

Outline

Program Overview

Recent COVID-19 impacts

Providing flight opportunities to science

Responding to the December 2020 APAC Recommendations

- 16) The APAC requests updates on advances in aerostat technologies and other long-duration balloon projects that might enable general guest-observer science using large aperture telescopes with arcsecond pointing precisions across the electromagnetic spectrum.
- 17) The APAC recommends that the Astrophysics Division consider adding a formal process for proposing piggyback payloads, potentially across disciplines.

Outline

Program Overview

Recent COVID-19 impacts

Providing flight opportunities to science

Responding to the December 2020 APAC Recommendations

Balloon Program Overview

Mission Model

8-12 Launched

3+ campaigns

300+ ugrad/grad students participate

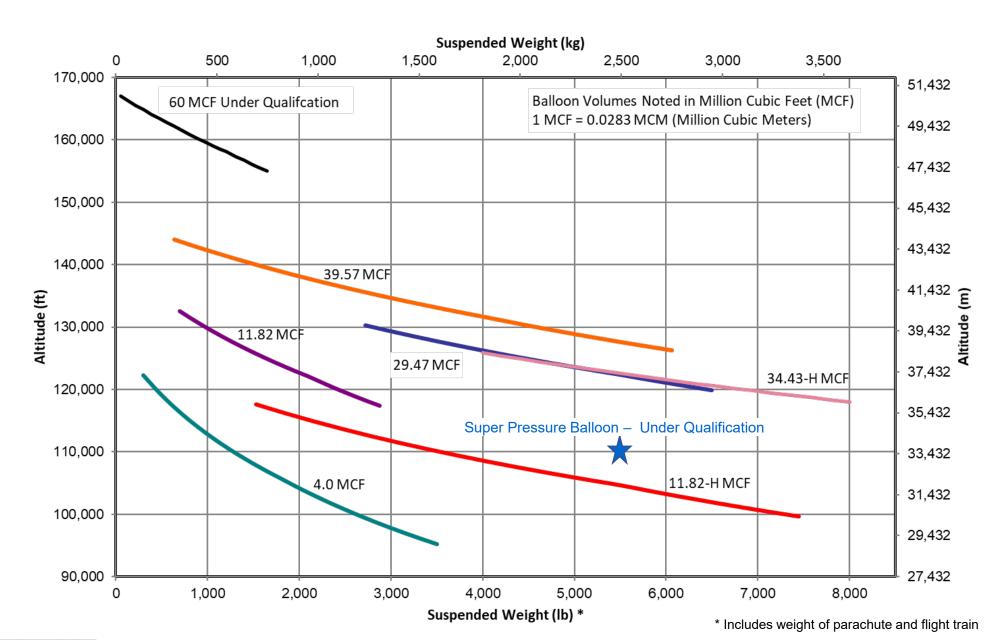
40+ Research Institutions

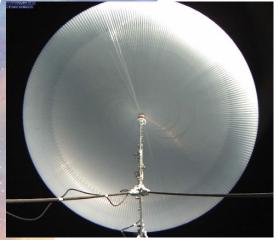
Strategic Objective:

Enable discovery through conduct of frequent scientific balloon flight opportunities for NASA scientific, technology development, and educational investigations.

Balloons provide low-cost, quick response, near space access for:

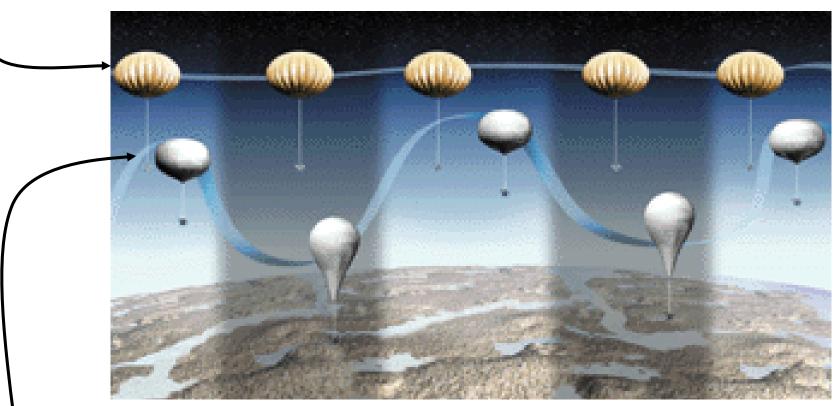
- Conducting cutting-edge research.
- Developing technologies to enable future spacecraft science missions.
- Advancing lighter-than-air platform technologies.
- Providing Calibration and Validation of on-orbit instrumentation.
- Enabling Hands-on Training of the next generation of scientists and engineers.


Super-Pressure Balloon



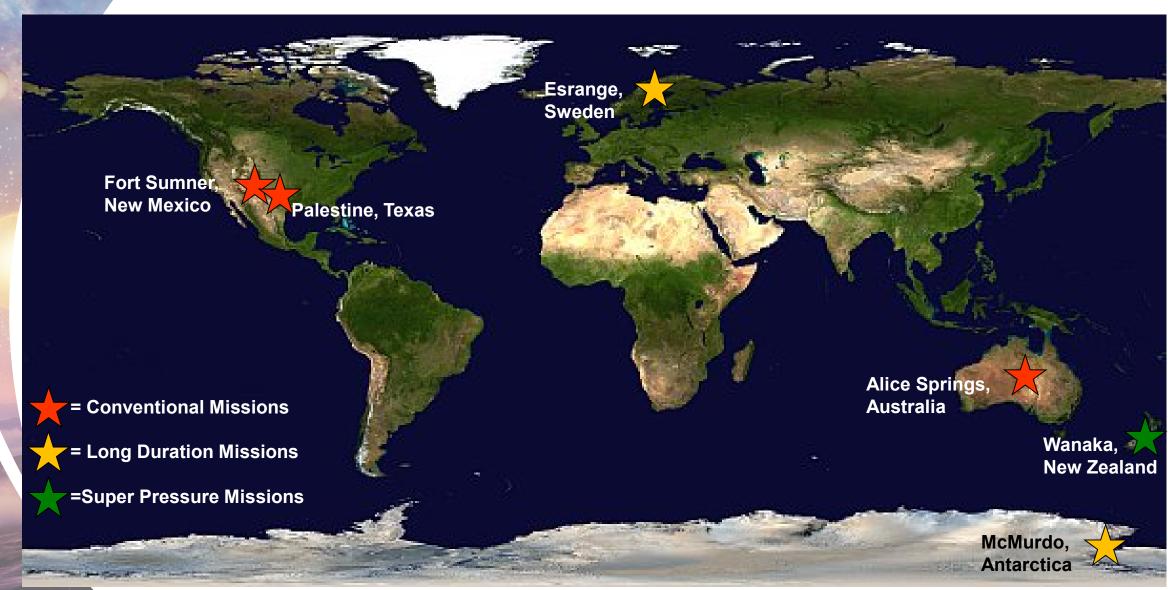
NASA Zero-Pressure Standard Balloons

Balloon Types



Super-pressure balloon (SPB)

Super Pressure Balloon maintains nearly constant volume – under development


- Allows Ultra Long Duration Balloon (ULDB) Flights
- Provides stable altitude Long Duration Balloon (LDB) flights at mid-latitudes

Zero-Pressure (ZP) Balloon changes volume due to radiative input

Used for Conventional Flights and Polar LDB Flights

NASA Launch Locations

NASA Support Systems

Balloon Type	Zero Pressure (ZP)	ZP	Super Pressure (SP)		
Mission Type	Conventional	LDB	ULDB (In development)		
Duration	2 hours to 3 days	4-6 days for Sweden 7-15 for Antarctica up to 55+ days	Up to 100 days 2016 Mid-Latitude Flight = 46 Days		
Science Payload Weight	Up to 2,948 kg (Up to 6,500 lbs)	Up to 2,948 kg (Up to 6,500 lbs)	18.8 MCF* – 907 kg (2,000 lbs) science allocation		
Typical Float Altitude	29.2 to 38.7 km (96 to 127 kft)	36.5 to 38.7 km (120 to 127 kft)	18.8 MCF – up to 34 km (~110 kft)		
Support Package	 Consolidated Instrumentation Package (CIP) Line of Sight (LOS) Up to 12 Mbps direct return 	 Support Instrumentation Package (SIP) Line of Sight (LOS) - Up to 12 Mbps direct return Over The Horizon (OTH) 6 kbps / 92 kbps TDRSS Downlink** 80 kbps Iridium option*** 			
	 Small Launch Package (hand-launch class ballo Stand alone package for small payload sup LOS and OTH TM & Command (Iridium) 25 Up to 12 Mbps LOS option System without batteries ~20 lbs (9 kg) * MCF – Million Cubic Feet **300kbps/1 	port	m – limited support		

Wanaka, New Zealand

Southern Hemisphere Long Duration Balloon (LDB)/ Ultra Long Duration Balloon (ULDB) Campaign

- Established in 2015
- Flight durations 10 to 60 days+
- Launch Operations on Wanaka Airport
- Safety: Active Risk Assessment Required for Mission
- Limited Payload Dimensions due to Leased Hangar Working to Build Larger Building To Accommodate Larger Payloads

Google My Maps

McMurdo, Antarctica

Southern Hemisphere Polar Long Duration Balloon (LDB) Campaign (annual)

- Established in 1989
- Collaboration with National Science Foundation (NSF)
- 2-3 missions supported each campaign
- Flight durations from 7 to 55+ days
- Launch operations at LDB Site on Ross Ice Shelf outside of McMurdo Station
- Recovery coordinated with NSF Winter-over of instrument possible

Outline

Program Overview

Recent COVID-19 impacts

Providing flight opportunities to science

Responding to the December 2020 APAC Recommendations

Balloon Campaign COVID Impacts

Wanaka, **NZ**, 2020

- -02/21/20 COSI science team deployment.
- -03/14/20 BPO decision to cancel the Wanaka 2020 Campaign and redeploy teams.

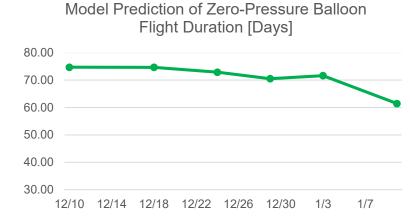
Palestine, TX, 2020

-04/08/20 BPO decision to move the payload (PIPER) from Palestine to the Ft. Sumner Campaign.

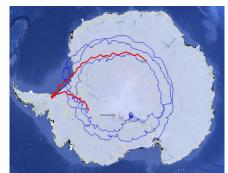
Fort Sumner, NM, 2020

- -For all but one payload (PIPER), the PI have withdrawn from Ft Sumner campaign.
- -07/09/20 BPO decision to cancel the Ft. Sumner campaign (Nevada as the payload recovery side for Ft. Sumner balloon launches was at the peak of their COVID outbreak).

McMurdo, Antarctica, 2020


-06/21/20 NSF informed NASA that due to COVID-19 NSF can not support a 20/21 LDB Antarctica campaign.

Wanaka, NZ, 2021


-02/01/21 BPO decision to cancel the Wanaka 2021 Campaign due to NZ travel restrictions.

GUSTO Suborbital Explorer

- GUSTO, led by PI Chris Walker (University of Arizona), is an Astrophysics Explorer Mission of Opportunity balloon investigation, scheduled for launch from McMurdo, Antarctica in December 2021, on a 75-day mission.
- Plan was to super-pressure balloon (SPB)
 - Qualify the SPB with test launches from Wanaka, NZ in March 2020 and 2021.
 - Launch GUSTO on SPB make the mission more resilient day/night cycles late in the season.
- Due to COVID, the two qualification flights were canceled, so SPB has not been qualified.
- NASA has decided to fly GUSTO from McMurdo in 2021 on a zero-pressure balloon (ZPB).
- The ZPB offers:
 - · Higher lift capacity,
 - Higher flight altitude (39 km vs 33.5 km),
 - Less stringent surface weather conditions for launch operations than SPB, and
 - More launch opportunities.
- GUSTO mission needs to be completed before balloon experiences day/night cycles.
- National Science Foundation (NSF) announced that the 2021/2022 Antarctic field program will again be maintenance-only due to COVID restrictions
 - NASA is determining the impact on GUSTO.

Model Predictions of Expected Flight Duration based on 47 past Antarctica launches. If launched early in the season (nominally opens Dec 1, 3-4 weeks) GUSTO will reach 75-day baseline at >90% and 30-days threshold duration at 99%.

SuperTIGER zero-pressure balloon trajectory in blue (launched 12/8/12 and terminated 55 days later) and extrapolation flight up to 75 days duration in red.

FY20 Balloon Program Manifest

Mission	Discipline	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Fort Sumner, New Mexico	Fall '19												
Toon/JPL-Remote/Bailey/VATech/GLO	Upper Atmosphere	Succe	ess										
Kogut/GSFC/PIPER	IR-Submillimeter	Suc	cess										
Young/SwRI/THAI-SPICE (Hand Launch)	UV/Visible	♦ Su	ccess										
Tang/JPL/RECKTANGLE (Hand Launch)	IR-Submillimeter	♦ S	uccess										
Livesey/JPL/SWITCH (Hand Launch)	IIP/Upper Atmosphere	♦ .5	Successfu	l Ground	Test								
McMurdo, Antarctica	Winter '19												
Rauch/WUSTL/SuperTIGER	Cosmic Ray/Particle			♦ Succe	ess								
Devlin/UPENN/BLASTPOL	IR-Submillimeter			\	Science	Anomal	y						
Salter/CSBF/TRAVALB	Test Flight		Abort	\Diamond \Diamond	Success								
Wanaka, New Zealand	Spring '20	Camp	aign ca	incelle	d by Bi	PO afte	er initi	ated di	ie to C	OVID-	<i>19</i> .		
SPB Test/Boggs/UCSD/COSI	Test Flight/COSI (PB)						♦						
Palestine, Texas	Summer '20	Camp	aign ca	incelle	d by Bi	PO due	to CC	VID-1	9.				
Kogut/GSFC/BOBCAT	IR-Submillimeter									♦			
Kogut/GSFC/PIPER	IR-Submillimeter									♦			
Fort Sumner, New Mexico	Fall '20	Camp	aign ca	incelle	d by Bi	PO due	e to CC	VID-1	9.				
Kogut/GSFC/BOBCAT	IR-Submillimeter											│	
Field/CSBF/LDB Test Flight	Test Flight											│	
Young/SwRI/THAI-SPICE	UV/Visible											(1
Walker/Large Balloon Reflector	IR-Submillimeter												◊
Guzik/LSU/HASP	Student Flight Project												\
Kogut/GSFC/PIPER	IR-Submillimeter												♦
Toon/JPL-Remote/Bailey/VATech/GLO	Upper Atmosphere												.

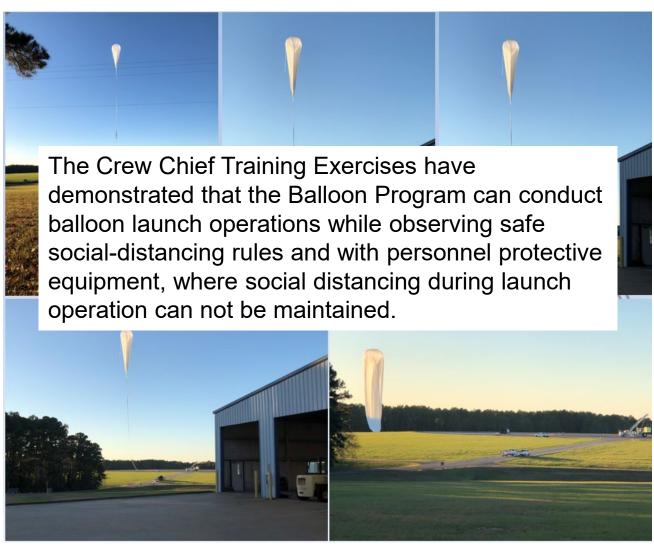
Crew Chief Training Exercises

Crew Chief Training (CCT) Exercises are essentially full launch operations without release of the payload from the launch vehicle. (captive balloon)

Multi Purpose:

- Training of new launch personnel
- Qualification of new crew chiefs
- Investigative

From Nov 2020 – Feb 2021 2 complete exercises plus 1 inflation only.


Crew Chief Training Exercises

Crew Chief Training (CCT) Exercises are essentially full launch operations without release of the payload from the launch vehicle. (captive balloon)

Multi Purpose:

- Training of new launch personnel
- Qualification of new crew chiefs
- Investigative

From Nov 2020 – Feb 2021 2 complete exercises plus 1 inflation only.

FY21 Balloon Program Manifest

1 1											^ /		
Mission	Discipline	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
McMurdo Station, Antarctica	Winter '20	Campa		 		e to COVI							
Roth / BPO / 60 MCF Test Flight	Test Flight			<u> </u>		due to CO							
Salter / CSBF / TRAVAL-B / Millan / DC / BARREL	Test Flight / BARREL (PB)			<u> </u>		SF due to CO							
Jones / PU / SPIDER	UV / Visible	Delayed by NSF due to COVID-19											
Salter / CSBF / TRAVALA	Test Flight	Delayed by NSF due to COVID-19											
Wanaka, New Zealand	Spring '21	Campa	ign canc	elled by	BPO du	e to COVI							
Hall / BPO / SPB Test / Boggs / UCSD / COSI	Test Flight / COSI (PB)						 ♦	Delayed	by BPO d	ue to COI	/ID-19		
Fort Sumner, New Mexico	Spring '21												
Chartier / JHU APL / BBC	Heliophysics (H/L)								<u>()</u>				
Kogut / GSFC / BOBCAT-21A/B	IR-Submillimeter			Delay	ed by PI o	due to COV	TD-19		\Q	\)			
Kogut / GSFC / PIPER-21A	IR-Submillimeter							<u> </u>		[◊			
Mullenax / CSBF / CSBF Test Flight	Test Flight							\	\				
Salter/ CSBF / Test Flight / Jackson / UCSD / ASHI	Test Flight / ASHI (PB)								♦				
Esrange, Sweden – Alternate to Wanaka	Summer '21	Campa	ign canc	elled by	BPO du	e to COVI	ID-19.						
Hall / BPO / SPB Test SN 07 / Sample / MSU / BOOMS	Test Flight / BOOMS (PB)								🔷 Dela	iyed by Bi	O due to	COVID-19)
Roth / BPO / 60 MCF Test	Test Flight								♦ Dela	iyed by Bl	PO due to	COVID-19)
Palestine, Texas	Summer '21	Flights	moved to	o spring	Fort Su	mner Can	npaign.						
Fort Sumner, New Mexico	Fall '21												
Salter / CSBF / CSBF Test Flight	Test Flight											$\perp \otimes \perp$	
Guzik / LSU / HASP	Education Outreach											١ . ١	◊
Stachnik / JPL / JPL-SLS	Upper Atmosphere												
Kogut / GSFC / BOBCAT-21C/D	IR-Submillimeter												◊
Martin / CalTech / FIREBall-2	UV / Visible												\Diamond
Chakrabarti / UMASS / PICTURE-C	UV/Visible												\Diamond
Toon / JPL / JPL-Remote	Upper Atmosphere												\Diamond
Nowicki / LANL / LANL Test Flight	Gamma-Ray (H/L)											\Diamond	<u>'</u>
Kogut / GSFC / PIPER-21B	IR-Submillimeter												\Diamond
Boering / UCB / MATTADOR TF	Upper Atmosphere											$ \rangle$	•
Young / SwRI / THAI-SPICE	UV / Visible												\Diamond
Tang / JPL / WHATSUP	Solar System (H/L)												· 🔷

Rescheduled Flight Opportunities 1/3

FY20 COVID-19 Flight Delays Summary

Primary Mission	Discipline	Campaign Status
Fort Sumner, New Mexico	Fall '19	
Toon/JPL-Remote/Bailey/VATech/GLO	Upper Atmosphere	Flown
Kogut/GSFC/PIPER	IR-Submillimeter	Flown
Young/SwRI/THAI-SPICE (Hand Launch)	UV/Visible	Flown
Tang/JPL/RECKTANGLE (Hand Launch)	IR-Submillimeter	Flown
Livesey/JPL/SWITCH (Hand Launch)	IIP/Upper Atmosphere	Flown
McMurdo, Antarctica	Winter '19	
Rauch/WUSTL/SuperTIGER	Cosmic Ray/Particle	Flown
Devlin/UPENN/BLASTPOL	IR-Submillimeter	Flown
Salter/CSBF/TRAVALB	Test Flight	Flown
Wanaka, New Zealand	Spring '20	
SPB Test/Boggs/UCSD/COSI	Test Flight/COSI (PB)	Not Manifested
Salter/CSBF/TRAVALA	Test Flight	Not Manifested
Palestine, Texas	Summer '20	
Kogut/GSFC/BOBCAT	IR-Submillimeter	FY21 Fall FTS
Kogut/GSFC/PIPER	IR-Submillimeter	FY21 Fall FTS
Fort Sumner, New Mexico	Fall '20	
Kogut/GSFC/BOBCAT-II/III	IR-Submillimeter	FY21 Fall FTS
Salter/CSBF/CSBF Test Flight-I/II	Test Flight	FY21 Spg/F1 FTS
Martin/CalTech/FIREBall-2	UV/Visible	FY21 Fall FTS
Bailey/VATech/GLO	Upper Atmosphere	FY21 Fall FTS
Bloser/LANL/LTT (Hand Launch)	Gamma Ray	FY21 Fall FTS
Chakrabarti/UMASS/PICTURE-C	UV/Visible	FY21 Fall FTS
Kogut/GSFC/PIPER	IR-Submillimeter	FY21 Fall FTS
Young/SwRI/THAI-SPICE	UV/Visible	FY21 Fall FTS
Tang/JPL/WHATSUP (Hand Launch)	Planetary Sciences	FY21 Fall FTS

Piggybacks	Discipline	Campaign Status
McMurdo, Antarctica	Winter '19	
Meshik/WUSTL/BAS	Upper Atmosphere	Flown
Smith/NASA ARC/E-MIST	Space Biology	Flown
Fritts/GATS/PMC Turbo	Upper Atmosphere	Flown
Wanaka, New Zealand	Spring '20	
Boggs/UCSD/COSI	Gamma Ray	Not Manifested
Fort Sumner, New Mexico	Fall '20	
Miller/JHU APL/BAGEL	Gamma Ray	Not Manifested
Zhou/UCLA/BALBOA	Solar and Heliophysics	FY21 Spring FTS
Sample/MSU/BOOMS	Solar and Heliophysics	FY21 Spring FTS
Agee-DeHart/Idoodlelearning.com/CIS	Student Outreach	FY21 Fall FTS
Chakrabarti/UMASS/CoMIC	Ultraviolet and Visible	FY21 Fall FTS
Mendoza-Bárcenas/IPN/EMIDSS	Upper Atmosphere	FY21 Fall FTS
Yoder/WFF/EV13TF	Tech Demo	Not Manifested
Chartier/JHU APL/HFRX	Geospace	Not Manifested
Komjathy/NASA JPL/INMEX	Geophysics - Infrasound	Not Manifested
Esper/NASA GSFC/MAPPER	Planetary	FY21 Fall FTS
Deland/SSAI/MASTAR	Upper Atmosphere	FY21 Fall FTS
Banfield/CU/MSA	Solar System	Not Manifested
Yoder/WFF/SPARROW	Tech Demo	FY21 PSN
Roth/WFF/WALRUSS	Tech Demo	FY21 Fall FTS

Not Manifested

= No rescheduled launch opportunity requested by PI

Rescheduled Flight Opportunities 2/3

Goddard Space Flight Center

FY21 COVID-19 Flight Delays Summary

	Primary Missions	Discipline	Campaign Status	Wallops Flight Facility
	McMurdo Station, Antarctica	Winter '20		
Γ	Roth / BPO / 60 MCF Test Flight	Test Flight	FY22 ANT LDB	
Г	Salter / CSBF / TRAVAL-B / Millan / DC / BARREL	Test Flight / BARREL (PB)	FY22 ANT LDB	
Γ	Jones / PU / SPIDER	UV / Visible	FY23 ANT LDB	
	Salter / CSBF / TRAVALA	Test Flight	FY22 ANT LDB	
	Wanaka, New Zealand	Spring '21		
	Hall / BPO / SPB Test / Boggs / UCSD / COSI	Test Flight / COSI (PB)	FY22 NZ LDB	
	Fort Sumner, New Mexico	Spring '21		
	Chartier / JH APL / BBC	Heliophysics (H/L)	As Scheduled	
	Kogut / GSFC / BOBCAT-21A/B	IR-Submillimeter	FY21 Fall FTS	
	Kogut / GSFC / PIPER-21A	IR-Submillimeter	FY21 Fall FTS	
	Salter / CSBF / CSBF Test Flight	Test Flight	As Scheduled	
	Esrange, Sweden – Alternate to Wanaka	Summer '21		
	Hall / BPO / SPB Test SN 07 / Sample / MSU / BOOMS	Test Flight / BOOMS (PB)	FY22 NZ LDB	
L	Roth / BPO / 60 MCF Test	Test Flight	FY22 ANT LDB	
	Palestine, Texas	Summer '21		
L	Mullenax / CSBF / CSBF Test Flight	Test Flight	As Scheduled	
L	Salter/ CSBF / Test Flight / Jackson / UCSD / ASHI	Test Flight / ASHI (PB)	As Scheduled	
	Fort Sumner, New Mexico	Fall '21		
L	Salter / CSBF / CSBF Test Flight	Test Flight	As Scheduled	
L	Guzik / LSU / HASP	Education Outreach	As Scheduled	
L	Stachnik / JPL / JPL-SLS	Upper Atmosphere	As Scheduled	
L	Kogut / GSFC / BOBCAT-21C/D	IR-Submillimeter	As Scheduled	
L	Martin / CalTech / FIREBall-2	UV / Visible	As Scheduled	
L	Chakrabarti / UMASS / PICTURE-C	UV/Visible	As Scheduled	
L	Toon / JPL / JPL-Remote	Upper Atmosphere	As Scheduled	
L	Nowicki / LANL / LANL Test Flight	Gamma-Ray (H/L)	As Scheduled	
L	Kogut / GSFC / PIPER-21B	IR-Submillimeter	As Scheduled	
L	Boering / UCB / MATTADOR TF	Upper Atmosphere	As Scheduled	
L	Young / SwRI / THAI-SPICE	UV / Visible	As Scheduled	
L	Tang / JPL / WHATSUP	Solar System (H/L)	As Scheduled	

Rescheduled Flight Opportunities 3/3

FY21 COVID-19 Flight Delays Summary - Piggybacks

Goddard Space Flight Center		
Piggyback Mission	Discipline	Campaign Status
McMurdo, Antarctica	Winter '20	
Bowman/SNL/AIUS	Geophysics	Not Manifested
Buckley/WUSTL/APTLite +	Cosmic Ray, Particle	Not Manifested
Millan/DC/BARREL	Cosmic Ray, Particle	FY 22 ANT LDB
Meshik/WUSTL/BAS-M	Upper Atmosphere	Not Manifested
Smith/NASA ARC/E-MIST	Space Biology	FY 22 ANT LDB
Chartier/JHU APL/HFRX	Geospace	FY 22 ANT LDB
Wanaka, New Zealand	Spring '21	
Boggs/UCSD/COSI	Gamma Ray	Not Manifested
Fort Sumner, New Mexico	Spring '21	
Miller/JHU APL/BAGEL	Gamma Ray	Not Manifested
Zhou/UCLA/BALBOA	Solar and Heliophysics	As Scheduled
Sample/MSU/BOOMS	Cosmic Ray, Particle	As Scheduled
Mendoza-Bárcenas/IPN/EMIDSS	Upper Atmosphere	As Scheduled
Yoder/WFF/EV13TF	Tech Demo	Not Manifested
Komjathy/NASA JPL/INMEX	Geophysics - Infrasound	Not Manifested
Banfield/CU/MSA	Solar System	Not Manifested

	Wallops Flight Facility				
Piggyback Mission	Discipline	Campaign Status			
Esrange, Sweden – Alternate to Wanaka	Summer '21				
Fritts/GATS/PMC Turbo	Upper Atmosphere	Not Manifested			
Palestine, Texas	Summer '21				
Jackson/UCSD/ASHI	Solar and Heliophysics	As Scheduled			
McEnery/NASA GSFC/ComPair	Gamma-Ray	Not Manifested			
Hart/UA/IRCSP	Upper Atmosphere	As Scheduled			
Yoder/WFF/SPARROW	Tech Demo	As Scheduled			
Ft. Sumner, New Mexico	Fall '21				
Agee-DeHart/Idoodlelearning.com/CIS	Student Outreach	As Scheduled			
Chakrabarti/UMASS/CoMIC	Ultraviolet and Visible	As Scheduled			
Bailey/VATech/GLO	Upper Atmosphere	As Scheduled			
Bowman/SNL/InfraLite	Geophysics	As Scheduled			
Deland/SSAI/MASTAR	Upper Atmosphere	As Scheduled			
Esper/NASA GSFC/NetSI	Planetary	As Scheduled			
Veach/SwRI/PLEIADES	Upper Atmosphere	As Scheduled			
Roth/WFF/WALRUSS	Tech Demo	As Scheduled			

Not Manifested

No rescheduled launch opportunity requested by PI

Outline

Program Overview

Recent COVID-19 impacts

Providing flight opportunities to science

Responding to the December 2020 APAC Recommendations

Guest-Observer Science

Recommendation 16:

The APAC requests updates on advances in aerostat technologies and other long-duration balloon projects that might enable general guest-observer science using large aperture telescopes with arcsecond pointing precisions across the electromagnetic spectrum.

Response:

Guest-observer science can be supported by LDB (ZPB) or ULDB (SPB) payloads, spending sufficient time aloft to complete the primary and guest observer (GO) science. A funded investigations that have electromagnetic detectors and arcsecond pointing is:

- ASTHROS, which has prevision host a small GO detector (IR);

Providing GO investigation opportunities on a balloon payload is at discretion of the PI. These GO could follow after the completion of the primary science mission. The selection of the GO science is be left to the PI. Funding for such GO investigations could be part of the original PI proposal or a separate APRA proposal.

Piggyback Payloads

Recommendation 17:

The APAC recommends that the Astrophysics Division consider adding a formal process for proposing piggyback payloads, potentially across disciplines.

- Piggyback payloads are typically small, innovative instruments (average 12 kg).
- They do not require all of the support a full scientific instrument payload may need.
- They can be added to an existing flight with little added weight or power requirements.

Response:

Presently, piggyback are accommodated (~15/year) either by primary science missions or BPO test balloon flights, by submitting a Balloon Flight Support Application¹⁾ to BPO/CSBF.

In Astrophysics, piggyback payloads can already be proposed through the ROSES APRA element either as a standalone detector development/science investigation or as part of technology maturation for full mission (suborbital or orbital). Similarly, HPD and ESD allows piggyback investigations.

¹⁾ https://www.csbf.nasa.gov/docs.html

Piggybacks for SMD investigations

Piggybacks	Discipline
McMurdo, Antarctica	Winter '19
Meshik/WUSTL/BAS	Upper Atmosphere
Smith/NASA ARC/E-MIST	Space Biology
Fritts/GATS/PMC Turbo	Upper Atmosphere
Wanaka, New Zealand	Spring '20
Boggs/UCSD/COSI	Gamma Ray
Fort Sumner, New Mexico	Fall '20
Miller/JHU APL/BAGEL	Gamma Ray
Zhou/UCLA/BALBOA	Solar and Heliophysics
Sample/MSU/BOOMS	Cosmic Ray, Particle
Agee-DeHart/Idoodlelearning.com/CIS	Student Outreach
Chakrabarti/UMASS/CoMIC	Ultraviolet and Visible
Mendoza-Bárcenas/IPN/EMIDSS	Upper Atmosphere
Yoder/WFF/EV13TF	Tech Demo
Chartier/JHU APL/HFRX	Geospace
Komjathy/NASA JPL/INMEX	Geophysics - Infrasound
Esper/NASA GSFC/MAPPER	Planetary
Deland/SSAI/MASTAR	Upper Atmosphere
Banfield/CU/MSA	Solar System
Yoder/WFF/SPARROW	Tech Demo
Roth/WFF/WALRUSS	Tech Demo

	Piggyback Mission	Discipline
	McMurdo, Antarctica	Winter '20
	Bowman/SNL/AIUS	Geophysics
+	Buckley/WUSTL/APTLite +	Cosmic Ray, Particle
'	Millan/DC/BARREL	Cosmic Ray, Particle
	Meshik/WUSTL/BAS-M	Upper Atmosphere
+	Smith/NASA ARC/E-MIST	Space Biology
	Chartier/JHU APL/HFRX	Geospace
	Wanaka, New Zealand	Spring '21
+	Boggs/UCSD/COSI	Gamma Ray
	Fort Sumner, New Mexico	Spring '21
	Miller/JHU APL/BAGEL	Gamma Ray
+	Zhou/UCLA/BALBOA	Solar and Heliophysics
+	Sample/MSU/BOOMS	Cosmic Ray, Particle
·	Mendoza-Bárcenas/IPN/EMIDSS	Upper Atmosphere
	Yoder/WFF/EV13TF	Tech Demo
	Komjathy/NASA JPL/INMEX	Geophysics - Infrasound
	Banfield/CU/MSA	Solar System

Piggyback Mission	Discipline
Esrange, Sweden - Alternate to Wanaka	Summer '21
Fritts/GATS/PMC Turbo	Upper Atmosphere
Palestine, Texas	Summer '21
Jackson/UCSD/ASHI	Solar and Heliophysics
McEnery/NASA GSFC/ComPair	Gamma-Ray
Hart/UA/IRCSP	Upper Atmosphere
Yoder/WFF/SPARROW	Tech Demo
Ft. Sumner, New Mexico	Fall '21
Agee-DeHart/Idoodlelearning.com/CIS	Student Outreach
Chakrabarti/UMASS/CoMIC	Ultraviolet and Visible
Bailey/VATech/GLO	Upper Atmosphere
Bowman/SNL/InfraLite	Geophysics
Deland/SSAI/MASTAR	Upper Atmosphere
Esper/NASA GSFC/NetSI	Planetary
Veach/SwRI/PLEIADES	Upper Atmosphere
Roth/WFF/WALRUSS	Tech Demo

Piggyback related to SMD funded investigation

Piggybacks are an important part of the BPO's launch opportunities and provide a low-threshold access to the program, particularly for university-funded investigations. Another class has SMD mission related technology development/science investigations.

The ROSES balloon section could be more explicit about piggyback opportunities.

Other Balloon Program Technologies

Wallops Arc Second Pointer

High Data Rate Data Link

Wallop Arc Second Pointer (WASP)

Performance Stats

Time of Float Before First Pointing Mode: ~3

hour

Pointing Accuracy: Sub-arc-second Target Lock Time: > 6 hours

Slew Rate:

 Target to Target Maneuvers: 0.1-0.2 °/sec. Rate limit is configurable

 Target Tracking of Non-Inertial Targets:100°/hour

Payload Stats

WASP Components Weight: 385lb

WASP Outer Gimbal Frame (If Required): 214lb

WASP Gondola Weight: 641lb

Light Weight WASP Gondola: Under Development ~47

% Mass reduction

Elevation Range: ~65°

Star Tracker:

Field Of View: 5.0 x 3.7°

Sun Occultation of 40° with ability to sense

• > 5 stars in the daytime

• > 7 stars at night

Telemetry Stats

Line of Sight (LOS):

- Low Rate science interface: 255 byte packet/30 seconds
- Science Stack Packet (1/30 seconds

Tracking and Data Relay Satellite System (TDRSS):

- Backup method: High Rate port (6kbps to 75kbps)
- Low Rate science interface (255 byte packet/30 seconds)
- Science Stack Packet (1/30 seconds)

Iridium:

- Short Burst Data (SBD)
 - Low Rate science interface (255 byte packet/1-15mintues)
 - Science Stack Packet (1/1-15 minutes)
- Pilot: Bi-directional Ethernet data (up to 75kbps)

Ethernet-via-Telemetry (EVTM):

- Must allow for variable rates from 100kbps up to 9.9Mbps
 - LOS (up to 9.9Mbps)
 - TDRSS (100kbps to ~820kbps)
 - Rates dependent on link obtained through space network

Command Uplink:

- Standard CSBF 2-byte and extended command formats
 - LOS
 - Iridium SBD available throughout flight
 - TDRSS available on an as needed basis
- Iridium Pilot Bi-directional Ethernet

Science Stack:

- (32) Analog inputs (0-5V) 12-bit resolution
- (16) Digital inputs (0,5V)
- (28) Open collector outputs

** WASP is fully configurable to meet a variety of science requirements.

Higher Data Rate Telemetry

Quasonix Ethernet Enabled EVTM transmitter

- Network Jack interface
- Data over Multicast (UPD) packets
- LDB flights require Managed network switch with separate addressing for TDRSS and LOS Data
- LOS data rate up to 12mb
- TDRSS data rate up to 1mb
- Still undergoing testing

This technology is currently under development and is not fully flight-qualified for Science.

Aerostat Technologies

- Raven Aerostar Thunderhead System
- Tethered Aerostats summary by P. Gorham

Thunderhead

Commercially available launch system small scale super-pressure balloons

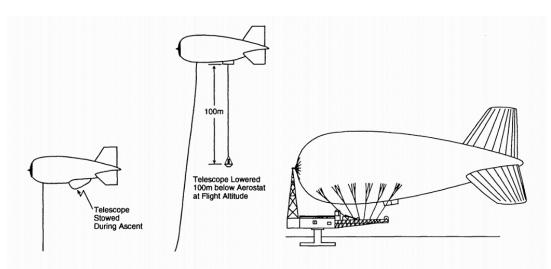
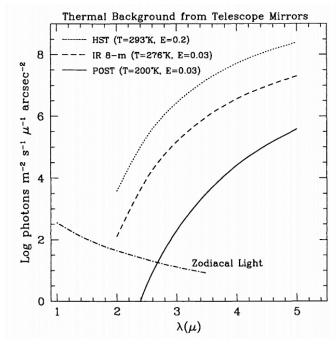
- 14 28 km super-pressure balloons with altitude control for navigation.
- provided power (average per day ~100W).
- ~55 kg science payload.
- high-speed line-of-sight data down link, low-speed Iridium over-the-horizon Telemetry.

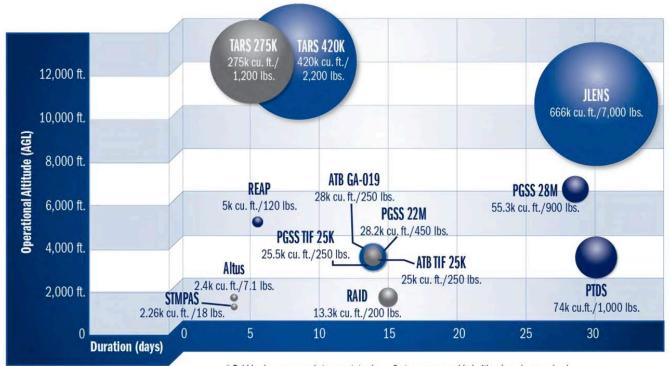
Balloon Roadmap PAG on tethered aerostats

Tethered aerostats were identified for two applications of interest: both are most appropriate to polar missions/deployments

- 1. A high-altitude platform supporting a large telescope that could remain in the polar tropopause at about 8 km altitude would have ambient 220K optics, exceptional transmission, and diffraction-limited seeing in the near IR
 - Bely et al. "POST: Polar Stratospheric Telescope", Space Sci. Rev., 1995
- 2. A moderate-to-high altitude (3-8km) polar platform with <u>a</u> ice-sheet-viewing radio antenna array could improve ultra-high energy neutrino sensitivity by 1-2 orders of magnitude over existing missions such as ANITA & PUEO
 - D. Besson et al., "Tethered balloons for radio detection of ultra high energy cosmic neutrinos in Antarctica," Nucl. Inst. Meth. 662, S50, 2012.

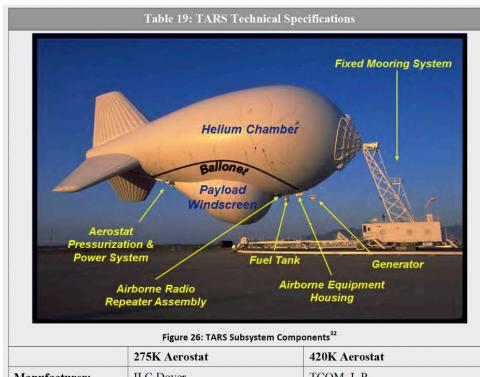
Polar Stratospheric Telescope (1995)


Fig. 2. Schematic view of the telescope and aerostat. The telescope is stowed inside the aerostat during ascent and lowered beneath the aerostat at flight altitude. The aerostat is shown on its mooring station at right.

- Bely et al. Space Sci. Rev., 1995, diffraction-limited 6m sparse aperture, 1300 kg payload. Could be possible currently with high-end military systems.
- Requires pointing control to about 10 milliarcseconds, with a disturbance environment that is relatively benign but likely harder than in low-earth orbit

Tethered US Military Aerostats



* Bubble size corresponds to aerostat volume. System name provided with volume/max payload.

- Procurement costs for the highend systems (eg. TARS & JLENS) are of order \$20M
- These systems are (currently)
 not commercially available, but
 represent the capabilities
 possible within the field
- Would likely require establishing NASA agreement with vendor to allow non-military use

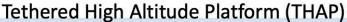
High-end Example: USAF Tethered Aerostat Radar System (TARS)

	275K Aerostat	420K Aerostat	
Manufacturer:	ILC Dover	TCOM, L.P.	
Length:	186 ft.	208.5 ft.	
Diameter:	62.5 ft.	69.5 ft.	
Volume:	275,000 cu. ft.	420,000 cu. ft.	
Max Payload:	1,200 lbs.	2,200 lbs.	
Payload Type:	L-88A Radar	L-88(V)3 Radar	

Duration: 5–7 days

Flight Ceiling: 25,000 ft., typical = 12,000 ft. MSL

Crew: minimum 6 for winch truck system or minimum 5 for fixed mooring system


- US Air Force radar platform developed primarily for narcotics traffic interdiction in border areas
- 2200 lbs (1000kg) to typically 12-15,000 ft (4.57km)
- Fuel for 6 days, crew of ~6 for operations
- Lockheed Martin shows this as an available product but is unresponsive to queries (applications are all strategic)

Commercial tethered aerostat offerings

- TARS & JLENS vendors would not quote their systems directly (but public records of procurements indicate \$10-20M costs)
 - There are no current US-based commercial offerings of the largest, highend aerostats, for payloads of 500 kg or more, altitudes to 5 km
- For smaller systems, <1 km altitude, 50 kg, there are several US commercial vendors, but the PAG did not identify any science customers for small payloads at relatively low altitude
- One international vendor, ATLAS-LTA has impressive capabilities, provided feasibility and ROM costs for South Pole deployment
 - ATLAS-LTA "based" in Israel, with associations and possibly facilities in Russia

ATLAS Lighter-Than-Air

The Tethered Aerostats' Properties by Size/Volume			
Parameter/Class	Low Volume TA	Medium volume TA	Large Volume TA
Volume, m³	100 – 1 000	1 000 – 4 000	4 000 – 20 000
Length, m	12 – 27	27 - 40	40 - 73
Operational altitude, m	up to 1 000	up to 3 000	up to 5 000
Flight endurance, days	up to 15	up to 30	up to 45
Payload, kg	up to 100	up to 500	up to 3 000
Max. operational wind speed, m/s	25	35	45
Power supply, kW	up to 3	up to 25	up to 50

- Two classes of offering:
- 1. Tethered high-altitude platform
 - 300 kg to 11km, <u>50-100 day</u> dwell time between service
 - Quoted ROM for South Pole: \$5M
- 2. Lower-altitude tethered aerostats
 - Medium volume: 500 kg to 3km, <u>30 day</u> service period, <u>ROM costs</u> \$4.5M
 - Large volume: 3000 kg to 5 km, <u>50 day</u> service cycle, <u>ROM costs up to \$18M</u>
- Since these are almost always custom one-offs, builds could be optimized for a NASA science application

Acronym List

APAC Astrophysics Advisory Committee

APRA Astrophysics Research and Analysis

BPO Balloon Program Office at WFF

CSBF Columbia Scientific Balloon Facility in Palestine, TX

ESD Earth Science Division

GSFC Goddard Space Flight Center

HPD Heliophysics Division LDB Long-Duration Balloon

MCF Million Cubic Foot

MCM McMurdo Station, Antarctica

ROSES Research Opportunities in Space and Earth Science

SMD Science Mission Directorate

SPB Super-Pressure Balloon

ULDB Ultra Long-Duration Balloon

WFF Wallops Flight Facility
ZPB Zero-Pressure Balloon