Dusty Universe

Asantha Cooray

- Far-Infrared Background
- Dusty galaxies and their role in galaxy formation and evolution
- Far-IR spectroscopy as a probe of interstellar medium and AGN activity
- Review of results from Herschel Space Observatory and ALMA

Cosmic Background Light

Dusty Universe 2016

Asantha Cooray, UC Irvine

Asantha Cooray, UC Irvine

250µm

350µm

500µm

10 arcmin

Asantha Cooray, UC Irvine

Far-Infrared 2016 AAS

Unsolved problems in far-infrared astronomy?

- How do dusty, starburst galaxies assemble?
- Where are luminous infrared galaxies today?
- How do starbursts relate to dark matter?
- What is the role of dust in star formation?
- What is the connection between dusty star formation and AGNs?

Herschel Extragalactic Surveys

- Observe at SED peak
- Bolometric far-IR luminosities
- Large and uniform samples

Herschel Science Motivation

HERMES INFORMATION ON THE WEB: HERMES.SUSSEX.AC.UK AND HERSCHEL.UCI.EDU

Asantha Cooray, UC Irvine

What kind of galaxies did we detect with Herschel?

Asantha Cooray, UC Irvine

What are Dusty Star Forming Galaxies?

Illustration from Caitlin Casey

What are Dusty Star Forming Galaxies?

Alex Amblard et al. 2010 (ex-UCI postdoc; now NASA Ames)

The surface density of 350 μ m selected sources (z~1.8 to 3) S₃₅₀ > 20 mJy is ~800/deg²

Naive expectation based on the SED: $S_{250} > S_{350} > S_{500}$: z < 2 $S_{250} < S_{350} > S_{500}$: $z \sim 2$ to 3 $S_{250} < S_{350} < S_{500}$: z > 4

sub-mm colors as a mechanism to select z > 2 galaxies

Amblard et al. 2010

Redshift distribution of SPIRE Sources?

350µm selected galaxies > 5σ are at mostly at z = 2.2 ± 0.6

The surface density of 350 μ m selected sources (z~1.8 to 3) S₃₅₀ > 20 mJy is ~800/deg² The "statistical" redshift distribution implied by SPIRE colors for the 1686 sources

[equivalent to fitting each SED with a single-temp model and marginalizing over T,β] (Hughes et al 2002; Aretxaga et al. 2007)

Amblard et al. 2010

Redshift distribution of SPIRE Sources?

Caitlin Casey et al. 2012 (ex-UCI postdoc; UT Austin faculty)

Redshift gap; z > 1.5 highly incomplete.

The Nature of Brightest high-z Herschel Galaxies

Asantha Cooray, UC Irvine

Bootes/NDWFS/SDWFS 16 sqr. degrees

1.20 1 20

- Lensing: Flux boosted (magnified)
- Can study fainter objects than usually available.

• Can study spatial distribution of gas, dust, stars at higher resolution than with normal galaxies at the same distances.

The Nature of Brightest high-z Herschel Galaxies

Negrello et al. 2010 Science; Wardlow et al. 2012, ApJ; Bussman et al. 2012 ApJ

Asantha Cooray, UC Irvine

Source CO Redshift

High-Resolution Imaging

Extensive Ground-based Follow-up Observations

Asantha Cooray, UC Irvine

Jae Calanog UCI PhD 2014

We now have 100 images like these in total with Keck/LGS A0/HST

	FLS3	NB.v1.78	ADFS01	LOCK10	LOCK04
				• •	
	· : ;			1.1	
	100001	615v2 19	COSMOSO1	NB v1 43	C09v1 40
			2		
	1				
	G12v2.30	Bootes01	NB.v1.293	ID9	XMM16
		•			
h r				Store State	
	XMM119	NA.v1.489	HA0801	ECDES103	ECDFS105

Keck LGS-AO Imaging

Fu et al. 2012; Bussmann et al. 2012; Fu et al. 2013; Calanog et al. 2014; Timmons et al. 2015

Asantha Cooray, UC Irvine

Fu, Hai et al. 2012, ApJ

Asantha Cooray, UC Irvine

 $L_{FIR} = 1.6 \text{ X}10^{13} \text{ L}_{\odot}$ SFR ~ 1900 M_☉/yr T_{DUST} = 62 ± 3 K

No evidence for AGN

$$\begin{split} M_{DUST} &= 6 \ X10^8 \ M_{\odot} \\ M_{STARS} &= 3 \ X10^{10} \ M_{\odot} \\ M_{GAS} &= 7 \ X10^{10} \ M_{\odot} \\ M_{DYNAMICAL} &= 3 \ X10^{11} \ M_{\odot} \end{split}$$

Gas-rich (70% of baryons in gas) Young (M_{STARS}/SFR~20 Myr) Short Star-burst (M_{GAS}/SFR~40 Myr)

Hai Fu et al. 2012, ApJ (ex-UCI postdoc; lowa faculty)

A lensed Planck source resolved by Herschel (in ATLAS)

Fu, Hai et al. 2012, ApJ

Asantha Cooray, UC Irvine

Herschel Lensed Sources

Asantha Cooray, UC Irvine

Nick Timmons UCI PhD 2017

H-ATLAS: 650 sq. degrees. ~2 lensed Planck CSC sources. One in HerMES over 370 sq. degrees.

z=1.68, z determined from the Herschel-SPIRE/FTS spectrum with the 158 micron CII line George et al. 2014; Timmons et al. 2015

Herschel Lensed Sources

Asantha Cooray, UC Irvine

Discovery in H-ATLAS during SDP: Negrello et al. 2010 Science

2010 Keck+SMA

z=0.3 elliptical (Sloan LRG)

2015 HST+ALMA

SDP.81

Asantha Cooray, UC Irvine

SDP.81 Negrello et al. 2010; Vlahakis et al. 2015; Dye et al. 2015; Swinbank et al. 2015;... (6 papers with ALMA)

Asantha Cooray, UC Irvine

SDP.81 Negrello et al. 2010; Vlahakis et al. 2015; Dye et al. 2015; Swinbank et al. 2015;... (6 papers with ALMA)

Asantha Cooray, UC Irvine

Promise of Herschel in Lensing Studies

- ~0.2/sq. deg (S₅₀₀>100 mJy) lensed source *identified* ~90% efficiency.
- Herschel extragalactic surveys: ~1200 sq. degrees, so ~250 lensed galaxies.
- Compared to ~200 lensed galaxies now known in optical and radio

500 um peaked sources $S_{250} < S_{350} < S_{500}$: z > 4?

*Confusion reduced S(500) – fS(250)

Dowell et al. 2014 ApJ technique

z = 6.34 Dusty Starburst Galaxy in HerMES

Riechers, D. et al. Nature 2013; Cooray et al. 2014

Asantha Cooray, UC Irvine

Asantha Cooray, UC Irvine

Weakly lensed by two z=2.1 galaxies with magnification 1.6 +/- 0.3

[G2 identification in R13 as K-band ID of FLS3 incorrect]

L_{FIR} = 6X10¹² L_☉ SFR ~ 1300 M_☉/yr T_{DUST} = 55 ± 10 K

 $\label{eq:Mdust} \begin{array}{l} M_{\text{DUST}} > 10^9 \ M_{\odot} \\ \\ M_{\text{STARS}} \thicksim 5X10^{10} \ M_{\odot} \\ \\ \\ M_{\text{GAS}} \thicksim 10^{11} \ M_{\odot} \end{array}$

No evidence for a quasar/massive AGN!

z = 6.34 Dusty Starburst Galaxy in HerMES

Riechers, D. et al. Nature 2013; Cooray et al. 2014

Asantha Cooray, UC Irvine

Are all Herschel-detected z >4 galaxies weakly lensed? [SPT at 1.4mm Vieira+ 2013]

How many z > 5 in Herschel surveys? unclear right now! Lots of area still to be searched.

800 deg2 of Herschel still to be searched for next z>6 SMG.

"red" galaxies in Herschel

Asantha Cooray, UC Irvine

Why sub-mm lensing selection ~90% efficient?

Fu, Cooray et al. 2013 Nature

SMG-SMG mergers!

Asantha Cooray, UC Irvine

SMG-SMG mergers are rare (one per 100 sq. degrees)!

About ~10 of these in total in Herschel archive (we know 2: XMM01 and G09.124 Ivison et al. 2013)

Asantha Cooray, UC Irvine

Galaxy proto-clusters at z >2 (before clusters "virialized" and bright in X-rays and SZ)

→ Herschel and Planck proto-cluster candidates @esa

Galaxy proto-clusters at z >2

Casey et al. 2015: Herschel/SCUBA-2 + redshifts from Keck/ MOSFIRE

z=2.47, 8 dusty, starbursting galaxies and 40+ Lyman-break galaxies + radio + AGNs

Connect galaxy clusters today with their progenitors during rapid starformation.

Spectral probes from 10 – 500 μ m

Species	Wavelength [µm]	f (M82)	f (Arp220)	Diagnostic Utility			
Ionized Gas Fine Structure Lines							
Ne V	24.3			Unambiguously AGN			
0 IV	25.9, 54.9			Primarily AGN			
S IV	10.5	2.1 (-5)					
Ne II	12.3	1.2 (-3)	7.5 (-5)	Probes gas density and			
Ne III	15.6, 36.0	2.05 (-4)		UV field hardness in			
S III	18.7, 33.5	1.0 (-3)	7.3 (-5)	star formation HII			
Ar III	21.83	9.1 (-6)		regions.			
ОШ	51.8, 88.4	1.3 (-3)					
ΝШ	57.3	4.2 (-4)					
ΝΠ	122, 205	2.1 (-4)		Diffuse HII regions			
Neutral Gas Fine Structure Lines							
Fe II	26.0			Density and temperature probes			
Si II	34.8	1.1 (-3)	7.7 (-5)	of photodissociated-neutral			
OI	63.1, 145	2.2 (-3)	6.8 (-5) (abs)	gas interface between HII			
CII	158	1.6 (-3)	1.3 (-4)	regions and molecular clouds.			
Molecular Lines							
H_2	9.66, 12.3, 17.0, 28.2	2 (-5)	3 (-5)	Coolants of first collapse			
CH	149		4 (-5)	Ground state absorbtion:			
OH	34.6, 53.3, 79.1, 119	2 (-6)	2 (-4) (abs)	gives column and abundance.			
OH	98.7, 163		5 (-5)	Emission: gas coolants, constrain			
H ₂ O	73.5, 90, 101, 107, 180		5 (-5)	temperature, density of warm			
CO	325, 372, 434, 520	3 (-6)	1 (-5)	(50K < T < 500 K) mol. gas			

Far-IR rich in spectral lines

Asantha Cooray, UC Irvine

Probing the interstellar medium of M82

M82 SPIRE FTS observations

- M82 is the nearest (3.9Mpc) starburst (~10Msun/yr)
 - Brightest IRAS extragalactic source (1390Jy at 100µm)
 - Widely used in cosmology as starburst prototype
- Target of the Very Nearby Galaxies Survey (SAG2)
- M82 was observed as Performance Verification target
 - High resolution (FWHM=0.048 cm⁻¹ R~1000)
 - 1332 seconds (10 repetitions)
 - Point source mode (single staring pointing)

Slower vibration

Slower rotation

Probing the interstellar medium of M82

M82 ¹²CO SLED

- The Spectral Line Emission Distribution (SLED) of ¹²CO peaks at J=7-6
- Low J lines taken from Ward et al (2003) in a similar area
- Only with Herschel we can determine the peak of the SLED

Best-fit model has T=545 K and 1.2x10⁷ M_o of warm gas

• What heats gas to 545 K? turbulence, cosmic ra no evidence for an AGN in M82.

SPIRE FTS stacks: 0.1 < z < 1.0 (Wilson+ in prep)

SPIRE FTS stacks: 1.0 < z < 3.8 (Wilson+ in prep)

119 micron OH absorption at z=1-3!

Asantha Cooray, UC Irvine

Far-IR provides the crucial link between JWST and ALMA to complete our view of the evolution of the universe.

Molecular Hydrogen tracing primordial cooling sites/halos

Outstanding problems at z > 6: billion to ten billion solar mass black-holes in SDSS quasars, Universe at < 600 Myr. One solution is massive PopIII clusters collapsing - seed blackholes. Need formation in minihalos at z > 15.

Molecular Hydrogen tracing primordial cooling sites/halos

To detect primordial H₂ line cooling at formation sites of first stars and galaxies at $z \sim 10-15$ next-gen far-infrared sensitivities down to 10^{-23} Wm⁻² (for rest-frame H2 lines at 12.3,17, 28 microns etc.)

~2100 peer-reviewed papers with Herschel Space Observatory or an instrument (in abstract), 2010-2016.

with 55,000 citations, 600K total downloads according to ADS

~6000 papers with some appearance/mention of Herschel Space Observatory since 2007.

Herschel summary

Dusty, starbursts are not limited to z~2 (Riechers et al 13 Nature)

Role of starbursts vs. cold accretion still unclear. SMGs are likely all mergers!

Extensive followup programs, currently on bright lensed and rare SMGs, are providing a detailed view of high-z star-formation, the relative distribution of gas, dust, and stars.

For an extensive review of dusty, star forming galaxies see Casey, Narayanan & Cooray (2014) *Physics Reports*

THIS TALK AVAILABLE AT HERSCHEL.UCI.EDU

Asantha Cooray, UC Irvine