technology highlights, upcoming events, etc.

Supported Community Discussion on Decadal Recommendations and Probe Missions
• Upcoming splinter session at Winter AAS meeting
• Planning for community surveys to help gather community input

Hosted In-Person Workshop “The Impacts of Astro2020 on IR Astrophysics”
• >100 in-person participants + “viewing mode” virtual participation
• Report included in last newsletter
• Talks archived: https://casa.colorado.edu/~mema5817/irworkshop.html

https://cor.gsfc.nasa.gov/sigs/irstig.php @ir_stig
1) Preping AAS241 UVSTIG Splinter Session to be held hybrid on (requested) Tuesday 10 January 2023 13:00 - 15:00 PT

Title: *Science and Technology Tradespace for IOU-ST (IROUV): Working Towards a Design Reference Architecture*

- **Draft Program** (nominally 10+5 min talk+questions)

<table>
<thead>
<tr>
<th>Decadal Science Goals Overview: TBD</th>
<th>HighDefinition Imager: TBD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telescope Architecture: TBD</td>
<td>Star Shade: Aki Roberge and Scott Gaudi</td>
</tr>
<tr>
<td>Coronagraph: TBD</td>
<td>Workforce Development: Rachael Beaton</td>
</tr>
<tr>
<td>Multi-object Spectrograph: Kevin France</td>
<td>GOMAP Process: TBD</td>
</tr>
</tbody>
</table>

1) Convened Precursor Science Brainstorming Sessions on 21 Sept and 04 Oct at STScI with presentations by Tumlinson, Beaton and McCandliss

2) UVSTIG -- Quorum for Ultraviolet Exploration of Science and Technology (QUEST) Seminar

- **QUEST09** – 20 October 2022
 - Speaker: Fiona Harrison, Caltech – UVEX (UV Explorer)
 - https://www.caltech.edu/about/news/nasa-selects-uvex-mission-proposal-for-further-study

- **Quest10** – 01 December 2022
 - Speaker: Hsiao-Wen Yan, U Chicago – CUBS (the Cosmic UV Baryon Survey)
 - https://cubs.uchicago.edu

- Archived QUEST Seminars https://www.youtube.com/playlist?list=PL_dmnk6FeUeASWgZwZBIUR--Ut8axxSut
Webinar Series Continues in 22B (see right)

- Bi-weekly “Colloquium-like” talk series with 2 x 30 minute talks that are topically related. Goal is to fill the gap for folks that do not get topically-related colloquium-style talks.
 - 1 meeting set-aside for Post-Precursor Science Meeting and GOMAP discussions (Nov 01)
- 30-40 Average Attendance, Recorded posted to YouTube
- Last week a participant said: “Thank you for continuing this is the highlight of my week.”

Facilitating Participation in NASA/COPAG Events

- Promoting/Advertising workshops, relevance of workshops, etc. -- helping people find the crucial stuff through the noise.
- Still in Progress:
 Stars and stellar physics critical components that unites three focus areas of Astro2020, but not always explicit statements in recommendations

Merged Splinter with Galaxies SIG at AAS241 - Next Great Observatory Focus

• Part of COPAG started late 2021
• Remit to identify science gaps (“potholes”) on the road to the final vision of Astro2020
• Monthly presentations and community discussion (30min talk + 30min discussion)
 • Considering questions such as “How does galaxy science scale with the aperture?” “What kind of commensal science is possible?”
• Identify precursor and preparatory science for next IR/UV/O Flagship
• First issues identified: Scaling randomized Deep Fields and how to identify enough quasars for circumgalactic medium studies.

https://cor.gsfc.nasa.gov/sigs/Galaxies-SIG.php

Some examples of recent topics

There is the opportunity to do deep imaging together with exoplanet transit observations. What would we need to make those extra-galactic observations a success?
• Do we know the likely exoplanet target list? YES
• Are those at high Galactic Latitude? Some! Not all?
• How big do those fields need to be to beat cosmic variance? Bigger camera? How many filters?
• Can one change filter while extra-galactic observations are ongoing? \(_____\)\n• Is the onboard data storage enough to allow this commensal kind of observing (linked to the needed size of camera)? \(______\)\n
Galaxies Science Interest Group: Highlights (Holwerda et al.)
● New AGN SIG began in August 2022
● Biweekly seminar series - with recorded talks on YouTube
 ○ 3 seminars in Aug-Sep with attendance of ~30-40 people
● Planned Monthly informal zoom lunch meetings for Faculty/Research Staff and separately for Postdocs/Grad Students
● Planned “AGN Vision Series” Colloquia - 30 minute talks followed by community discussion on most outstanding questions in the field and the current and future facilities needed to answer them.

- September 27, 2022
 A high angular resolution view of the PAH emission in Seyfert galaxies using the James Webb Space Telescope
 Ismael G. Bernete

- September 13, 2022
 Measuring AGN Hosts Properties at z>3 with JWST
 Dale Kocevski

- August 30, 2022
 Dust in the Central Parsecs of AGNs
 Almudena Prieto

- October 11, 2022
 Newborn Quasar Jets Discovered in the Very Large Array Sky Survey
 Kristina Nyland

- October 25, 2022
 JWST ERO observations of NGC 7319
 David Law

- November 8, 2022
 Revealing Low Luminosity AGN with JWST
 Anil Seth

- November 22, 2022
 Low-power jet-ISM interaction in NGC 7319 revealed by JWST/MIRI MRS
 Miguel Perera Santaella

- December 13, 2022
 Magnetic fields as the cause or effect of the origin of radio-loud and radio-quiet AGN
 Enrique Lopez Rodriguez

2023 Winter AAS planning

- Splinter proposals submitted by COS program office for **7 different sessions** (COPAG general annual mtg, 2 STIGS, 4 SIGS) as placeholders
- After feedback from Cosmic Origins community to EC chair and extended discussion by EC, provided feedback to program office to **reduce to 3 splinters**
 - integrate activities of SIGS into COPAG general annual mtg
 - continue with splinters for UV/O and IR STIGs.

Precursor Science Workshop II (2022 Oct 11-13)

- Worked with EC and community on short timescale to increase participation of IR community through IR STIG and support large mission studies session.
The APAC requests that the COPAG provide further details of the COPAG technical workforce study at the October 2022 APAC meeting.
Risk Charts for big transformative science programs now include in their top risks the hiring of technical personnel from industry (to write software, develop systems, build infrastructure, among others.)

Attrition also an issue because of knowledge loss and small teams
Risk Charts for big transformative science programs now include in their top risks the hiring of technical personnel from industry (to write software, develop systems, build infrastructure, among others.)

Attrition also an issue because of knowledge loss and small teams

Why?

- Conflict between hiring practices in Academia vs. Industry
 - Timescales (many months vs. several weeks)
 - Supply >> Demand vs. Supply <<< Demand
 a.k.a. Employer-centric vs. Employee-centric hiring environment
 especially with industry teams adopting hybrid/remote/distributed work structures

Initial Motivations and Ideas
Risk Charts for big transformative science programs now include in their top risks the hiring of technical personnel from industry (to write software, develop systems, build infrastructure, among others.)

Attrition also an issue because of knowledge loss and small teams

Why?

- Conflict between hiring practices in Academia vs. Industry
 - Timescales (many months vs. several weeks)
 - Supply >> Demand vs. Supply << Demand
 a.k.a. Employer-centric vs. Employee-centric hiring environment especially with industry teams adopting hybrid/remote/distributed work structures

At the same time, only ~1 in ~10 PhDs will become tenure track professors

- Number of BA degrees in Astronomy up 25% from 2014-2018
- Number of Ph.D. degrees up 20% from 2014-2018
- Tenure Track in Astro Dept up 4% from 2014-2018
- Unable to find data on technically-focused jobs, non-teaching jobs, non-university settings
Very little differentiation between Industry and Academic Research Skillsets, Sense of Freedom/Choice, and other commonly raised differences.

See: https://www.aip.org/statistics/phd-plus-10
(note this data is old, but does span the late 1990’s tech bubble)
Initial Motivations and Ideas

- Move beyond anecdotal discussion and personal experience to understand why highly trained and highly successful researchers leave the field.

- Present analysis on what factors could reinforce the foundation of science: the people that do science.
Initial Motivations and Ideas

➔ Move beyond anecdotal discussion and personal experience to understand why highly trained and highly successful researchers leave the field.

➔ Present analysis on what factors could reinforce the foundation of science: the people that do science.
Why Now? What is the urgency?

➔ Coming out of the pandemic scientists of all career stages are reevaluating
 ◆ The structural weaknesses in our community were revealed and experienced in aggregate and in full display
 ● Issues related to caring for family, managing collaborations, among others have always been there but happening at the individual, rather than institutional, levels

➔ We are starting to seriously examine the layers of inequity in our field
 ◆ NASA Inclusion Plans, AIP Team Up Report

➔ Industry recruiting continues to grow
 ◆ Ph.D. holders are promising hires for the same reason they are promising within academia
 ◆ Employers willing to invest in specific training for specific tasks

➔ Decadal Survey has made Workforce Issues a critical component of our outlook
 ◆ Report of the Panel on the State of the Profession and Societal Impacts
Initial Motivations and Ideas

- Move beyond anecdotal discussion and personal experience to understand why **highly trained** and **highly successful** researchers leave the field.

- Present analysis on what factors could reinforce the foundation of science: the **people** that do science.

- **Roadblock:**
 - We can’t collect new data now due to Paperwork Reduction Act and limitations to our Terms of Reference.

- **Solution:**
 - Use the literature, public data as motivation.
 - No Data on non-physics degree holders, so we will do our best to contextualize.
Anecdotally what are the issues?

➔ Location
➔ Salary
➔ Long-Term Stability
➔ Work/Life Balance
➔ Lack of Support/Room for Growth
Anecdotally what are the issues?

AAS Committee on the Status of Women in Astronomy (CSWA) has 8 years of non-academic career profiles that asked *why scientists leave* (27 from 2013 to 2021).

Source: http://womeninastronomy.blogspot.com/2021/03/why-we-leave.html

- Location
- Salary
- Long-Term Stability
- Work/Life Balance
- Lack of Support/Room for Growth
Anecdotally what are the issues?

AAS Committee on the Status of Women in Astronomy (CSWA) has 8 years of non-academic career profiles that asked *why scientists leave* (27 from 2013 to 2021).

Source: http://womeninastronomy.blogspot.com/2021/03/why-we-leave.html

- **Location** (48%)
- **Salary** (30-40%)
- **Work Environment** (19%)
- **Long-Term Stability** (48%)
- **Work/Life Balance** (37%)
- **Funding** (11%)
- **Lack of Support/Room for Growth** (41%)
- **Did not want Research Job** (33%)
- **Did not get Academic Jobs** (4%)

Note:
This is *my* coding that is not fully scientific, just contextual.

This is still anecdotal in nature because there is bias in who was contacted and who responded. A systematic survey of those that stayed in academia and those that left across a variety of jobs would be more reliable.
Anecdotally what are the issues?

AAS Committee on the Status of Women in Astronomy (CSWA) has 8 years of non-academic career profiles that asked why scientists leave (27 from 2013 to 2021).

Source: http://womeninastronomy.blogspot.com/2021/03/why-we-leave.html

- Location (48%)
- **Salary** (30-40%)
- Work Environment (19%)
- Long-Term Stability (48%)
- Work/Life Balance (37%)
- Funding (11%)
- Lack of Support/Room for Growth (41%)
- Did not want Research Job (33%)
- Did not get Academic Jobs (4%)
Starting Salaries for Physics Bachelor’s Degrees 2019 and 2020

Figure adapted from: https://www.aip.org/statistics/resources/initial-employment-physics-bachelors-and-phds-classes-2019-and-2020
Starting Salaries for Physics PhD Degrees 2019 and 2020

Figure adapted from: https://www.aip.org/statistics/resources/initial-employment-physics-bachelors-and-phds-classes-2019-and-2020
Starting Salaries for Physics PhD Degrees 2019 and 2020

Figure adapted from: https://www.aip.org/statistics/resources/initial-employment-physics-bachelors-and-phds-classes-2019-and-2020

IQR of All **Physics** Bachelor’s Degrees

Only the Private Sector “**rewards**” training/preparation provided by a Ph.D. with salary increases over Bachelor’s Degrees.
Starting Salaries for Physics PhD Degrees 2019 and 2020

Figure adapted from:

Some Ph.D. jobs do provide increases over graduate student salaries -- but note the lore is that these salaries are suppressed because of also receiving tuition.

IQR of All Physics Bachelor’s Degrees

Physics Graduate Student Salaries
Starting Salaries for Physics PhD Degrees
2019 and 2020

IQR of All Physics Bachelor’s Degrees
~IQR of All CompSci Bachelor’s Degrees

Physics Graduate Student Salaries

No-experience Computer Science Bachelor’s Degree salaries are larger than nearly all Ph.D. Physics salaries. These sometimes do not require relocation and involve non-salary compensation or accommodation.

Figure adapted from:
Direct from the Article:

… she struggled with relatively low salaries during more than five years of postdoctoral work in the United Kingdom …

“Postdoc salaries are OK, but it was a difficult situation for saving money. I never felt great financial security. If something went wrong, I’d have to rely on my parents.”
Being able to rely on family members for financial support is a privilege that most do not have. Those that face these issues without that privilege, would have to quit academic research and take a higher paying job.

For context, from the Economic Well-Being of US Households:
- 24% of households in the US are just able to pay their monthly expenses or are a single unplanned $400 expense away from hitting this point. This quantity has sharp racial divides:
 - 40% of African American households
 - 35% of Hispanic households
 - 20% of white households
 - 11% of Asian households
- 27% of Americans do not have cash-on-hand to cover three months of bills
- Lower income households (< $50,000) are 2x more likely to experience job disruption or family emergencies than higher income households (> $100,000) including impacts of natural disasters.

Salaries and Cost of Living

This a picture that made its way to the COPAG discussion via a telephone-of-Slack channels and is from the bulletin board of distinguished university in the Boston-Cambridge-Newton Area.

This is an example of the type of analysis that early career researchers are motivated do on their own and distribute in their own networks when it comes to career decision making.
Salaries and Cost of Living
Salaries and Cost of Living
Carnegie classification also had a large effect on salary, as 58% of the postdocs at national government laboratories report earning more than $55,000 a year, while only 8% of postdocs at R1 institutions report earning more than $55,000 a year.

➢ when adjusted to publicly available COL data, postdocs in large metropolitan areas earn significantly less money than postdocs in college towns or rural settings

➢ Fair Labor Standards Act (FLSA) on postdoctoral salaries was openly debated, but ultimately not federally mandated
From the article:

... we show that faculty are up to 25 times more likely to have a parent with a Ph.D.

Moreover, this rate nearly doubles at prestigious universities and is stable across the past 50 years. Our results suggest that the professoriate is, and has remained, accessible disproportionately to the socioeconomically privileged, which is likely to deeply shape their scholarship and their reproduction.
Research Recruitment and Attrition

COPAG Salary Study Summary:

➢ Little differentiation between Industry and Academic Research preparation and overall skillset usage in 10-year retrospective study
➢ Differences between how expertise and experience are compensated between Industry and Academia
➢ Academic salaries have not kept up with general Cost-of-Living and many are not scaled to regional Cost-of-Living differences
➢ Large biases in professoriate in terms of socio-economic background (correlated with other demographic axes as well).
➢ Data limited to research-focused jobs and Physics Degree holders. Needs expansion to cover key technical careers.
Fluidity Between Industry & Academia

The categories on the y-axis are the sector of the first permanent job after earning a physics PhD and completing any Postdocs.

After the Postdoc Phase, people stay where they were hired. Slightly more movement in Government.

https://www.aip.org/statistics/reports/phdplusn-jobsector-movement
Urgency of Going Beyond this Analysis

➔ Funding agencies are important for setting priorities in the scientific community

➔ Critical Path Employees
 ◆ highly trained people leave because of structural problems
 ◆ struggle to recruit highly trained people
 ◆ existing plans/contracts may not have flexibility to retrain or to retire this risk

➔ Major impact on who can proceed in the Astronomy workforce

➔ We have only looked at one factor that could be impacting recruitment and attrition and only within Physics Ph.D. holders.
The following slides include information that may be useful for questions as well as more context and source material for some numbers quoted in the main presentation.
Articles Just in Nature, Mostly 2021-2022:

Satisfaction in science

Nature’s survey offers a snapshot of salaries and career paths in the field.

Industry scores higher than academia for job satisfaction

Nature’s salary survey finds that industry researchers are more positive about their careers. Academia must raise its game.

Stagnating salaries present hurdles to career satisfaction

Fewer than half of respondents to Nature’s 2021 salary and satisfaction survey were positive about their prospects.

Quantifying hierarchy and dynamics in US faculty hiring and retention

K. Hunter Wapman, Sam Zhang, Aaron Clauset & Daniel B. Larremore

Narrow hiring practices at US universities revealed

An analysis of faculty members employed at academic institutions in the United States reveals that most employees were trained at just a few universities. The finding provides insights into how hiring perpetuates inequalities.

Industry versus academia — a midlife career switch

Correspondence on 14 June 2022
Controlling for geography, the families of academic faculty are more wealthy than the distribution.

Average income distribution estimated using faculty members’ childhood zip codes (green), compared with the income distribution across the 1998 US population (black).
Salaries are an Inclusion Issue

➢ This report shows **significant demographic differences** in many financial stability indicators.
➢ Too much to detail in this presentation, but lower income households experience more disruption

THE TIME IS NOW
Systemic Changes to Increase African Americans with Bachelor’s Degrees in Physics and Astronomy

FACTOR 4: PERSONAL SUPPORT
Many African American students need support to offset financial burdens and stress.

https://www.aip.org/diversity-initiatives/team-up-task-force
Our analyses show universal inequalities in which a small minority of universities supply a large majority of faculty across fields, exacerbated by patterns of attrition and reflecting steep hierarchies of prestige. We identify markedly higher attrition rates among faculty trained outside the United States or employed by their doctoral university.
Bias in Graduate Admissions

➔ If where you go to graduate school predicts if you become faculty ...we, again, can find more evidence of how socio-economic, race, and gender impacts admissions.

➔ Faculty directly set many of these policies.
From the Article:

The data suggest that the employment sector of the first job a physics PhD recipient takes affects his or her employment sector ten to fifteen years later. While our data are not necessarily representative of all physics PhDs (See Survey Methodology, below.), the p-values are small enough to suggest that the likelihood of moving across job sectors is low. Of course, these data are taken from PhD recipients in the classes of 1996, 1997, 2000, and 2001. Graduates from later classes will not necessarily experience the same economic circumstances, and their job experiences may differ.

https://www.aip.org/statistics/reports/phdplusten-jobsector-movement
Astronomy Faculty

Estimated Total Number of Full-Time Equivalent (FTE) Faculty Members in Stand-Alone Astronomy Departments, 2014–2020

<table>
<thead>
<tr>
<th></th>
<th>Year 2014</th>
<th>Year 2016</th>
<th>Year 2018</th>
<th>Year 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated Number of Full-Time Equivalent (FTE) Faculty Members</td>
<td>700 (38)</td>
<td>700 (38)</td>
<td>770 (39)</td>
<td>770 (38)</td>
</tr>
<tr>
<td>Percent Employed in Tenure or Tenure-Track Positions</td>
<td>76%</td>
<td>72%</td>
<td>72%</td>
<td>73%</td>
</tr>
<tr>
<td>Percent Employed in Temporary or Non-Tenure-Track Permanent Positions</td>
<td>24%</td>
<td>28%</td>
<td>28%</td>
<td>27%</td>
</tr>
</tbody>
</table>

The parentheses show the number of stand-alone apartments that grant degrees in astronomy but not physics.

4% increase

76% of 700
532

72% of 770
554

Number of Doctorates Earned in Astronomy.

~20% increase
2014-2017

Number of Bachelor's Degrees Earned in Astronomy.

~25% increase
2014-2017

https://www.aip.org/statistics/data-graphics/number-doctorates-earned-astronomy

https://www.aip.org/statistics/data-graphics/number-bachelors-degrees-earned-astronomy-0
Grant Success Rates: AAG NSF 1990 to 2020

AAG Expenditure, $M

Proposal Funding Rate, %, influenced by many factors!
Astrophysics R&A Proposal Status Update
December 2020-2021

Number of Proposals

Selection Rates

PI Notification (Days)

R&A: 1,049 proposals
GO/GI: 3,476 proposals
Total: 4,525 proposals

R&A: 19%
GO/GI: 27%
Average: 25%

80% of notifications
R&A: 147 days
GO/GI: 126 days
How can COPAG best support and inform NASA Astrophysics leadership in a rapidly changing world and scientific landscape?

To support NASA implementation of Astro2020

Flow inputs from SIGS/STIGS into identify "precursor science" to guide future Great Observatory architecture/trades; inform new NASA ROSES funding element;

- ensure COPAG nodes are deep, BROAD, INTEGRATED with other PAGS to enable input responsive to onslaught of new discoveries in next few years; support new cross-PAG SAGS
How can COPAG best support and inform NASA Astrophysics leadership in a **rapidly changing world and scientific landscape**?

Rapid changes in economics/culture/technology significantly impacts on "Foundations" COPAG esp concerned with

- **State of Profession & Workforce Issues**
- **Data Archives/Science**

- Challenges with recruitment/retention of software engineers rising to highest levels in science center risk charts; inability to compete with tech/industry $

- Delayed uptake in modern big data analysis techniques (machine learning/AI), gap in Astro2020

- Changes in data policies to support greater open access and sharing of higher level science products

COPAG EC & S/TIG Leadership deliberating on community surveys and analysis to conduct and commence in ~May
How can COPAG best support and inform NASA Astrophysics leadership in a rapidly changing world and scientific landscape?

Rapid changes in economics/culture/technology and significant impacts on "Foundations" COPAG esp concerned with

- State of Profession & Workforce Issues
- Data Archives/Science

- Challenges with recruitment/retention of software engineers rising to highest levels in science center
- Delayed uptake in modern big data analysis techniques (machine learning/AI), gap in Astro2020
- Changes in data policies to support greater open access and sharing of higher level science products

COPAG EC & S/TIG Leadership deliberating on community surveys and analysis to conduct and commence in ~May

- Retention analysis leads: Beaton & Stierwalt
- COPAG/NASA not allowed to perform surveys without OMB approval
- Will explore partnerships (e.g., with AAS) who will/may already have appropriate data for analysis with special focus on retention issues on GOMAP activities
- Draft ToR expected in October