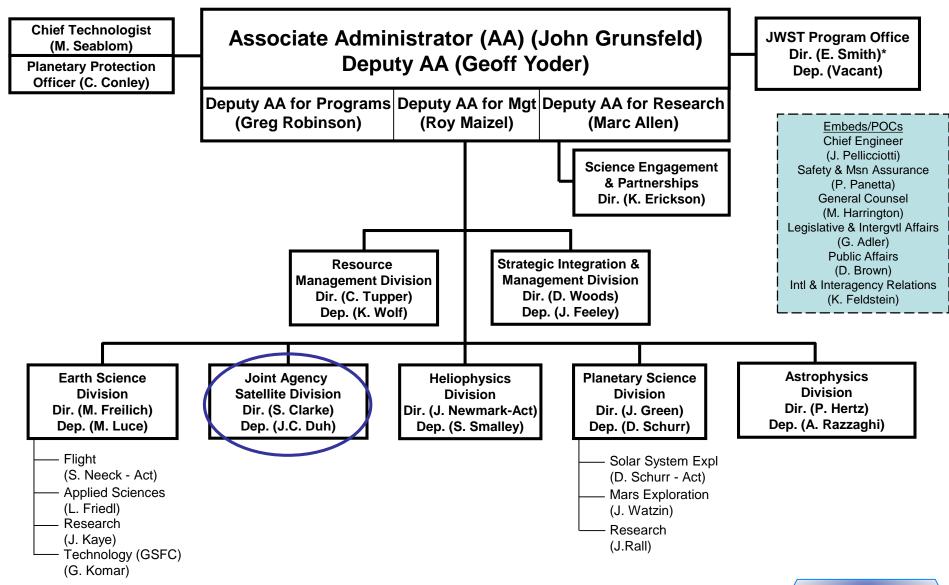


JOINT AGENCY SATELLITE DIVISION

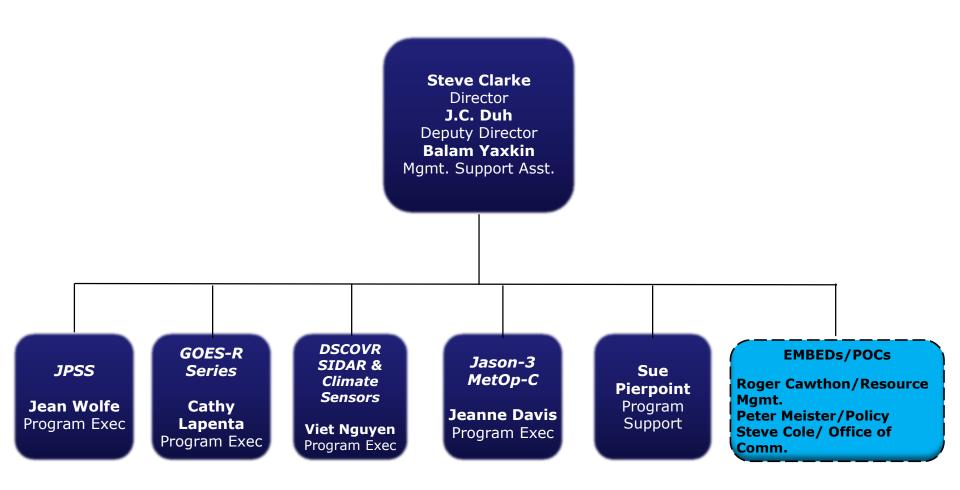
NAC Science Committee Update

Steven W. Clarke, Director April 7, 2015

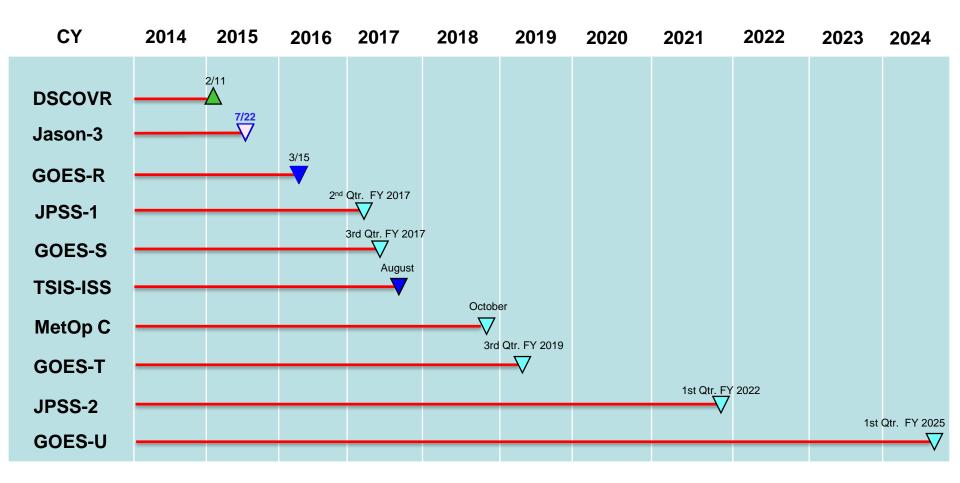


- JASD performs the typical HQ role for NASA projects, but has unique responsibilities to the reimbursable customer.
 - Manages Program/Project implementation on behalf of the funding agency
 - Distributes reimbursable funding authority to Centers
 - Oversees Center execution
 - Represents Program/Project in Directorate and Agency-level reporting
 - Represents reimbursable customer on Human Exploration and Operations Mission Directorate Flight Planning Board for the planning, acquisition and manifesting of launch vehicles
- JASD uses the same NASA Program Requirements (NPR 7120.5) processes to ensure mission success for reimbursable programs that are standard for NASA's own programs.
- JASD relies on the other Science Divisions to represent NASA science requirements for reimbursable missions through existing inter-agency forums.
- Decision authority and responsibilities for strategic planning, legislative and executive branch coordination remain with the funding agency.

SMD Organization



JASD Organization



Reimbursable Launch Commitment Dates

DSCOVR

Mission Objectives

- Continue solar wind measurements in support of space weather requirements
- Observe the Earth from the unique Sun-Earth L1 Lagrange Point perspective
- Measure the energetic particle environment

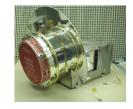
Upcoming Events

- Spacecraft arrives at L1: ~June 7, 2015
- NASA/NOAA Handover: ~July 27, 2015

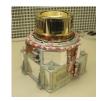
- Launched February 11, 2015 @ 6:03 PM EST; observatory successfully deployed solar arrays, reaction wheels powered up, and stable sun-pointing orientation after separation
- Successful Plasmag Instrument Data Processing Unit (IDPU) activation, magnetometer activation, checkout and boom deployment on Feb 15
- Successful NISTAR activation and checkout on Feb 16
- Successful ESA activation and checkout on Feb 27
- Successful EPIC activation and closed-door images
 on Mar 6
- Successful x-axis and z-axis rotations to calibrate magnetometer on Mar 10
- Successful NISTAR functional testing on Mar 11
- Project received launch delay funding; awaiting funding for Phase 2 IT Security
- Minor issues being tracked
 - Faraday Cup collector (A-side) experiencing lower readings and higher noise levels than predicted
 - Bulk memory single event upsets

Primary Instrumentation

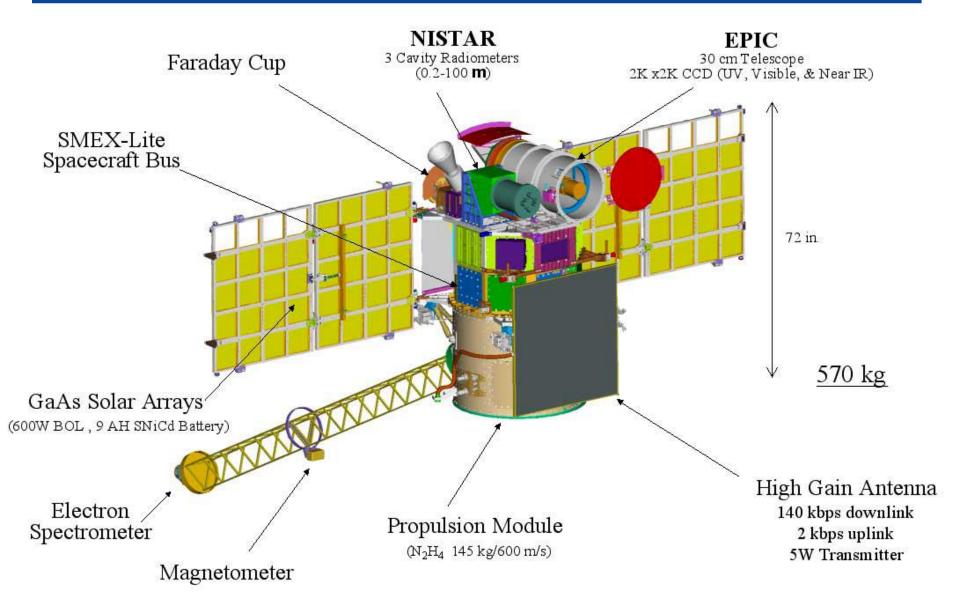
- Fluxgate Magnetometer
 - to measure solar wind magnetic field vector
- Faraday Cup


 to measure solar wind thermal plasma velocity, density and temperature

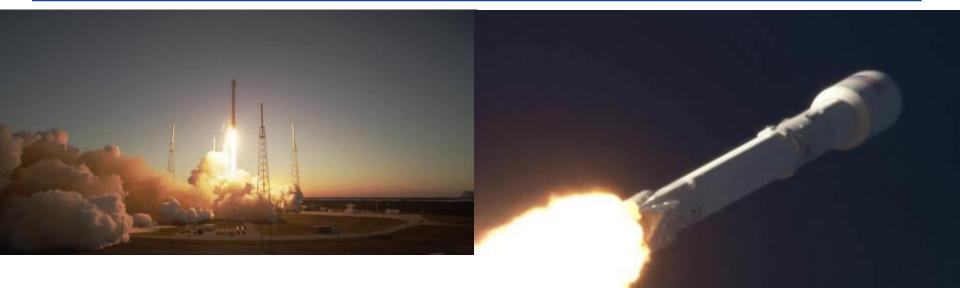
Secondary Instrumentation

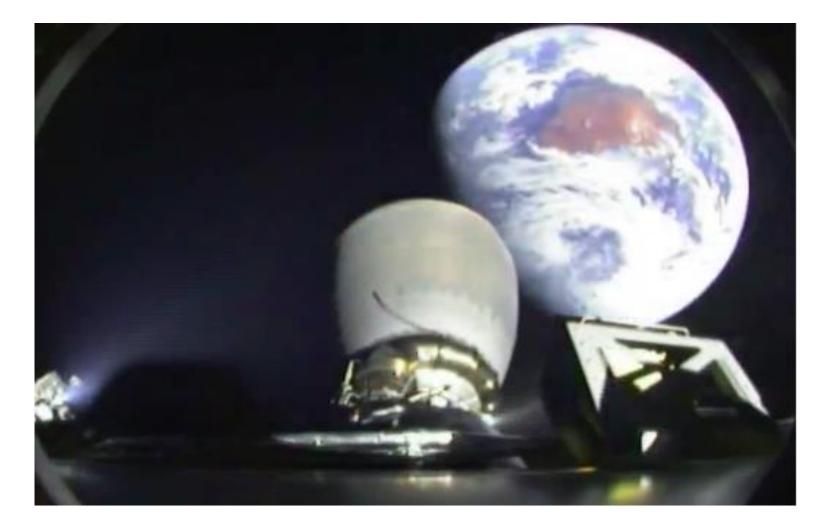

- Earth Poly-chromatic Imaging camera (EPIC)

 to image the sunlit face of Earth in 10 wavelengths
- NIST Active Radiometer (NISTAR)
 - to measure the reflected and radiated energy by Earth
- Electron Spectrometer (ESA)
 - to measure the solar wind thermal electron population
- Pulse Height Analyzer (PHA)
 - to measure energy deposited by energetic particles in electronics



DSCOVR Spacecraft





DSCOVR is L1 Bound!

DSCOVR and Space Weather Follow-On FY16 Budget

DSCOVR*

Prior (\$K)	FY15	FY16	FY17	FY18	FY19	FY20	СТС	Total
75,994	21,100	3,200	2,400	2,069	-	-	-	104,763

* Does not include NASA ESD Funding for EPIC and NISTAR

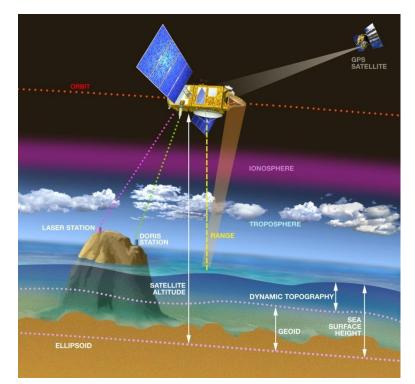
Space Weather Follow On

Prior (\$K)	FY15	FY16	FY17	FY18	FY19	FY20	СТС	Total
		2,500						2,500

- Maintain and operate DSCOVR spacecraft
- Plan and initiate development of the Space Weather Follow On program
- Formulation of life cycle costs for the Space Weather Follow On mission will be provided with the FY17 President's Budget

Science Measurements

Global sea surface height to an accuracy of \leq 4 cm every 10 days, for determining ocean circulation, climate change and sea level rise


Mission Objectives

- Provide continuity of ocean topography measurements beyond TOPEX/Poseidon, Jason-1 and OSTM/Jason-2
- Operational ocean altimetry mission to enable the continuation of multi-decadal ocean topography measurements
- NOAA and EUMETSAT are lead agencies with CNES and NASA/JPL providing implementation support

Instruments

• Core Mission:

- Poseidon-3B Altimeter
- DORIS (Precise Orbit Determination System)
- Advanced Microwave Radiometer (AMR)
- GPS Payload (GPSP)
- Laser Retro-reflector Array (LRA)
- Passengers (Experiments):
 - JRE (Carmen3 + LPT)

Mission Overview

- Launch Date: July 22, 2015
- Launch Vehicle: Falcon 9
- 7120.5 Project Category: II
- Risk Classification: B
- Proteus Spacecraft Bus provided by CNES
- Mission life of 3 years (goal of 5 years)
- 1336 km Orbit, 66º Inclination

NASA responsible for items in BLUE (on behalf of NOAA) $\frac{12}{12}$

Project

• Established new launch date of July 22, 2015

Spacecraft

 Spacecraft is now in storage awaiting shipment with AMR purged with GN2

Launch Vehicle (SpaceX Falcon 9 v1.1)

- Launch vehicle production remains on schedule; watch item for NESDIS and JASD
- Launch vehicle certification continues to progress well
- Engineering assessment of landing legs and fins scheduled for April 8
- Next launch is now CRS-6 scheduled for April 13; commercial mission delayed due to helium COPV issue

Jason-3								
Prior (\$K)	FY15	FY16	FY17	FY18	FY19	FY20	СТС	Total
124,831	23,175	7,458	7,288	7,265	7,196	-	-	177,213

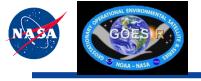
- Complete the evaluation of the Jason-3 satellite and instrument performance during the calibration and validation phase
- Maintain and operate Jason-3 spacecraft

GOES-R Series Program Description

Mission Objective

To provide continuous imagery and atmospheric measurements of Earth's Western Hemisphere and space weather monitoring

Program Overview


Launch Commitment Dates:
GOES-R:2Q FY 2016
GOES-S:3Q FY 2017
GOES-T: 3Q FY 2019
GOES-U:1Q FY 2025
Launch Vehicle: Atlas V 541 (for R&S)
NPR 7120.5 Project Categorization: I
Risk Classification: B
Satellite Mission life of 15 years
Geostationary Orbit at 75° W and 137° W

Instruments

- Advanced Baseline Imager (ABI)
- Geostationary Lightning Mapper (GLM)
- Extreme Ultraviolet and X-ray Irradiance Sensor (EXIS)
- Solar Ultraviolet Imager (SUVI)
- Space Environment In-Situ Suite (SEISS)
- Magnetometer

GOES-R Spacecraft Status

- All instruments have been integrated to the spacecraft
 - \odot Advanced Baseline Imager (ABI)
 - Geostationary Lightning Mapper (GLM)
 - Extreme Ultraviolet and X-ray Irradiance Sensor (EXIS)
 - O Solar Ultraviolet Imager (SUVI)
 - Space Environment In-Situ Suite (SEISS)
 - Magnetometer
- Integrated Solar Pointing Platform (SPP) to Solar Array and installed SPP Interface Unit (SIU)
- Antenna Wing Assembly delivered for spacecraft electromagnetic interference testing
- Launch planned for March 2016 from CCAFS, FL on an Atlas V launch vehicle

GOES-S Spacecraft Status

- System module buildup in work next to GOES-R spacecraft
- Instrument buildup and testing is progressing.
- Launch planned for the April-June 2017 timeframe from CCAFS, FL on an Atlas V launch vehicle.

GOES-R Series

Prior (\$K)	FY15	FY16	FY17	FY18	FY19	FY20	СТС	Total
5,106,246	980,838	871,791	786,684	523,049	364,032	266,865	1,928,554	10,828,059

- Completion of GOES-R satellite, ground system, and flight-to-ground integration and test activities
- Complete GOES-R satellite pre-ship, ship, and launch site activities
- Launch of GOES-R in mid-March 2016
- Initiation of post launch satellite check-out and calibration activities
- Completion of fabrication of GOES-S spacecraft hardware and initiation of satellitelevel integration
- Continue GOES-S launch vehicle service activities
- Fabrication, assembly, and integration of GOES T&U instruments and spacecraft hardware.

JPSS Mission Summary

Mission Objective

Provide data continuity for global environmental data used in numerical weather prediction models and climate modeling

Mission Overview

• Launch Commitment Dates:

- > JPSS 1: 2Q FY 2017
- > JPSS 2: 1Q FY 2022
- Launch Vehicle: Delta II (JPSS 1)
- •NPR 7120.5 Project Category: I
- Risk Classification: B
- JPSS-1 Spacecraft Bus Ball Aerospace
- JPSS-2 Spacecraft Bus Orbital ATK
- Mission life of 7 years; 10.5 years of fuel
- •824 km Orbit, 1330 Local Time Ascending Node, Polar Sun-Synchronous

Instruments

- Advanced Technology Microwave Sounder (ATMS)
- Cross-track Infrared Sounder (CrIS)
- Visible Infrared Imaging Radiometer Suite (VIIRS)
- Ozone Mapping and Profiler Suite (OMPS) Nadir only on JPSS-1; Nadir and Limb on JPSS-2
- Clouds and the Earth's Radiant Energy System (CERES) (JPSS-1)
- Radiation Budget Instrument (RBI) (JPSS-2)

JPSS-1

- 4 of 5 instruments have been integrated to the spacecraft
 - \odot Cross-track Infrared Sounder (CrIS)
 - Visible Infrared Imaging Radiometer Suite (VIIRS)
 - Ozone Mapping and Profiler Suite (OMPS) Nadir only
 - Clouds and the Earth's Radiant Energy System (CERES)
- Advanced Technology Microwave Sounder (ATMS) will be final instrument installed onto spacecraft bus due to intermediate frequency amplifier issues
- ATMS Engineering Development Unit delivered to Ball Aerospace and will be integrated to bus in mid-April for integration & test activities
- Launch planned for January-March 2017 from VAFB on a Delta II launch vehicle

JPSS-2

- Spacecraft bus contract awarded to Orbital ATK on March 23, 2015; options for JPSS-3 and JPSS-4
- All instruments are under contract; contractors are pressing ahead with procuring parts and initial manufacturing/sub-assembly builds
 - Advanced Technology Microwave Sounder (ATMS)
 - Cross-track Infrared Sounder (CrIS)
 - Visible Infrared Imaging Radiometer Suite (VIIRS)
 - Ozone Mapping and Profiler Suite (OMPS) Nadir and Limb
 - Radiation Budget Instrument (RBI)
- Launch planned for October-December 2022; launch vehicle has not been procured yet

JPSS Program of Record (POR) FY16 Budget

JPSS Program

Prior (\$K)	FY15	FY16	FY17	FY18	FY19	FY20	СТС	Total
5,935,735	916,267	808,966	797,246	735,777	558,803	439,506	1,129,825	11,322,125

- Operate and sustain the S-NPP satellite launched on October 28, 2011
- Continue ground system operations for S-NPP under the Block 1.2X until it is retired, complete development and deployment of the new Block 2.0 upgrade, and perform integration testing of Block 2.0 with the JPSS-1 flight segment to get ready for JPSS-1 launch
- Complete testing of the JPSS-1 integrated spacecraft; prepare for JPSS-1 launch site integration and testing (I&T)
- Continue with preparation for launch vehicle services for JPSS-1 for launch by no later than 2nd quarter of FY 2017
- Continue the development of JPSS-2 spacecraft and instruments
- Support capability to launch JPSS-2 by 4th quarter FY 2021

JPSS Program Follow On (PFO) FY16 Budget

JPSS Program Follow On

Prior (\$K)	FY15	FY16	FY17	FY18	FY19	FY20	СТС	Total
-	-	380,000	438,000	594,000	581,000	579,000	TBD	TBD

- Initiate development to support launch readiness dates of Q2 FY 2024 for JPSS-3 and Q3 FY 2026 for the JPSS-4 missions
- Provide the option for a JPSS-3 contingency mission with critical sounders, Advanced Technology Microwave Sounder (ATMS) and Cross-track Infrared Sounder (CrIS), only
- Invest in development of an advanced technology Earth Observing Nano-satellite Microwave (EON-MW) instrument

N	ASA Provided Instrument	Measurement
	<u>AMSU-A1 & AMSU A2 -</u> Advanced Microwave Sounding Unit	A cross-track scanning total power radiometer, (in conjunction with the HIRS) used to calculate the global atmospheric temperature and humidity profiles form Earth's surface to the upper stratosphere. Used for weather forecast models.
	AVHRR – Advanced Very High Resolution Radiometer	A 6 channel imaging radiometer that detects energy in the visible, near infrared, and infrared portions of the EM spectrum. Used for determining cloud cover and surface temperature.
	<u>SEM</u> – Space Environment Monitor	Measures the charged particle environment at satellite altitude including intensities of energetic particles in the Earth's radiation belts and solar winds. Consists of two separate sensors units and a data processing unit. Used for space weather forecasting by providing warnings of solar wind occurrences.

Project

 MetOp-C instrument contract Request For Proposals, to cover launch date change to October 2018, were released on January 15 to Northrop Grumman, Exelis, and ATC; proposals are due in mid-March

Advanced Very High Resolution Radiometer (AVHRR)

 Instrument safely arrived in Holland/ESTEC on March 23; ESA arranging for shipment from Holland to Germany

Advanced Microwave Sounding Unit (AMSU)

• In storage after completion of annual activation

Space Environment Monitor (SEM)

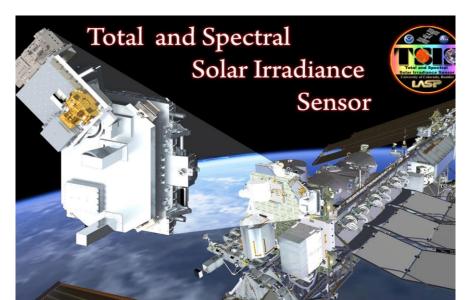
Total Energy Detector (TED) outgassing activities completed with no significant change to detector performance

MetOp-C (\$K)								
FY15	FY16	FY17	FY18	FY19	FY20	СТС	Total	
2,000	8,000	8,000	8,000	3,500	3,500	10,500	43,500	

- Ship Space Environment Monitor to Europe and assist in integration and test activities
- Support yearly activation of AMSU A1 and A2 instruments
- Maintain U.S. electrical ground support equipment in Europe

- Formerly Polar Free Flyer (PFF)
 - Comprised of Total & Spectral solar Irradiance Sensor -1 (TSIS-1), Advanced Data Collection System (A-DCS) and Search and Rescue (SAR) instruments

	Instrument	Measurement		
	<u>SARR</u> – Search and Rescue Repeater	The Search and Rescue instruments are part of the international Cospas- Sarsat system designed to detect and locate Emergency Locator		
RPU	<u>SARP</u> – Search and Rescue Processor	Transmitters (ELTs), Emergency Position-Indicating Radio Beacons (EPIRBs), and Personal Locator Beacons (PLBs)		
	<u>A-DCS</u> - Advanced Data Collection System	The A-DCS provides a worldwide in- situ environmental data collection and Doppler-derived location service with the basic objective of studying and protecting the Earth environment		
	TSIS TIM – Total & Spectral solar Irradiance Sensor Total Irradiance Monitor	TIM is an active cavity radiometer that monitors changes in Total Solar Irradiance (TSI) at the top of the Earth's atmosphere		
	TSIS SIM – Total & Spectral solar Irradiance Sensor Spectral Irradiance Monitor	SIM is a prism spectrometer that monitors changes in Solar Spectral Irradiance (SSI) as a function of wavelength		



Project

- NOAA-NASA Inter-Agency Agreement (IAA) completed and ratified on March 17; FY15 funding transferred to project
- Project name has changed to TSIS-1-on-ISS as NASA is no longer required by NOAA to provide support for the A-DCS and SAR instrument activities.
- Earth Science Division has provided direction to maintain the current schedule to provide the instrument by the August 2017 timeframe.

TSIS-1

- TSIS/ISS interface Control Document is in final phase of review by ISS Program
- Received updated loads data from Space X for project assessment
- Thermal Pointing System actuator CDR at MOOG scheduled for March 25
- Project CDR is planned for July 2015.

TSIS-1 Budget

TSIS-1									
Prior (\$K)	FY15	FY16	FY17	FY18	FY19	FY20	СТС	Total	
-	7,300	500	-	-	-	-	-	7,800	

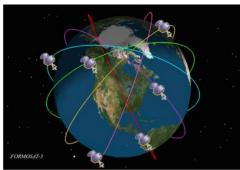
- TSIS-1 project transitioned to NASA ESD beginning in FY16
- FY16 funds allow NOAA to plan the accommodation for A-DCS and SARSAT for launch in FY 2019

Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC)

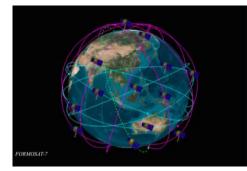
Program Description

- COSMIC is a constellation of satellites that measure the atmospheric bending of radio signals from global navigation satellites (e.g., GPS, GLONASS and GALILEO) and then converts these measurements into a precise worldwide set of weather, climate, and space weather data.
- COSMIC-1 (6 polar-orbiting satellites) launched on April 14, 2006 from VAFB
- COSMIC-2A (6 equatorial-orbiting satellites) scheduled to be launched in May 2016 on Falcon 9 Heavy (2nd Flight) from KSC.
- COSMIC-2B (6 polar-orbiting satellites) planned for launch in 2018; launch vehicle - TBD

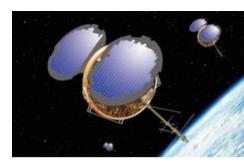
Partners


• UCAR, NOAA, NASA, NSPO (Taiwan), USAF, NSF, ONR

Funding


• \$22.3M (FY16-20) in FY16 President's Budget Request for RO Sensors

JASD Role for COSMIC-2B


- NESDIS AA requested JASD engagement to leverage JASD expertise and recent experience with the DSCOVR mission to ensure mission success
 - Project management
 - o Instrument-to-spacecraft integration and test
 - Launch vehicle integration
- JASD issued PPBE17 budget guidance to JPL based on NOAA budget direction

COSMIC-1 (FORMOSAT-3)

COSMIC-2 (FORMOSAT-7)

COSMIC Spacecraft

COSMIC-2									
Prior (\$	K)	FY15	FY16	FY17	FY18	FY19	FY20	СТС	Total
1,9	97	6,800	10,100	8,100	8,100	8,100	8,100	23,200	74,497

- USAF launches first six satellites (COSMIC-2A)
- Reception of equatorial low earth orbit satellite Radio Occultation data from COSMIC-2A mission and initial validation of data flow
- Initiation of the development of the COSMIC-2B sensors

 GOES-R End-To-End Test 1b 	April 4
 GOES-R Launch Vehicle Mission Specific CDR 	April 15
 JPSS Combined NESDIS/CMC/DPMC KDP-D 	April 17
 DSCOVR Mid-Course Correction 2 (MCC2) 	April 22
 GOES-R Spacecraft Pre-Environmental Review 	April 22-23
 Jason-3 Mission Operations Readiness Review-2 	April 28-29
 SMC (Air Force) DSCOVR Post-Flight Review 	April 30
 GOES-R End-To-End Test 2 	May 7
 JPSS Mission Operations Review 	May 11-12
 Jason-3 Pre-Ship Review 	May 12
 2nd Annual Suomi NPP Operations Status Review 	May 13
 DSCOVR Lissajous Orbit Injection (LOI) at L1 	~June 7
 COSMIC Executive Steering Committee 	June 23-24

DSCOVR:

- Observatory is in good health; all instruments have been turned on; activation and checkout in work
- Estimated time of arrival and completion of Lissajous orbit injection (LOI) at the sun-earth L1 Lagrange point is June 7
- Launch delay funding received from NOAA; IT Security Augmentation Phase 2 funding expected by end of the week.

<u>Jason-3:</u>

- Launch vehicle production and certification progressing on schedule; delta-DCR scheduled for April 8
- Launch readiness date changed from March 31 to July 22, 2015 at 12:30am (PDT) to accommodate launch vehicle production issues and Range conflicts

GOES-R Series:

- Final command and data handling boxes have been delivered and integrated onto spacecraft.
- GOES-R spacecraft I&T schedule erosion continues with 123 days of reserve remaining (56 days above requirement); LM management has implemented changes in an effort to reduce erosion
- GOES-S system module buildup continues

JPSS:

- Successfully completed JPSS-1 Mission System Integration Review
- Four of five instruments integrated to the JPSS-1 spacecraft bus
- JPSS-1 ATMS IFA issue resolution continues; spacecraft I&T schedule re-baselining in work
- JPSS-2 spacecraft bus contract awarded to Orbital ATK

<u>TSIS-1:</u>

- JASD and ESD are working on a transition plan to maintain the launch readiness date of August 2017.
- Interagency Agreement (IAA) with NOAA approved; first increment of FY15 funding received

MetOp-C:

Advanced Very High Resolution Radiometer (AVHRR) shipped to ESTEC on March 23.