Convex Optimization-Based Approaches for Spacecraft Trajectory Optimization

Abhishek Cauligi

Advised by: Prof. Marco Pavone Autonomous Systems Laboratory **Stanford University**

October 10, 2018

Motivating Goals

- Assistive free-flyers on the ISS
 - Perching for inspection/monitoring
 - Tool retrieval, return
 - Unpacking cargo

Astrobee

- Complex in-space manipulation and proximity operations tasks
 - On-orbit servicing, assembly
 - Debris removal
 - EVA assistance

Restore-L Servicer

Goal: Safe, autonomous navigation for robotic spacecraft

Sequential Convex Programming

- SCP has gained traction for trajectory optimization
 - Iterative method for solving non-convex optimization problems
 - Existing approaches lack guidance on how to solve problem in principled manner i.e. initialization strategies, convergence
- GuSTO is a new algorithmic framework
 - Provides convergence guarantees for dynamic feasibility, guides user for different initialization strategies
 - Handles a broad class of problems using an optimal control approach: free final-time, goal region constraints on manifolds
 - Informed use of direct and indirect methods to accelerate SCP

[Bonalli, Cauligi, Bylard, and Pavone, ICRA '19 (submitted)]

Results

