National Aeronautics and Space Administration

ASTROPHYSICS

NASA Astrophysics Research and Analysis Update

APAC Meeting Washington, DC July 24, 2018

Stefan Immler

Lead for Astrophysics R&A Astrophysics Division Science Mission Directorate

Astrophysics Research and Analysis (R&A) Elements

Supporting Research and Technology

- Astrophysics Research & Analysis (APRA)
- Strategic Astrophysics Technology (SAT)
- Astrophysics Theory Program (ATP)
- Theoretical and Computational Astrophysics Networks (TCAN)
- Exoplanet Research Program (XRP)
- Roman Technology Fellowships (RTF)

Data Analysis

- Astrophysics Data Analysis (ADAP)
- GO/GI programs in ROSES for:
 - Fermi
 - Kepler/K2
 - Swift
 - NuSTAR
 - TESS

Mission Science and Instrumentation

- SOFIA next-generation instrumentation
- Sounding rocket, balloon, cubesat, and ISS payloads through APRA
- XARM Participating Scientists

Separately Solicited

- GO/GI/Archive/Theory programs for:
 - Chandra
 - Hubble
 - SOFIA
 - Spitzer
 - Webb
- Postdoctoral Fellowships (Einstein, Hubble, Sagan)
- Graduate Student Fellowships (NESSF)

R&A News and Selections

R&A in 2018/2019

- New ROSES element for LISA Preparatory Science (LPS)
 - Proposals due 6/14/18, 30 proposals received
- New ROSES element for Astrophysics Science SmallSat Studies
 - Proposals due 7/13/18, 43 proposals received
- Next Astrophysics Theory Program (ATP) solicitation in 2019
 - ATP solicitations are in alternate years
- ROSES element for TESS GI program
 - Cycle 1 closed 3/22/18, 33 proposals received
 - Cycle 2 proposals due 10/3/18 (though ARK/RPS)
- New ROSES element for NICER GO program is planned
 - After NICER completes prime mission this summer
- Continue best practices in managing our R&A programs, reviews, and awards, including:
 - Actively taking steps to advance diversity, inclusion, and equal opportunity in the NASA workforce and among NASA grantee institutions
 - Created a Code of Conduct for peer review Panelists and Chairs which is being used in all reviews

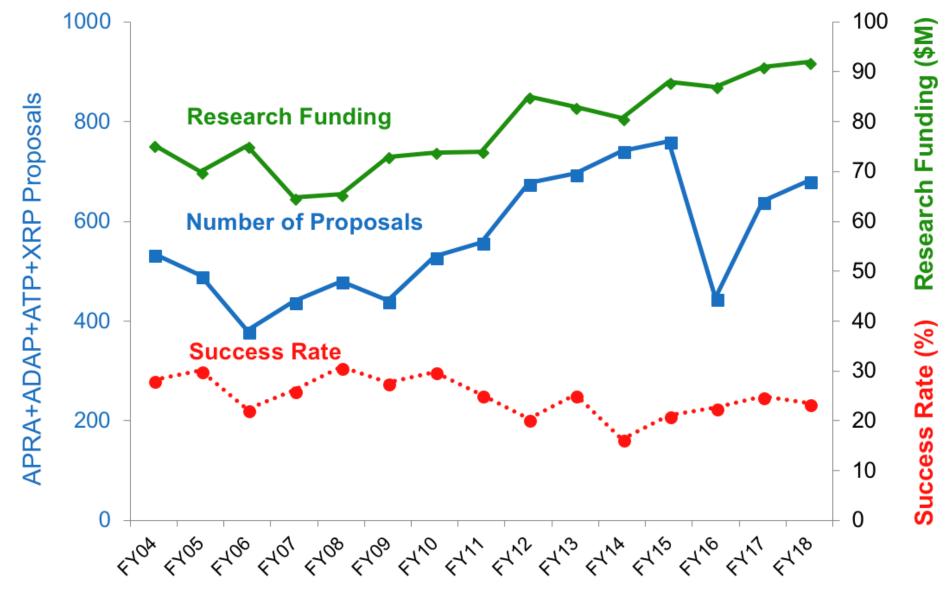
ROSES-2018 Astrophysics Elements

	Program Element	NOI due	Proposals due	Program Officer	Comments
D.1	Astrophysics Overview	N/A	N/A		
D.2	ADAP	3/28/18	5/17/18	Doug Hudgins	
D.3	APRA	1/24/19	03/21/19	Mike Garcia	mandatory NOIs
D.4	ATP	N/A	N/A	Keith McGregor	solicited in ROSES-2019
D.5	Swift Cycle 15	N/A	9/27/18	Martin Still	
D.6	Fermi Cycle 12	N/A	02/20/19	Stefan Immler	
D.7	K2 Cycle 7	N/A	TBD	Mario Perez	
D.8	SAT	1/24/19	3/21/19	Mario Perez	mandatory NOIs
D.9	RTF	see D.3	see D.3	Mario Perez	
D.10	NuSTAR Cycle 5	N/A	1/16/19	Bill Latter	
D.11	TESS Cycle 2	N/A	10/03/18	Martin Still	
D.12	NICER Cycle 1	N/A	TBD	Rita Sambruna	NEW!
D.13	LISA Preparatory Science	3/19/18	6/14/18	Rita Sambruna	NEW!
D.14	SOFIA Next Gen. Instr.	6/1/18	8/1/18	Kartik Sheth	
D.15	SmallSat Studies	N/A	7/13/18	Mike Garcia	NEW!
E.3	Exoplanet Research	3/29/18	5/30/18	Martin Still	
E.4	Habitable Worlds	11/15/19	1/17/19	Martin Still	

Proposal Status Update

Status: July 24, 2018

PHYSICS			Average 114 (44 – 175 c		O Selection I A Selection I	
Solicitation	Proposal Due Date	Notify Date	Days since received	Number received	Number selected	% selected
Roman Tech Fellowship	Mar 17, 2017	Sep 8, 2017	175	12	2	17%
SAT (Technology)	Mar 17, 2017	Sep 8, 2017	175	30	9	30%
APRA (Basic Research)	Mar 17, 2017	Sep 8, 2017	175	141	53	38%
Hubble GO – Cycle 25	Apr 7, 2017	June 26, 2017	80	971	271	28%
ADAP (Data Analysis)	May 16, 2017	Sep 11, 2017	118	264	35	13%
Exoplanet Research	May 25, 2017	Oct 8, 2017	136	50	9	18%
SOFIA GI – Cycle 6	June 30, 2017	Nov 7, 2017	130	198	104	53%
Astrophysics Theory	July 27, 2017	Dec 22, 2017	148	216	53	25%
Webb Early Release Science	Aug 18, 2017	Nov 13, 2017	87	106	13	12%
Swift GI – Cycle 14	Sep 28, 2017	Jan 13, 2018	140	146	30	21%
TESS – Cycle 1	Oct 6, 2017	Feb 3, 2018	132	143	38	27%
K2 – Cycle 6 (Phase 2)	Apr 19, 2018	June 25, 2018	67	41	23	56%
NESSF-18	Feb 1, 2018	May 15, 2018	103	176	9	5%
Chandra GO – Cycle 20	Mar 16, 2018	July 16, 2018	122	526	156	24%
XARM Participating Scientist	Dec 13, 2017	Feb 21, 2018	64	39	5	13%
NuSTAR – Cycle 4	Jan 19, 2018	April 17, 2018	88	196	83	42%
TCAN	Jan 26, 2018	June 21, 2018	146	32	3	9%
Segmented Telescope Design	Feb 1, 2018	Mar 16, 2018	44	5	2	40%
Fermi GI – Cycle 11	Feb 23, 2018	May 26, 2018	92	138	42	30%
Spitzer GI – Cycle 14	Mar 23, 2018	May 29, 2018	67	116	50	43%

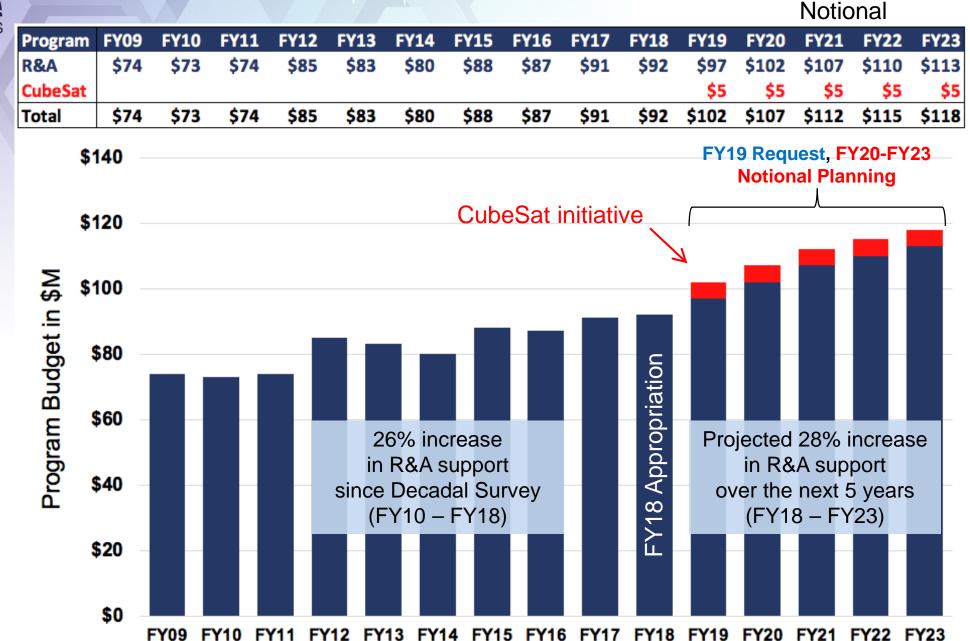

Theoretical and Computational Astrophysics Networks (TCAN)

- TCAN supports coordinated efforts in fundamental theory and computational techniques.
- TCAN aims to unite researchers in collaborative networks that cross institutional and geographical divides.
- Last call for proposals was in 2012. Issued a call for proposals for TCAN in ROSES-2017. \$1.5M allocation.
- Proposals were due on January 25, 2018, selections made on June 19, 2018,
- 32 proposals received, 3 proposals selected, selection rate 9%.

Title	Nodes	Project Description
	Univ. CA, Berkeley	State of the art MHD simulations of the
Modeling Polarized Galactic Foregrounds for Cosmic Microwave	Princeton Univ.	turbulent, dusty interstellar medium to model
Background Missions	Univ. CA, San Diego	contamination of next-generation CMB
Ū	Univ. Wisconsin	observations by galactic foreground emission
Origin of the Giant Planet Dichotomy:	Univ. Colorado	3D hydrodynamical modeling of the accretion
Multi-Scale Modeling of Planetary	Univ. Arizona	of material from a protoplanetary disk by a rock- ice core to study the formation of extrasolar
Envelope Accretion	UNLV	mini-Neptunes and gas giants
Advancing Computational Methods	RIT	Multi-code, general relativistic MHD simulations
to Understand the Dynamics of	NASA/GSFC	of binary neutron star mergers, from the
Ejection, Accretion, Winds and jets in	Johns Hopkins Univ.	inspiral before coalescence to the formation of
Neutron Star Mergers	West Virginia Univ.	a merged remnant just after

Proposal Pressure

ASTROPHYSICS


Year of funding start

R&A Budget

Growth in R&A Funding (\$M)

9

Internal Scientist Funding Model

Internal Scientist Funding Model (I)

Selected in FY18

Center/Package	\$/yr	Period of Performance	ISFM Package Summary
GSFC			
X-ray mirrors	2.4 M	Extends FY20	Develop X-ray mirror technologies to surpass Chandra by orders of magnitude
X-ray calorimeters	0.9 M	Extends FY18-FY20	Transition-edge sensors and magnetically coupled microcalorimeters for future missions
Gravitational waves	0.3 M	New FY18-FY20	Lay the groundwork for US LISA science.
SEEC Exoplanets	0.1 M	New FY18-FY20	Creation of a community-coordinated modeling database and analysis portal.
MSFC			
Advanced X-ray optics	1.9 M	Extends FY18-FY20	Provide unique test facilities support for both internal and external X-ray optics systems
Precision thermal control	1.2 M	Extends FY20	Develop, demonstrate and mature a thermally stable telescope towards TRL6
ARC			
Coronagraphy	0.5 M	New FY18	Evolved Multi-Star Wavefront Control (MSWC) algorithm tuned for WFIRST
Speckle	0.4 M	Extends FY18	High-resolution imaging of exoplanet candidates

Internal Scientist Funding Model (II)

Selected for FY19

Center/Package	\$/yr	Period of Performance	ISFM Package Summary
GSFC			
Exoplanet spectroscopy technologies	1.68 M; 2.32 M; 1.47 M	FY19-FY21	Development of spectroscopic technologies to enable efficient & broadband characterization of imaged exoplanets
Time-domain multi-messenger astronomy	0.55 M; 0.55 M; 0.63 M	FY19-FY21	Creation of a coordination hub; expansion of GCN inputs; multi-database searches; develop system for joint localization with gamma-ray detectors
MSFC			
Hybrid X-ray optics	0.41 M; 0.41 M	Augments FY18-FY20	Development of ultra light-weight, replicated optics and ultra-thin substrate using additive manufacturing
ARC			
Laboratory astrophysics: PAH spectral database	TBD (potential cost sharing with PSD)	FY19-FY21	To support long-term Ames' PAH database; increase its contents and impacts; to continue make available to the community all needed analysis tools

- All ISFM packages were peer reviewed.
- Three new ISFM work packages selected for start in FY19.
- Would have been submitted in 10 individual APRA/ADAP/SAT proposals.
- One ISFM is cross-division and pending review.

R&A Code of Conduct

R&A Code of Conduct

R&A Code of Conduct for Panelists

NASA strives for an inclusive and professional environment for all participants in its activities. As a panel member, **we expect you to:**

- 1. Be prepared and contribute to the panel review
- 2. Evaluate the merit of the proposals and the strength of the proposing team not the people as individuals.
- 3. Evaluate expertise and not "experience"
- 4. Be an active participant in the discussions
- 5. Not interrupt others or talk over others
- 6. Keep comments succinct and to the point and thus give everyone the opportunity to contribute to the discussion.
- 7. Be mindful of bias in all contexts
- 8. Step in to address abusive or bullying behavior
- 9. Be respectful of all regardless of differences (professional or otherwise)
- 10. Actively help create an environment free of harassment

At any time, feel free to talk to a NASA panel monitor if you have any concerns.

R&A Code of Conduct for Chairs

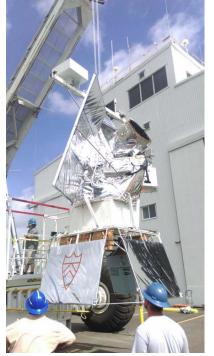
In addition to the code of conduct for panelists, as chair we expect you to:

- 1. Lead the panel by example in creating an environment for free and professional discussion.
- 2. Lead the panel in an inclusive and welcoming way and step in to address any abusive, bullying or unprofessional behavior
- 3. Proactively solicit input from each panel member in the discussion of each proposal; ensure that the discussion is <u>not</u> dominated by a few reviewers
- 4. Proactively encourage participation of reviewers who may be less experienced at reviews
- 5. Keep the discussion moving and end on time to allow for sufficient time and discussion for all the proposals in the panel
- 6. Keep the discussion focused on the strengths and weaknesses of the proposal, and not on the individuals or other tangential topics

At any time, feel free to talk to a NASA panel monitor if you have any concerns.

- APD has developed R&A Code of Conduct.
 Starting in May, the Code of Conduct is
- presented during the Opening Plenary
 Sessions and poster boards are
 prominently displayed at all peer reviews.

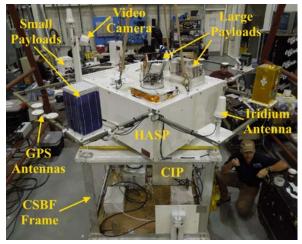
R&A Suborbital Programs 1) Balloons



Balloon Program FY2018 Manifest

Dringing Linuagticator (DI)											
Principal Investigator (PI) / Institution / Instrument	Discipline	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCI
McMurdo, Antarctica	Winter 17										
Binns / WUSTL / SuperTIGER	Cosmic Ray/Particle		\Rightarrow	MAN	IFEST	red fy	¥19				
Esrange, Sweden	Summer 18										
Clem / UDel / AESOP-lite	Heliophysics					\diamond	Laun	ched			
Wu / NCAR / HIWIND	Upper Atmosphere						\diamond	Laun	ched		
Fritts / GATS / PMC-Turbo	Heliophysics								In Flig	ght	
Palestine, Texas	Summer 18										
Jones / Princeton / SuperBIT	IR-Submillimeter						♦	Laun	ched		
Kogut / GSFC / PIPER	IR-Submillimeter						\diamond	Canc	elled		
Bloser / UNH / ASCOT	Gamma Ray							♦	Launo	che d	
Kogut / GSFC / PIPER	IR-Submillimeter						\diamond	Canc	elled		
Fort Sumner, New Mexico	Fall 18										
Fischer / GSFC / Big 60 Qual	Test Flight								\diamond		
Moore / GSFC / USIP	Student Flight Project								\diamond		
Fischer / GSFC / Big 60 Qual	Test Flight								\diamond		
Stuchlik / GSFC / SIFT	Test Flight								\diamond		
Guzik / LSU / HASP	Student Flight Project								¢		
Martin / Caltech / FIREBALL	UV / Visible									\diamond	
Toon / JPL / Remote	Upper Atmosphere									\diamond	
Chakrabarti / UMass / PICTURE-C	UV / Visible							Canc	elled	\diamond	
Kogut / GSFC / PIPER	IR-Submillimeter									\diamond	
Kogut / GSFC / BOBCAT	IR-Submillimeter									\diamond	

ASCOT balloon payload



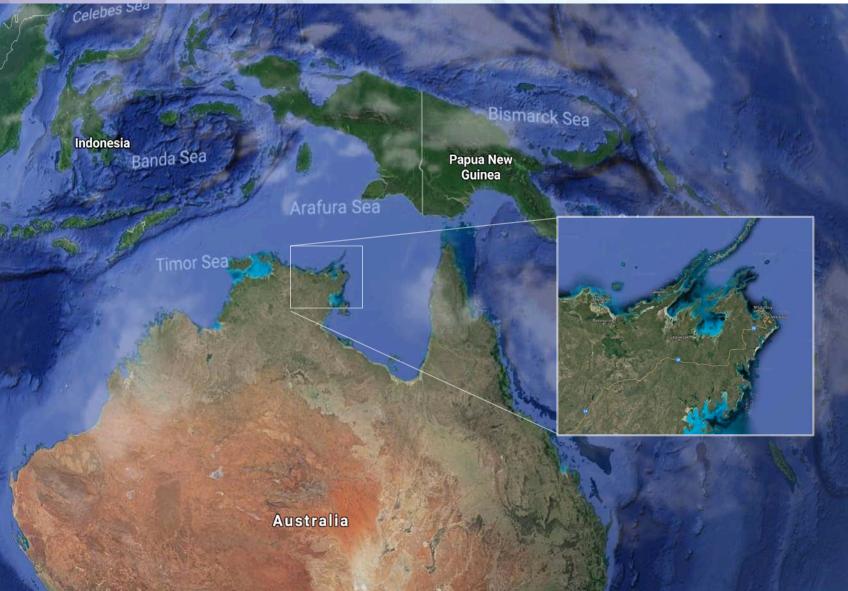
Balloon Program FY2019 Manifest

Admontholog													
Principal Investigator (PI) / Institution / Instrument	Discipline	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
McMurdo, Antarctica	Winter 18												
Binns / WUSTL / SuperTIGER	Cosmic Ray/Particle			\diamond									
Krawczynski / WUSTL / X-Calibur	Gamma Ray			\diamond									
Devlin / Univ Penn / BLAST-TNG	IR-Submillimeter			\diamond									
Salter / CSBF / GUSTO Pathfinder	Test Flight			\diamond									
Wanka, New Zealand	Spring 19												
Fairbrother / WFF / SPB	Test Flight						\diamond						
Palestine, Texas	Summer 19												
Jones / Princeton / SuperBIT	IR-Submillimeter									\diamond			
Kogut / GSFC / PIPER	IR-Submillimeter									\diamond			
Chakrabarti / UMass / PICTURE-C	UV / Visible									\diamond			
Kogut / GSFC / BOBCAT	IR-Submillimeter									\diamond			
Kogut / GSFC / PIPER	IR-Submillimeter									\diamond			
Fort Sumner, New Mexico	Fall 19												
Fischer / GSFC / Big 60 Qual	Test Flight											\diamond	
Gopalswamy / GSFC / BITSE	Solar and Heliophysics											\diamond	
Bailey / VaTech / GLO	Upper Atmosphere											\diamond	
Young / SwRI / THAI-SPICE	UV / Visible											\diamond	
Guzik / LSU / HASP	Student Flight Project											0	
	IP / Unner Atmosphere												
Martin / Caltech / FIREBALL	UV / Visible												\diamond
Toon / JPL / Remote	Upper Atmosphere												\diamond
Chakrabarti / UMass / PICTURE-C	UV / Visible												\diamond
Kogut / GSFC / PIPER	IR-Submillimeter												\diamond
Kogut / GSFC / BOBCAT	IR-Submillimeter												\diamond

X-Calibur integration test @ WFF, March 1

HASP balloon payload

R&A Suborbital Programs 2) Sounding Rockets


APD Sounding Rocket Launch Manifest

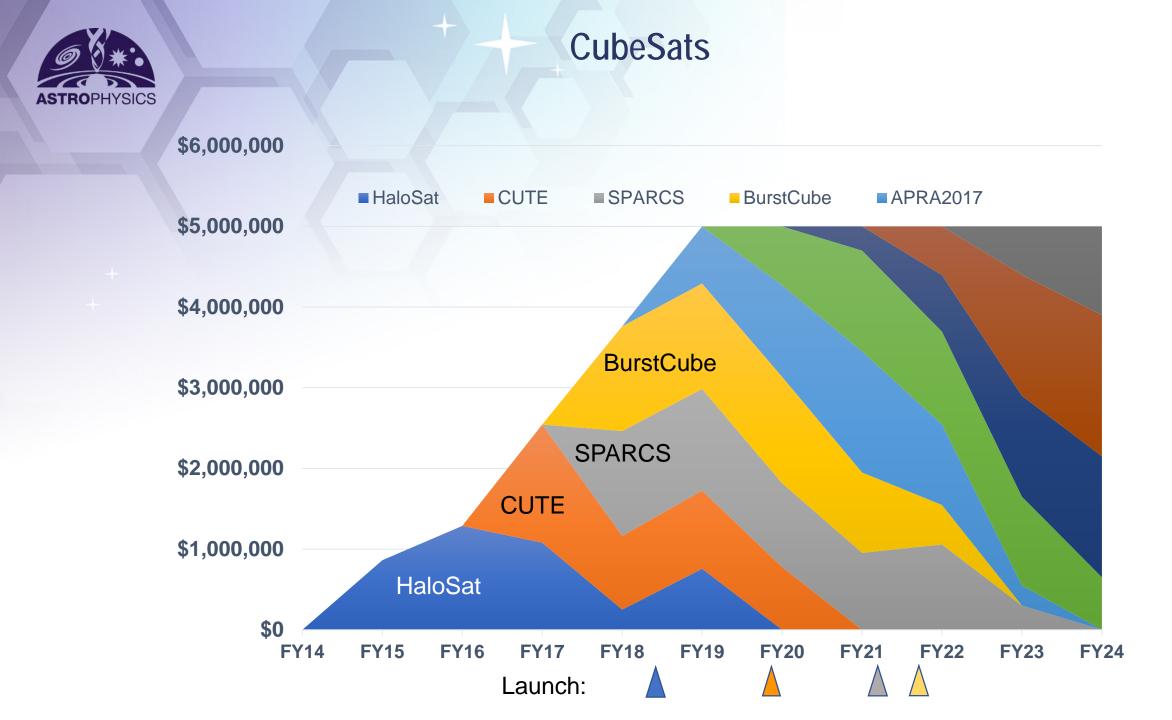
PI	PROJECT	RANGE	DATE	DISCIPLINE
FRANCE	CHESS	WSMR	2017-06-27	UV/OPTICAL
GREEN	DEUCE	WSMR	2017-10-30	UV/OPTICAL
GALEAZZI	DXL	PFRR	2018-01-19	HIGH ENERGY
MCENTAFFER	WRX-R	KWAJ	2018-04-04	HIGH ENERGY
FRANCE	CHESS	KWAJ	2018-04-16	UV/OPTICAL
FIGUEROA	MICRO-X	WSMR	2018-07-22	HIGH ENERGY
GREEN	DEUCE	WSMR	2018-12-03	UV/OPTICAL
BOCK	CIBER-2	WSMR	2019-01-01	UV/OPTICAL
FRANCE	SISTINE	WSMR	2019-06-01	UV/OPTICAL
MCCANDLISS	FORTIS	WSMR	2019-06-11	UV/OPTICAL
NUTH	DUST	WSMR	2019-11-01	UV/OPTICAL
FRANCE	SISTINE	AUS	2020-04-01	UV/OPTICAL
MCENTAFFER	WRX-R	AUS	2020-04-01	HIGH ENERGY
MCCAMMON	XQC	AUS	2020-04-01	HIGH ENERGY
GREEN	DEUCE	AUS	2020-04-01	UV/OPTICAL

Australia Site for Astrophysics April/May 2020 Launches

Sounding Rocket Program Office (SRPO) expects that the commercial Equatorial Launch Australia (ELA) site will available starting in April – May 2020. Science teams that can see their targets in a narrow 2 – 3 week window:

MW Center:	McCammon
NGC796:	McCandliss
A Cen B:	France, Green
Vela SNR:	McEntaffler

SRPO anticipates to have Australia launches every 1.5 - 3years. An additional commercial launch site further south is presently being explored for potential future use. 20



R&A Suborbital Programs 3) CubeSats/SmallSats

CubeSats

- Solicited via ROSES APRA, up to 12U allowed
- Launch free to PI, LCAS/RideShare
- Four 6U CubeSats have been selected to date, typically 3 years from start to launch, <~\$5M
- HALOSAT, PI: Phil Kaaret, U Iowa • CUTE, PI: Kevin France, CU • Energies: soft X-rays • Energies: UV • Science Objectives: HaloSat will map the • Science Objectives: The Colorado Ultraviolet Transit distribution of hot gas in the Milky Way and Experiment (CUTE) will take multiple medium determine whether it fills an extended, and thus resolution UV spectra of hot Jupiters during transit, in massive halo, or whether the halo is compact, and order to measure the composition of the atmosphere thus does not contribute significantly to the total being ablated away. Magnetic fields may be detected mass of the Milky Way. via the presence of tori or bow shocks. 14 targets. Launch: Deployed from ISS July 13, 2018 • Launch: FY20 to SSO • BurstCube, PI: Jeremy Perkins (GSFC) • **SPARCS, PI**: Evgenya Shkolnik, AZ State U • Energies: UV • Energies: hard X-rays • Science Objectives: Rapid localizations for high-• Science Objectives: Determine rate, strength and color of bright UV flares from a select 25 M dwarfs, significance LIGO/Virgo detections coincident with with an eye towards how these flares affect the short GRBs; Correlate short GRBs with LIGO/Virgo habitability of planets. sub-threshold signals, increasing volume; Search of gamma-ray transients Launch: September 2021 • Launch: Fall 2021 22

Astrophysics SmallSats for Smaller Price Points

- Astrophysics RFI for SmallSats asked for ideas to do high priority Astrophysics science projects at a price point between typical R&A and Explorer MOO projects (\$10M-\$35M).
- The RFI also asked for advanced mission concepts for which "significant" investments in instrument and/or platform technologies would be required, without budget constraints, in order to inform future STMD solicitations.
- 55 replies received by Nov 30, 3017, were responsive to Astrophysics science and/or technology.

- ROSES/NRA D.15, due July 13, 2018, solicited Astrophysics Science SmallSat Studies. Between 6 and 10 proposals will be selected for 6 month studies to start Sept 2017 and end March 10, 2018; \$1M total budgeted.
- End date set to allow completion prior to release of 2019 SMEX/MOO.
- 43 proposals received. Representative science areas include: exoplanets, GRM/EM counterparts, UV/X-ray surveys, WHIM, 21cm.

Backup Slides

Astrophysics Division R&A Staff

Program Manager:	Stefan Immler*
Deputy Program Manager:	Linda Sparke
Program Support:	Ingrid Farrell*
Astrophysics Data Analysis:	Doug Hudgins
Astrophysics Theory:	Keith MacGregor*
Exoplanet Research:	Martin Still*
APRA:	Michael Garcia*
Cosmic Ray, Fund Physics:	Thomas Hams*, Vernon Jones,
	Keith MacGregor*, Rita Sambruna
Gamma Ray/X-ray:	Valerie Connaughton*, Michael Garcia*,
	Stefan Immler*, Rita Sambruna
Optical/Ultraviolet:	Michael Garcia*, Hashima Hasan,
	Patricia Knezek*, Mario Perez*, Martin Still*
IR/Submillimeter/Radio:	Dominic Benford, Doug Hudgins,
	William Latter*, Kartik Sheth, Eric Tollestrup*
Lab Astro:	Doug Hudgins, William Latter*
Theory & Comp Astro Net:	Keith MacGregor*
Roman Tech Fellows:	Nasser Bargoughty*
Data Archives:	Hashima Hasan
Astrophysics Sounding Rockets:	Thomas Hams*
Balloons Program:	Vernon Jones (PS), Mark Sistilli (PE)
CREAM:	Vernon Jones (PS), Jeff Hayes (PE)

* Detailee, IPA, 26 or contractor

Astrophysics Division R&A Portfolios

Portfolio Name	Program Officer		
Astrophysics Research and Analysis High Energy	Stefan Immler		
Astrophysics Research and Analysis Particle Astrophysics	Thomas Hams		
Astrophysics Research and Analysis Fundamental Physics	Thomas Hams		
Astrophysics Research and Analysis UV/Vis	Mike Garcia		
Astrophysics Research and Analysis IR/Radio	Eric Tollestrup		
Astrophysics Theory Program	Keith McGregor		
Exoplanet Research Program	Martin Still		
Roman Technology Fellows	Mario Perez		
CubeSats/SmallSats	Mike Garcia		
Astrophysics Data Analysis Program	Doug Hudgins		
Mirror Technologies	Mario Perez		
Technology Development for Exoplanet Missions	Doug Hudgins		
Strategic Astrophysics Technology Cosmic Origins	Mario Perez		
Strategic Astrophysics Technology Physics of the Cosmos	Rita Sambruna		
Astrophysics Probes	Rita Sambruna		

Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) PI: S. Rinehart (NASA/GSFC)

Description and Objectives:

8-meter far-IR (30-100 $\mu m)$ interferometer to:

(a) Study star formation in clusters, and to potential break degeneracies between competing models.

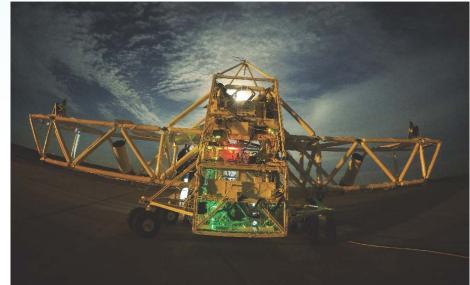
(b) Provide the key system-level demonstration of a free-flying interferometer, to help pave the way for future space-based spatial interferometry (see the Astrophysics Roadmap!)

Key Challenge/Innovation:

Demonstrating a free-flying interferometer as a **system** – individual technologies are demonstrated and well-understood, but lacking is a system demonstration.

Approach:

Rapid development achieved by combining design and build phases (this has drawbacks).


Development period:

2011: Project start

2016: Deployed for first flight; scrubbed due to poor weather.
2017: Launched on engineering flight out of Palestine, TX; anomalous termination resulted in loss of payload. Funding cut post-flight.
2018: New proposal submitted, including flights in 2020, 2021, and 2022.
2018: Rebuild under way with GSFC support, recovered components, flight spares, etc. Full program contingent on ARPA selection.

Key Collaborators:

GSFC, University of Maryland, Cardiff University, the FITE team in Japan

Accomplishments/Milestones:

Flight: ~90% of systems function as expected

2 on-flight problems observed, diagnosed, with known fixes Demonstrated closed-loop pointing control, H4RG operation with new data modes, full end-to-end electrical operation, good thermal behavior, and optical stability

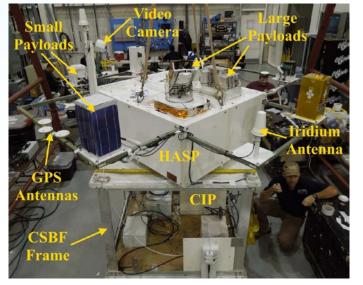
Students: 2 PhD students (both completed); 5 M.S. students; ~35 undergraduate students. Robert H. Goddard Team Award for Mentoring given to the BETTII team.

Publications: 4 peer-reviewed (1 in prep); ~20 conference papers (e.g. SPIE)

28

Application:

Use of the developed technique and/or technology into future suborbital and/or space missions



High Altitude Student Platform (HASP) 2006 - 2018

Description and Objectives: HASP supports multiple advanced student team payloads with an annual flight opportunity to provide a real-world science and engineering project development experience.

Key Challenge/Innovation: First balloon carrier designed with a standard mechanical, electrical, and telemetry interface to carry multiple experiments to high altitude for an extended time. Developed to provide university students with a flight opportunity intermediate between small sounding balloons and Earth-orbiting satellites.

Approach: Support >12 instrument payloads -(8) Small payloads (<3 kg, < 0.5 A @ 30VDC, 1200
bps downlink & uplink, 15cm x 15cm x 30 cm)
(4) Large payloads (<20 kg, < 2.5 A @ 30VDC,
4800 bps downlink & uplink, 38cm x 30cm x 30cm)
(3-4) Self-contained payloads in CSBF frame
Real-time video during flight to confirm operation
Development period: Annual flight opportunity
Key Collaborators: Louisiana Space Grant
Consortium, NASA Balloon Program Office, and
Columbia Scientific Balloon Facility

Accomplishments/Milestones:

12 missions since 2006 for a total exposure at altitude of more that 7 days.

Close to 1,200 students from 43 institutions across 21 states plus Puerto Rico & Canada have been involved in a HASP experiment

~75% of accepted payloads have flown and ~90% of flown payloads are successful.

In 2011 flew HASP twice with different complements of student payloads within 7 days.

Student experiments cover a wide range of topics.

Primordial Inflation Polarization Explorer (PIPER) PI A. Kogut, NASA/GSFC

Description and Objectives: Measure polarization of the cosmic microwave background to test primordial inflation and quantum gravity

Key Challenge/Innovation: Fully cryogenic telescope and no-window liquid helium dewar improves mapping speed by factor of 10 to measure CMB signal on largest angular scales

Approach: Combine cryogenic telescopes with kilopixel detector arrays and fast signal modulation to map polarization on largest angular scales

Development period:

Funding initiated in FY09 Engineering flight FY17 Series of science flights begins 2018

Key Collaborators: Johns Hopkins University, NIST, University of British Columbia, Cardiff University

Accomplishments/Milestones:

Engineering flight 2017 (Ft Sumner, NM) follows series of campaigns when payload was flight-ready but not launched Students to date: 2 post-doctoral students 6 graduate students

37 undergraduate students

Application: Advance technologies to TRL-6 for space mission

- Detectors (Transition-edge superconducting bolometers)
- Readout (Two-dimensional time-domain multiplexing)
- Cryogenics (Continuous adiabatic demagnetization refrigerator)
- Modulator (Variable-Delay Polarization Modulator)

Fully cryogenic system allows detector operation at space-like loading

30

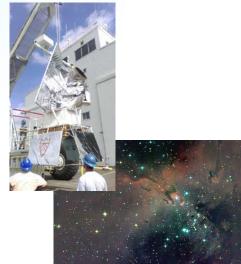
SuperBIT: Wide-field, sub-arcsecond Imaging from the Super Pressure Balloon

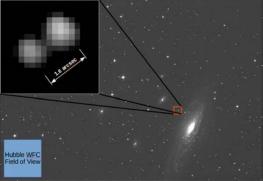
PI W. Jones, Princeton

SuperBIT is a wide field, 250 milli-arcsec resolution imaging telescope designed to take advantage of the persistent near space environment provided by the Super Pressure Balloon platform.

The primary science goal is to produce lensing masses for a sample of hundreds of galaxy clusters, dramatically improving the mass-observable relations that are critical to understanding the cosmological matter distribution on large scales.

Key Challenge/Innovation:


SuperBIT has demonstrated the ability to provide 80 mas pointing stability with field rotation for long (15 minute) exposures. Even with a ½ meter primary aperture, the large format camera and space-like environment enable survey speeds comparable to the Hubble ACS.


Approach:

A three-axis pointing system provides ~2 arcsecond pointing stability and field rotation. A fast tip/tilt mirror, servoed by a guide camera and a suite of advanced fiber optic gyroscopes, provides image stabilization at the subarcsecond level. A 29 megapixel science camera and six filters between 250 and 900 nm provide a survey speed comparable to that of the Hubble ACS.

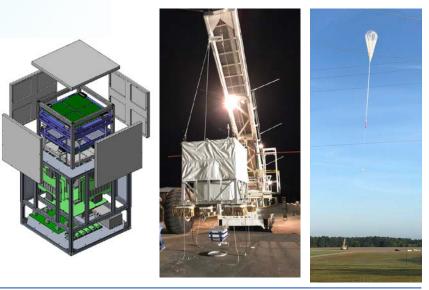
Key Collaborators

- C. Barth Netterfield (U. Toronto)
- Richard Massey (Durham)
- Jason Rhodes (JPL)

At left, SuperBIT prior to the 2018 flight. Below, an image of the Eagle Nebula (M16) obtained by SuperBIT 2016. Above, a single 5min exposure on NGC7335 from 2018, showing the FOV compared to HST, and subarsec resolution.

Accomplishments and Next Milestones:

- Successful test flights in 2016 & 2018
- Student led program (5 GS, 3 UG and 1 post-doc)
- Demonstrated 80 mas pointing stability with 300s integrations
- Demonstrated survey speeds near ó that of Hubble ACS
- Identified & implemented areas of improvement, including fiber optic gyros and guide camera upgrades
- Design study for an improved SiC three-mirror anastigmat telescope
- Upgrading ½ meter telescope for SPB science flight


Current Award Period:

• Jan 2016 - Jan 2021

Advanced Scintillator Compton Telescope (ASCOT)

Description and Objectives: ASCOT is a prototype Compton telescope designed to operate in the MeV gamma-ray band. The objective of the ASCOT project is to demonstrate new detector technology in a near-space environment by imaging the Crab Nebula at energies of $\sim 0.3 - 2$ MeV **Key Challenge/Innovation:** ASCOT uses modern fast scintillator detectors (p-terphenyl as scatterer and CeBr₃ as calorimeter) read out by silicon photomultipliers (SiPMs). This enables time-of-flight background rejection in an efficient, compact instrument with good energy resolution.

Approach:

Prototype development and demonstration via balloon flight to raise TRL to 6/7

Development period:

APRA-13 selection; instrument & payload development 3/15 – 5/18; launched 7/5/18

Key Collaborators:

- ASCOT developed solely by the University of New Hampshire
- Collaborators at University College Dublin flew a piggyback payload, the Gamma-ray Module Demonstrator (GMoDem)

Accomplishments/Milestones:

- ASCOT balloon payload successfully flown
- Instrument operated nominally during five hours at float (122,000 feet)
- Project has supported one graduate student and one undergraduate student
- Three SPIE proceedings papers to date; expect 1
 - 2 science publications in coming year

Application:

Scintillator/SiPM detector technology applicable to astrophysics, heliophysics, and planetary science for compact, low-mass gamma-ray and neutron instruments (e.g., CubeSats, SmallSats, landers)

NASA/CU 36.323 UG: CHESS-4. Measuring the Temperature of the Milky Way

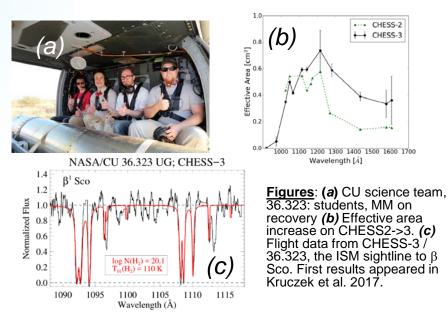
Description and Objectives:

- Fabrication and laboratory testing of critical path technologies for future NASA UV/vis astrophysics missions
- Flight-testing of key technologies in operational space environment - raising TRL of flight technologies to TRL6-7
- Science, education, and training the next generation of scientists and engineers who will lead future NASA missions

Key Challenge/Innovation:

- Diffraction gratings for high-resolution UV spectrographs
- UV/vis detector technology demonstration in space environment: larger formats, higher dynamic range, lower background equivalent flux
- High-reflectivity optical coatings with high wavefront control

Approach:


- Design rocket-borne spectrographs and telescopes
- · Work with collaborators and vendors on specifications and fabrication procedures for key technologies
- Component-level efficiency and environmental testing
- End-to-end payload development and launch
- Scientific and technical analysis, student training, and publication of results

Kev Collaborators:

- Oswald Siegmund & John Vallerga UC Berkelev
- Shouleh Nikzad JPL
- Manuel Quijada GSFC
- Aki Roberge (GSFC), Jason Tumlinson (STScI), Ed Jenkins (Princeton) – Science and large mission application

Development Period:

• 06/01/2016 - 05/31/2020

Accomplishments and Next Milestones:

•Successfully launched CHESS-3 (June 2017), published results from the mission (Kruczek et al. 2017, 2018), and recently published an overview paper on science and technology from CU program (France et al. 2016a.b)

- •Graduate and undergraduate students took lead roles on CHESS-3, <u>graduated Ph.D. student</u> who joined Martin group at Caltech •Component <u>development</u> and <u>instrument design</u> for <u>LUVOIR LUMOS</u>
- instrument (design based on CU rocket payloads)
- Received and tested UV-optimized CCD from ASU/JPL.

Application:

- All UVOIR missions requiring high spectral resolution, high-sensitivity, and low background equivalent flux [for both imaging] and spectroscopy]
- Flagship (LUVOIR Surveyor); Lifecycle of Baryons Probe; IGM spectral imaging and supernovae Explorer missions
 CU rocket team leading LUVOIR spectrograph study

University of Colorado UV Rocket Program Dual channel Extreme Ultraviolet Continuum Experiment (DEUCE) PI: James Green/University of Colorado/CASA

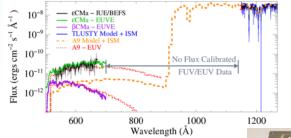
Description and Objectives:

Science: Directly measure the ionizing radiation from local hot B stars to determine if B stars (as opposed to O stars) are viable candidates for providing the ionizing radiation to the modern intergalactic medium.

<u>Technology</u>: Incorporating a large format (200 X 200 mm) microchannel plate detector utilizing boro-silicate plates. This will be the first flight verification of this glass and this size MCP detector.

<u>Training</u>: Graduate student involvement (Nicholas Erickson) for the Ph.D. and 5 undergraduates supporting the lab effort.

Key Challenge/Innovation:


Large format MCP can enable wide field imaging / multiobject spectroscopy on the next large aperture UV capable probe/surveyor.

Approach:

- Diamond turned razing incidence Wolter II telescope feeding normal incidence Rowland circle spectrograph utilizing SiC coated holographically ruled grating
- Component-level efficiency and environmental testing
- End-to-end payload development and launch
- Scientific and technical analysis, student training, and publication of results

Key Collaborators:

- Oswald Siegmund Sensor Sciences Detector
- Horiba JY grating production
- GSFC Grating coating *Development Period*:
- April, 2015 October, 2017
- First launch in October 2017

Above: Flux discrepancy between models and data, also showing the data gap between 700 and 1150 Å. <u>**Right**</u>: 200 X 200 mm lab prototype MCP

Accomplishments and Next Milestones:

- Payload fully assembled and tested
- Launch in October 2017, had a failure in the attitude control system and did not acquire the target
- •Next launch is scheduled for early December, 2018
- •Re-flights from WSMR on missed target and from Australia in 2020 to observe Alpha Cen have been proposed. Awaiting NASA decision.

Application:

- All UVOIR missions requiring large fields of view or multiobject spectroscopy in the far ultraviolet
- Flagship (LUVOIR Surveyor, HABEX); Lifecycle of Baryons Probe; IGM spectral imaging Explorer missions

Detector TRL development: TRLin = 3 TRLtarget = 6/7 (post flight) ₃₄

NASA/CU 36.333 UG: CHESS-4. Enabling Water Recovery for Future Science Missions

Description and Objectives:

- Develop water recovery system that enables launch opportunities for astrophysics missions from southern ranges
- Design, fabricate, and flight test shaped echelle grating to enhance resolution of spectrographs on future missions
- Science, education, and training the next generation of scientists and engineers who will lead future NASA missions

Key Challenge/Innovation:

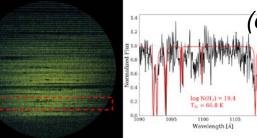
- Diffraction gratings for high-resolution UV spectrographs
- UV/vis detector technology demonstration in space environment: larger formats, higher dynamic range, lower background equivalent flux
- High-reflectivity optical coatings with high wavefront control

Approach:

- Design rocket-borne spectrographs and telescopes
- · Work with collaborators and vendors on specifications and fabrication procedures for key technologies
- Component-level efficiency and environmental testing
- End-to-end payload development and launch
- · Scientific and technical analysis, student training, and publication of results

Kev Collaborators:

- Öswald Siegmund & John Vallerga UC Berkeley
- Shouleh Nikzad JPL
- Manuel Quijada GSFC
- Aki Robergé (GSFC), Jason Tumlinson (STScI), Ed Jenkins (Princeton) – Science and large mission application


Development Period:

• 06/01/2016 - 05/31/2020

payload (b) CHESS-4 launch from RTS/Kwajalein (c) Flight data from CHESS-4 / 36.333. the ISM sightline to γ Ara. First results appeared in Kruczek et al. 2018.

Figures: (a) First water recovery of 17" astrophysics

(b)

Accomplishments and Next Milestones:

- •Successfully launched CHESS-4 (April 2018), published results from the mission (Kruczek et al. 2018)
- •Graduate and undergraduate students took lead roles on CHESS-4, Ph.D. student graduating Dec 2018.
- Component <u>development</u> and <u>instrument design</u> for <u>LUVOIR LUMOS</u> <u>instrument</u> (design based on CU rocket payloads)
 Demonstrated first test of shaped echelle gratings to increase spectral res
 Designed and ordered all long-lead items (telescope mirrors, diffraction
- grating, detector) for new SISTINE payload (2019 first flight)

Application:

- All UVOIR missions requiring high spectral resolution, high-sensitivity, and low background equivalent flux [for both imaging] and spectroscopy]
- Flagship (LUVOIR Surveyor); Lifecycle of Baryons Probe; IGM spectral imaging and supernovae Explorer missions
 CU rocket team leading LUVOIR spectrograph study

Water Recovery X-ray rocket (WRX) 36.330 PI R McEntaffer, PSU

Description and Objectives:

The Water Recovery X-ray rocket (WRX) payload (36.330) intended to test key X-ray technologies such as reflection gratings and hybrid CMOS detectors while also proving water recovery technologies for suborbital rockets. The science target for the mission is the Vela supernova remnant.

Key Challenge/Innovation:

Diffusive X-ray spectroscopy with reflection gratings and hybrid CMOS detectors, water recovery

Approach:

Suborbital rocket launch from Roi-Namur, Kwajalein **Development period:**

15 months from award (partially funded 12 month award) to launch. Payload will relaunch during the Australia mission in 2020.

Key Collaborators:

Abe Falcone, PSU: hybrid CMOS detector lead

A happy science team in the control room after launch

Accomplishments/Milestones:

Flight qualification of reflection gratings, hybrid CMOS detectors, and water recovery technologies 4 graduate students and 4 undergrads trained. Four publications in prep (project instrumentation overview, grating test results, grating alignment results, optical design), multiple SPIE papers/presentations

Application:

Payload will refly in Australia. Reflection gratings will fly in 3 upcoming suborbital missions. Gratings and hybrid CMOS detectors studied for future NASA missions.