Secondary Mirror Assembly Secondary Mirror 18 Segment Primary Mirror Aft Optics Subsystem

James Webb Space Telescope

Stationkeeping SCAT Thrusters

Secondary Mirror Support Structure

Spacecraft Bus Radiation Shades

-J2 Equipment Panel

Star Trackers

OTE Omni

Frill

Spacecraft Omni

LV Adapter Ring

Gimballed Antenna Assembly

April 8, 2015 Eric P. Smith JWST Program Director NASA Advisory Council Science Committee Presentation

- Mid Spreader Bar - Membrane Tensioning System

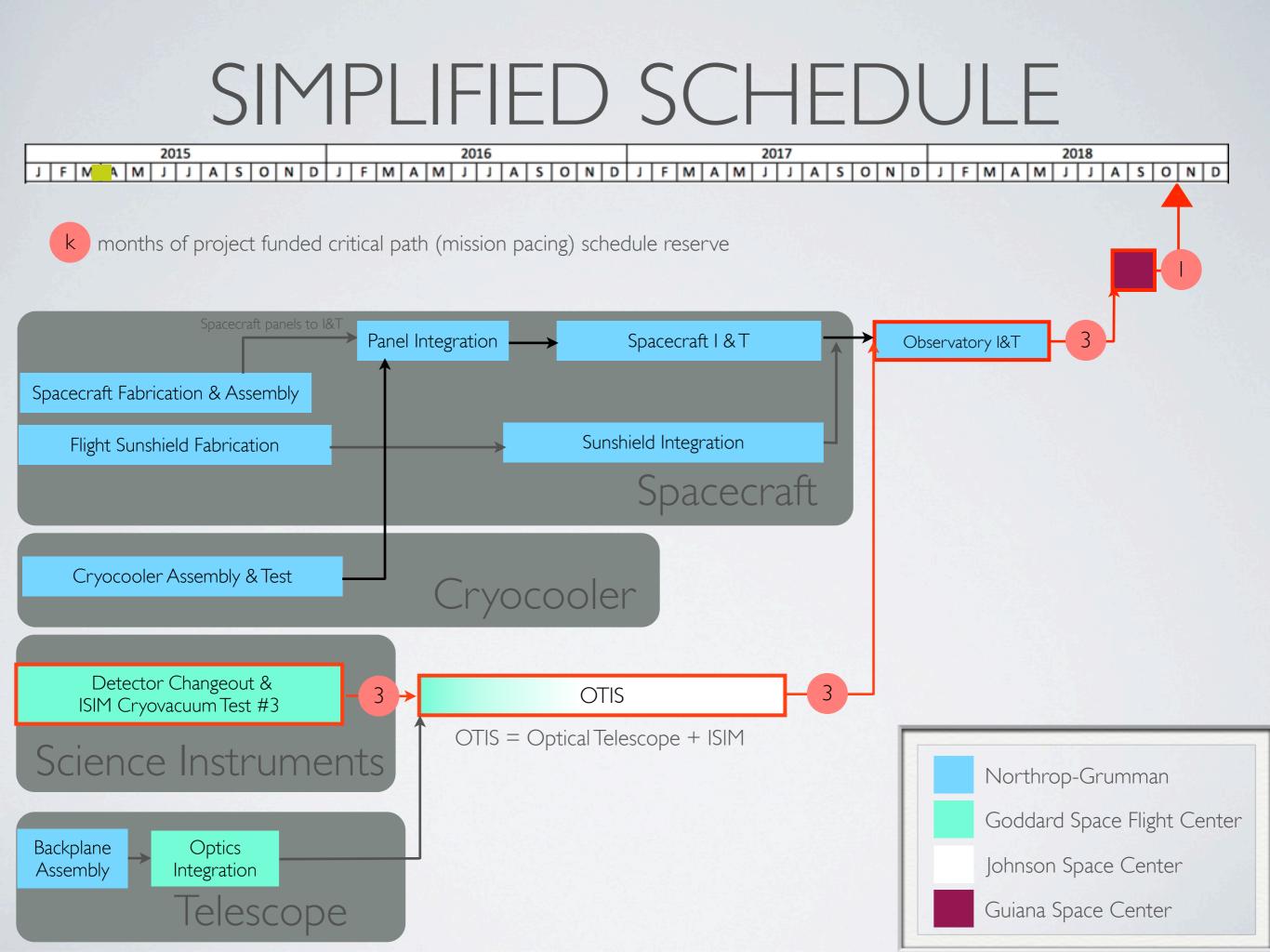
Sunshield Layer 5

Sunshield Layer 1

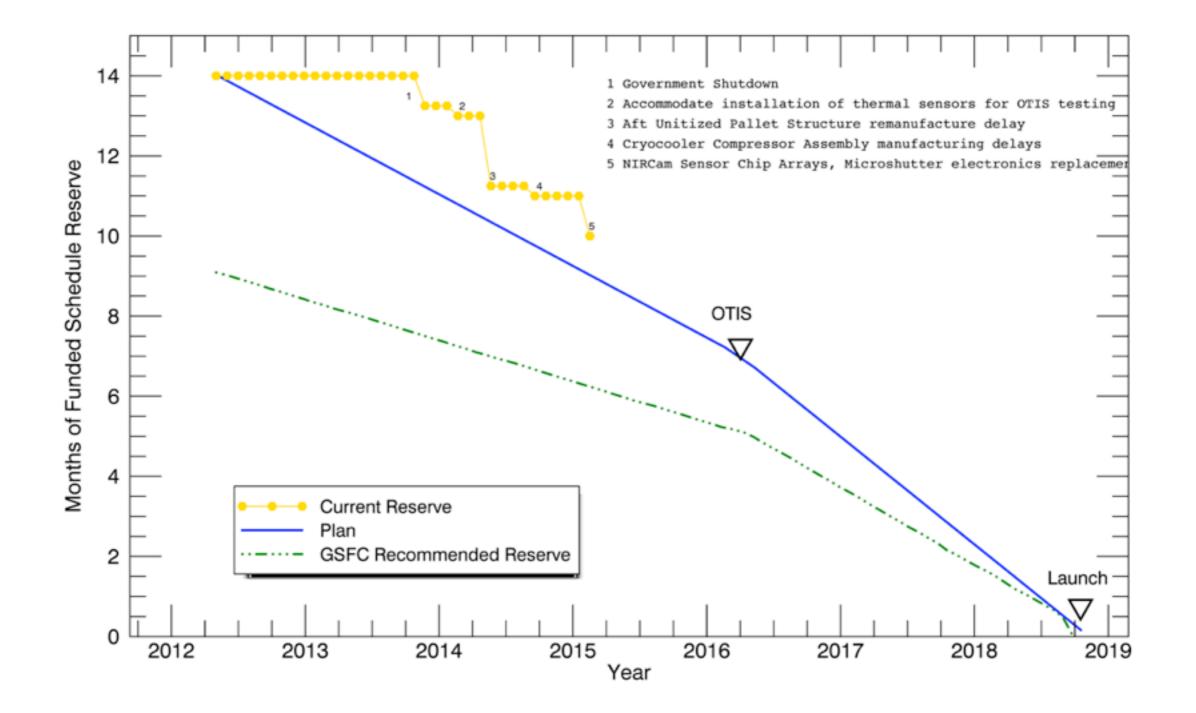
Mid Boom

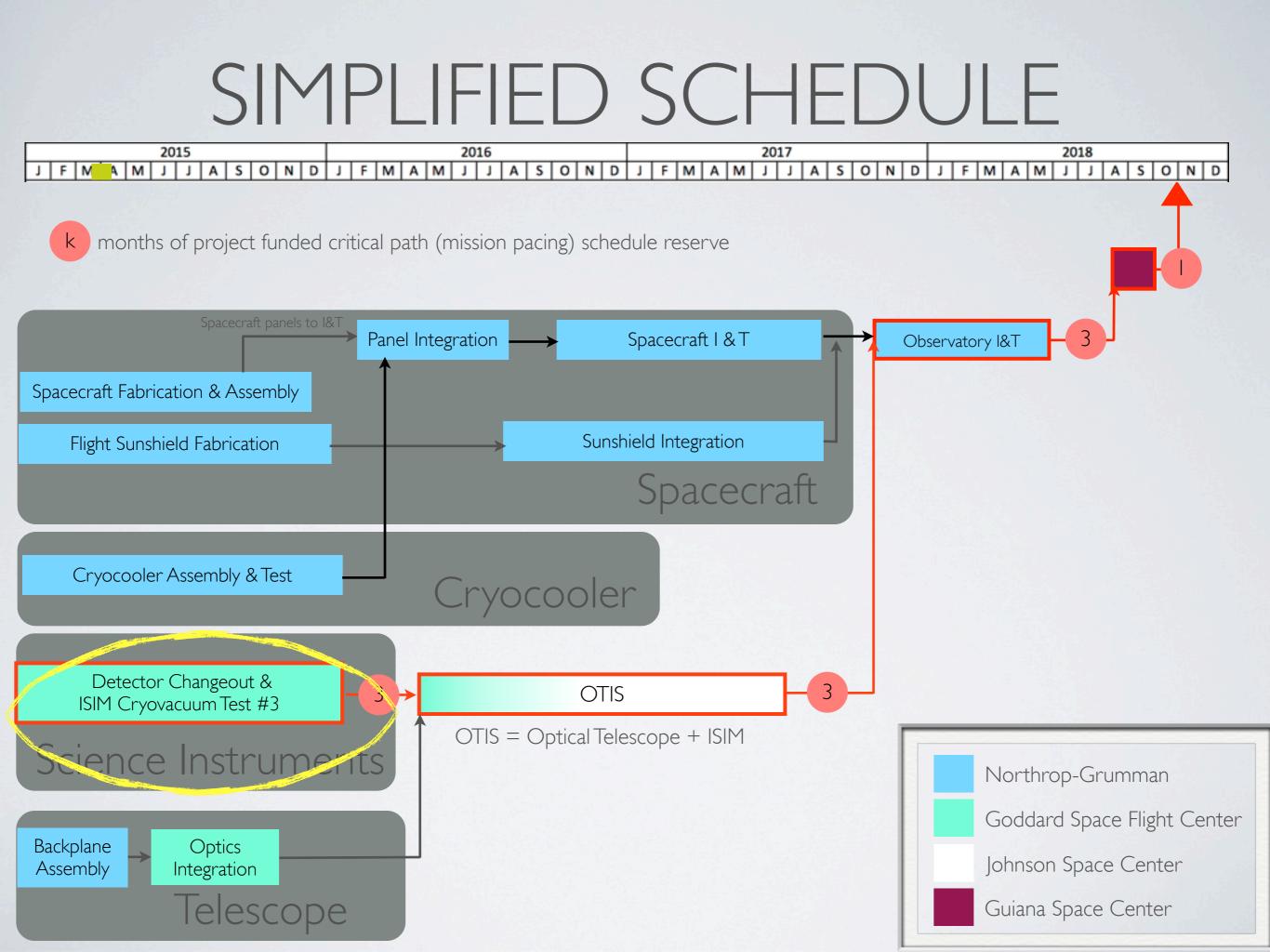
Forward Spreader Bars

Forward UPS Assembly


Spacecraft Bus

SINCE LAST SC MEETING ...


- Acted on FY2014 GAO recommendations (cost-risk study, performance evaluation plan change).
- Completed GAO entrance conference for FY2015 activity
- Successful House Science Committee hearing on JWST Progress (3/24)
- FGS/NIRISS rework completed and instrument reinstalled into ISIM
- NIRSpec rework completed, instrument ready for reinstallation into ISIM
- NIRCam rework completed, instrument ready for reinstallation into ISIM
- ISIM is now the critical path because of NIRCam Sensor Chip Assembly issues and NIRSpec microshutter control electronics boards needing replacement
- Flight Backplane center section, wings and secondary tower assembled at NGAS
- Pathfinder backplane now at JSC in preparation for testing
- Flight sunshield membrane manufacturing in full swing, 4 layers in process, one (layer 3) complete.
- ³/₄'' NEA issue heading toward successful resolution by May
- STScI will be hosting first annual user training session for JWST.
- Aft Sunshield Unitized Pallet Structure (UPS) completed and Forward UPS being manufactured
- Spacecraft bus and many components being built and/or delivered
- MIRI Cryocooler flight Cold Head Assembly installed onto ISIM
- Cryocooler Compressor Assembly at higher level of assembly and incremental performance tests look good. Schedule is still the issue here.

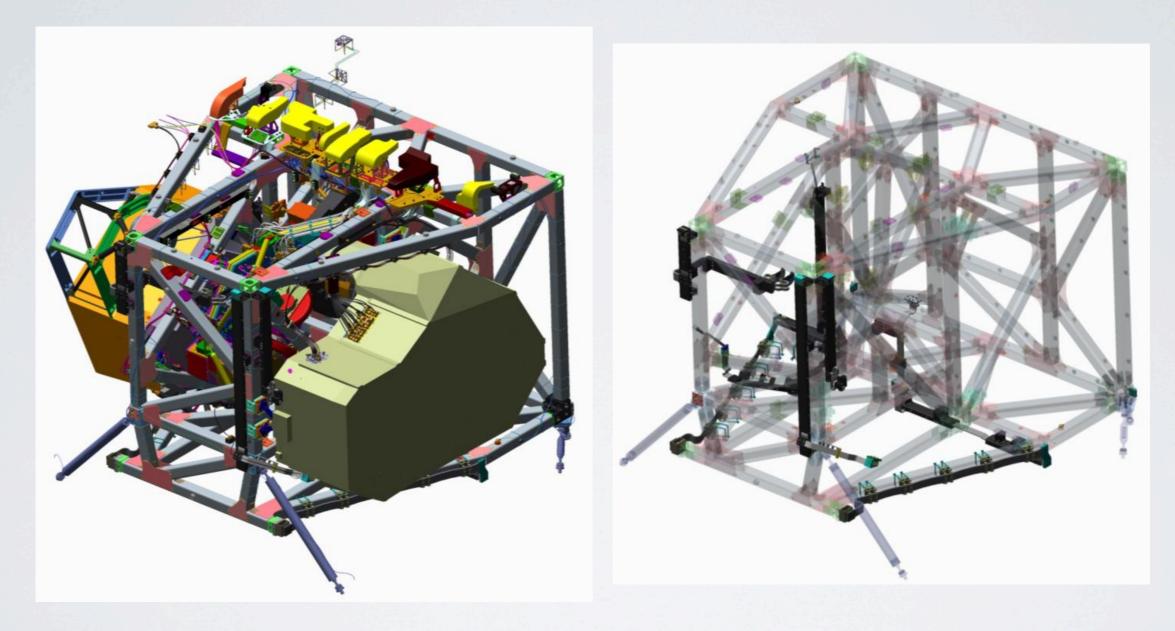

YEARLYTHEMES

- 2013: Instrument Integration: The Science instruments will be finished and begin their testing as an integrated science payload
- 2014: Manufacturing the Spacecraft: Construction will commence on the spacecraft that will carry the science instruments and the telescope
- 2015: Assembling the Mirror: The mirror segments, secondary mirror and aft optics will all be assembled into the telescope
- 2016: Observatory Assembly: The three main components of the observatory will be completed (instruments, telescope, spacecraft)
- 2017: Observatory Testing: The three main components of the observatory will be tested and readied for assembly (instruments, telescope, spacecraft) into a single unit
- 2018: Kourou Countdown: All parts of the observatory will be brought together, tested and readied for launch in Kourou, French Guiana

FUNDED SCHEDULE RESERVE

"HALFTIME" ACTIVITY

All FGS/NIRISS rework successfully completed, instrument back in ISIM

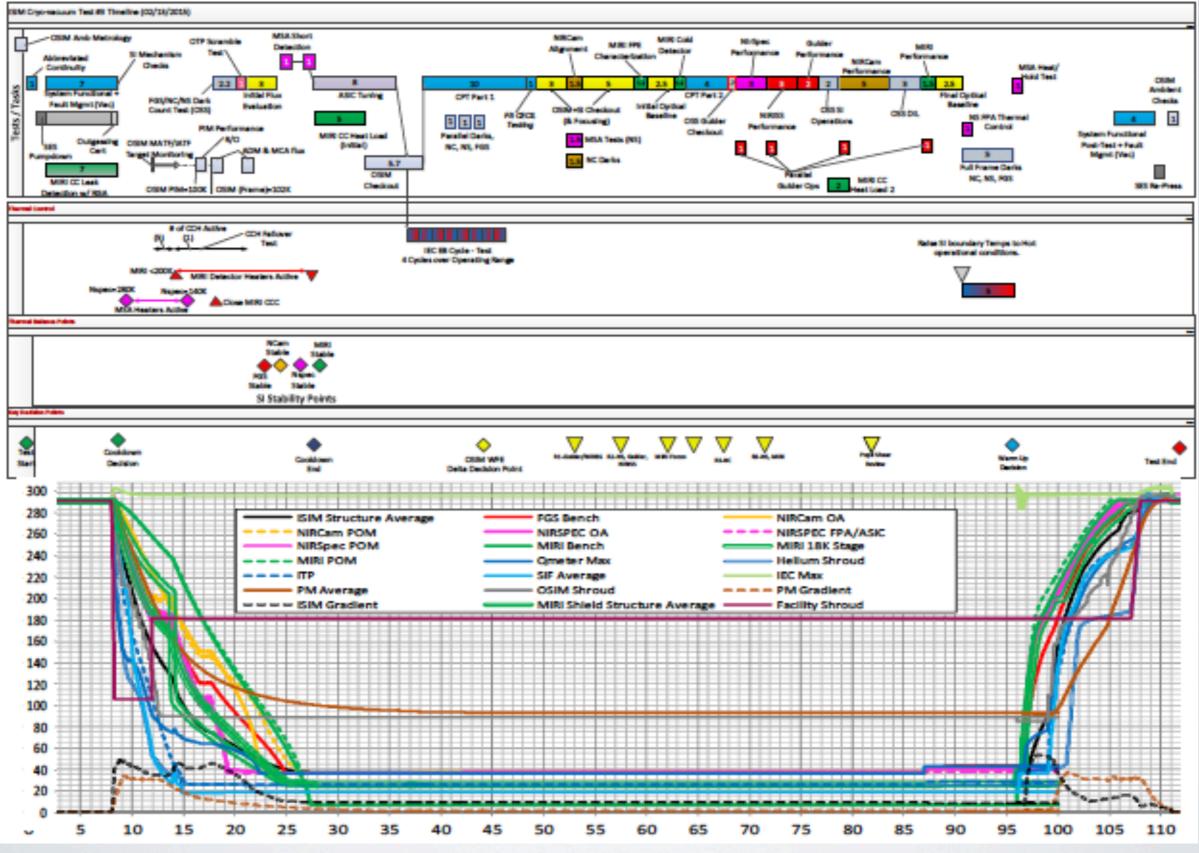

All NIRSpec rework successfully completed, awaiting reinstallation

NIRSpec microshutter control electronics board damaged necessitating build of new boards, work in progress and not pacing further ISIM testing

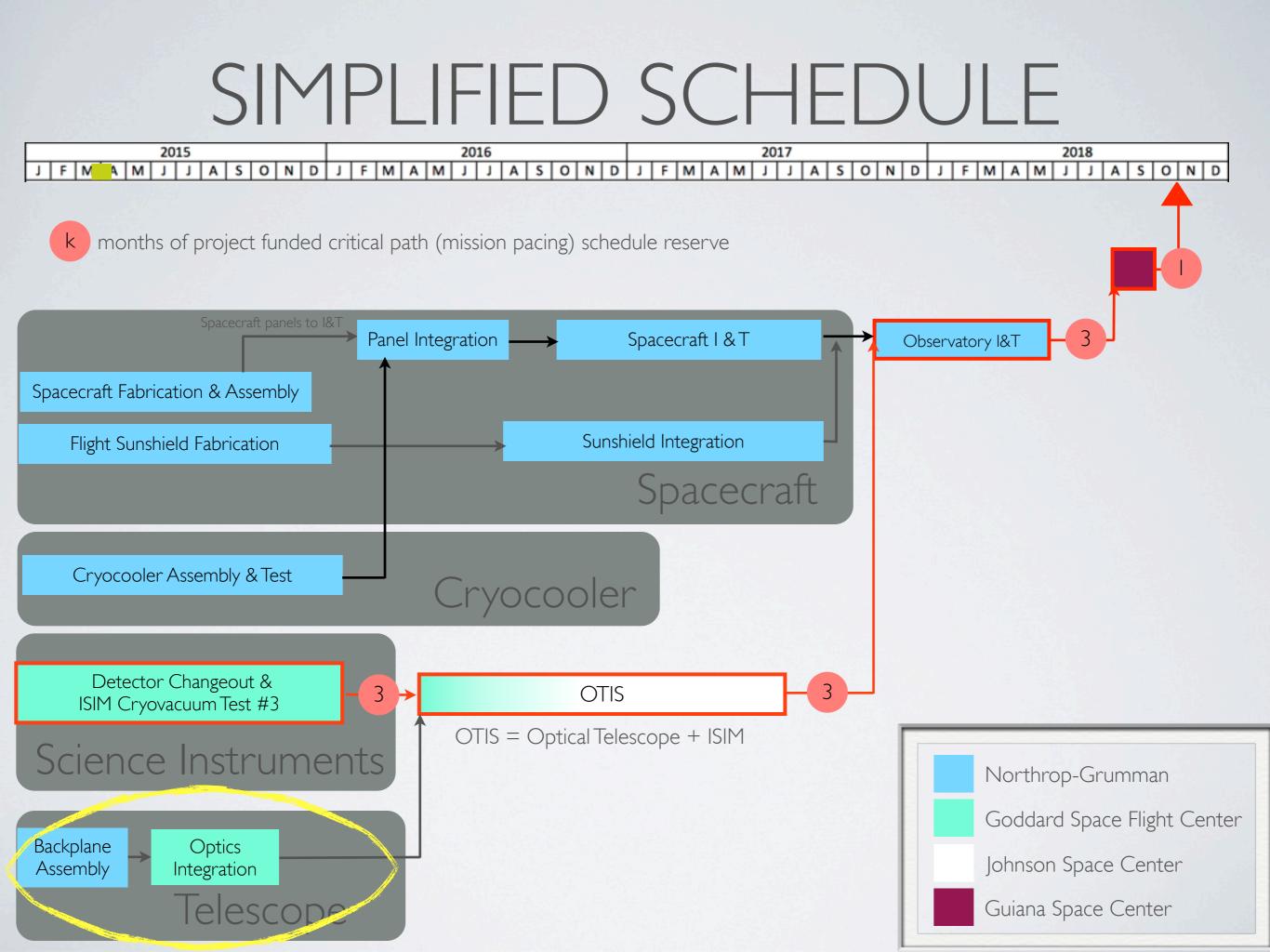
Short in NIRCam Sensor Chip Assembly (grounding and procedural issue) and SCA, light-mask interaction reworked, NIRCam ready for installation

Heat Straps: During CV2, thermal performance of MIRI, FGS, and NIRSpec was as expected. NIRCam thermal performance was different than expected, still within spec., but out of family with the other measured thermal performance. This NIRCam performance prompted ISIM I&T to check torques on NIRCam thermal strap joints. Loose bolts found. At the time, human error was believed to be root cause. However, a subsequent check of all heat straps determined that many had loose bolts. Attachment fixtures are being redesigned. This is the pacing activity for ISIM.

ISIM HEAT STRAPS

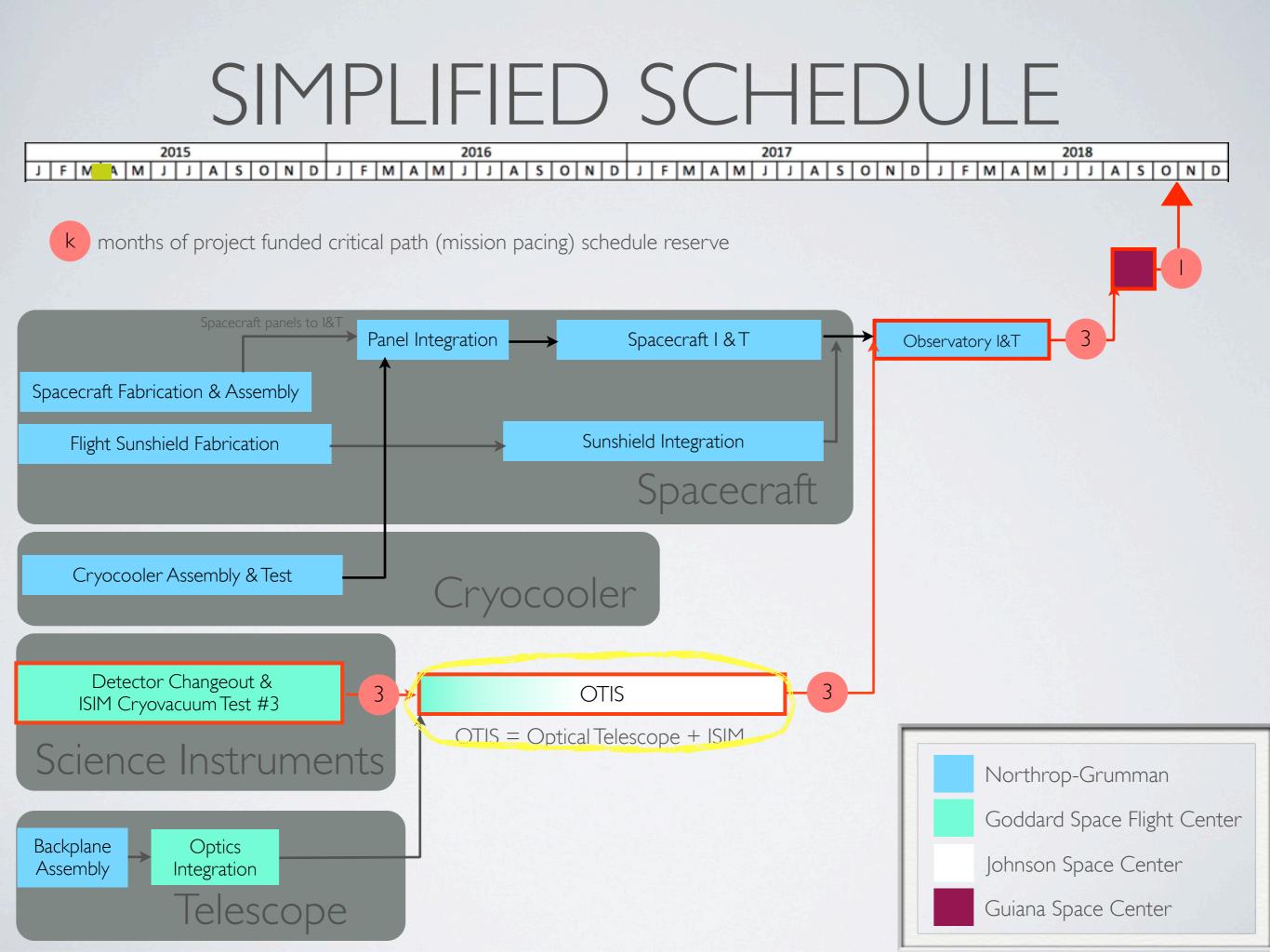


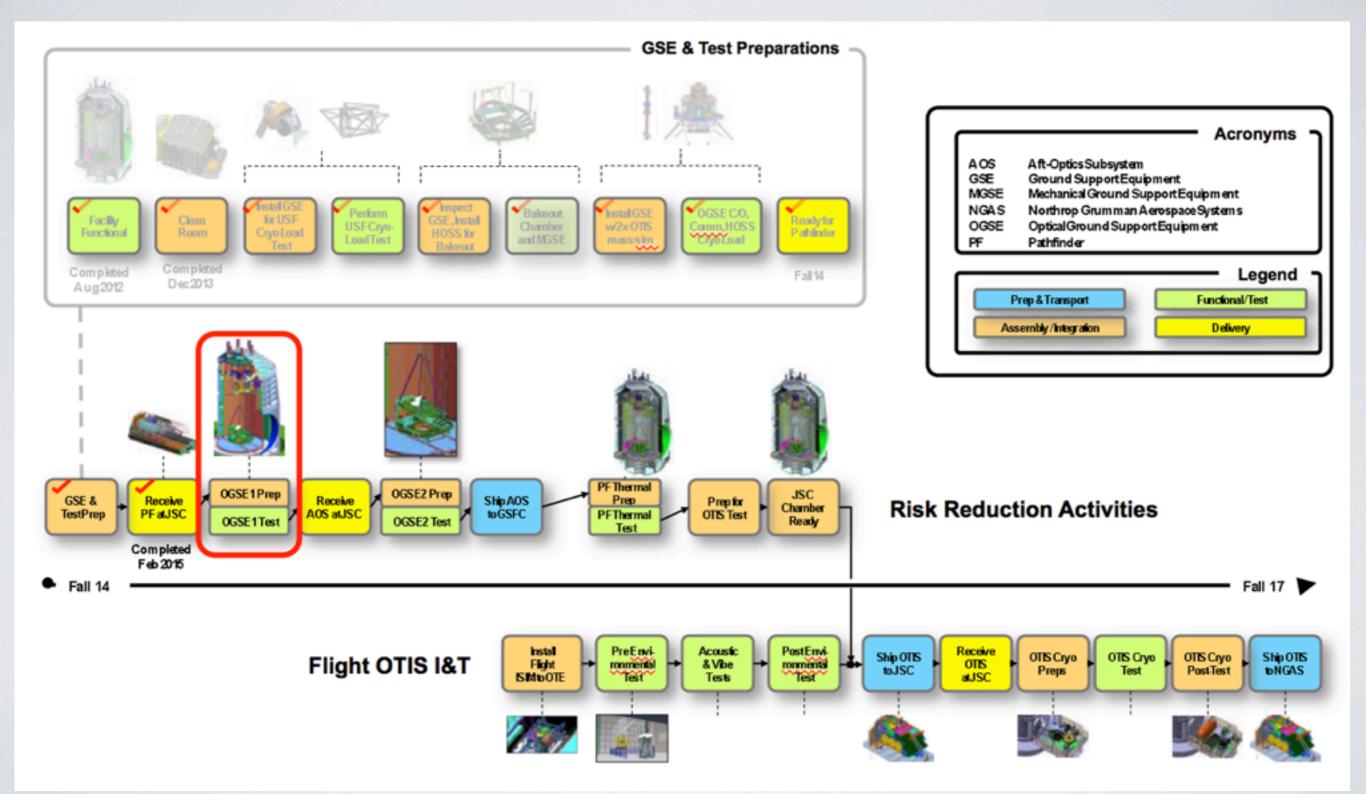
ISIM Prime Configuration Heat Strap Locations


ISIM INTEGRATION AND TEST

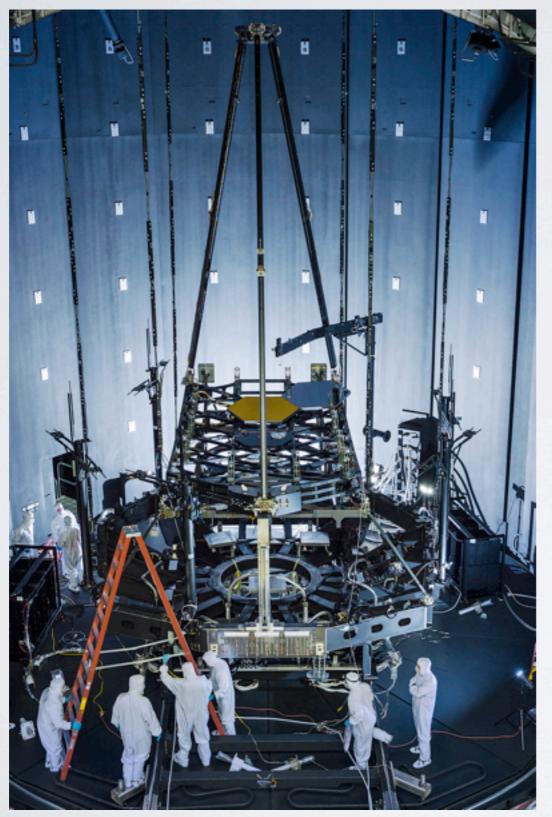
ISIM CRYOVAC #3

10

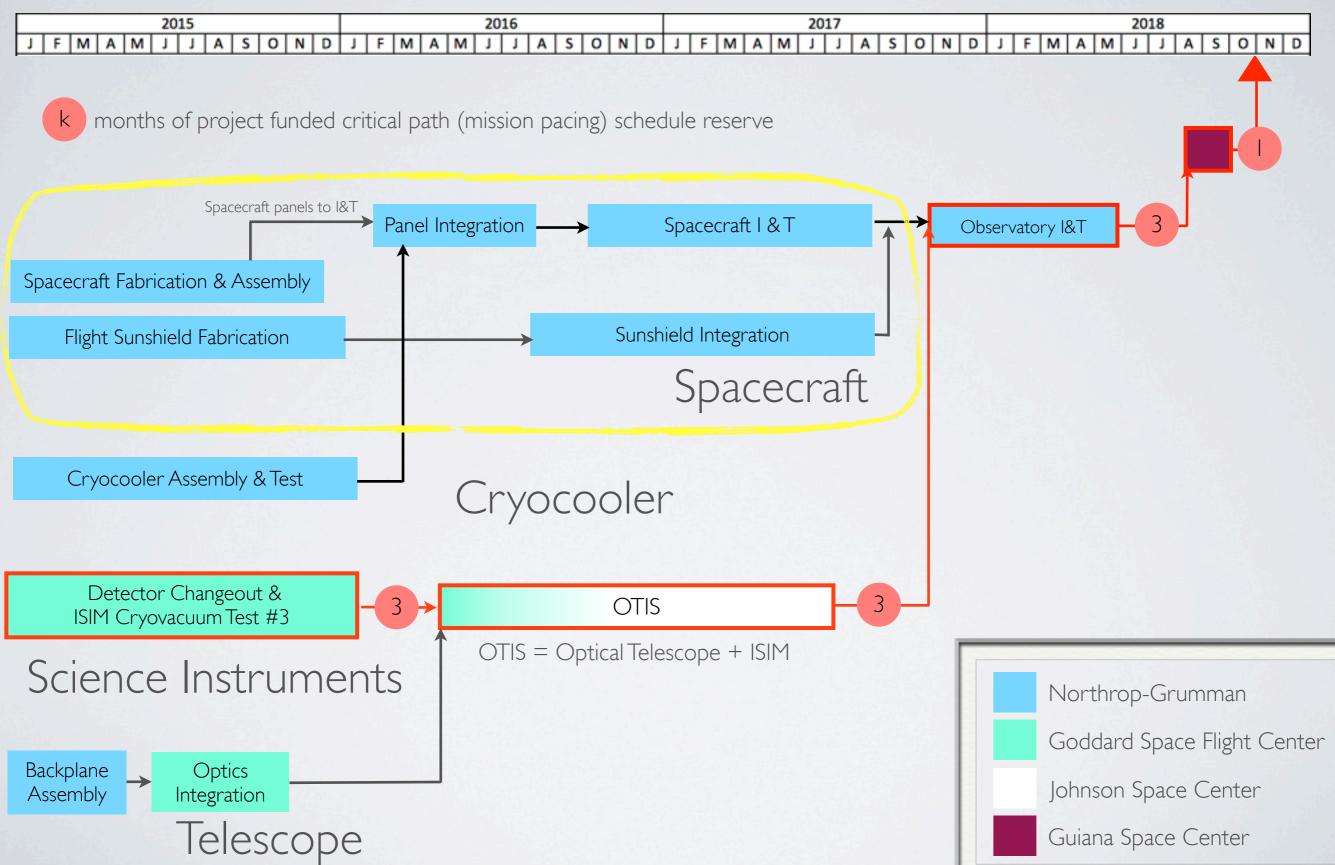

TELESCOPE: BACKPLANE


Backplane Center Section, Wings and secondary tower assembled at NGAS

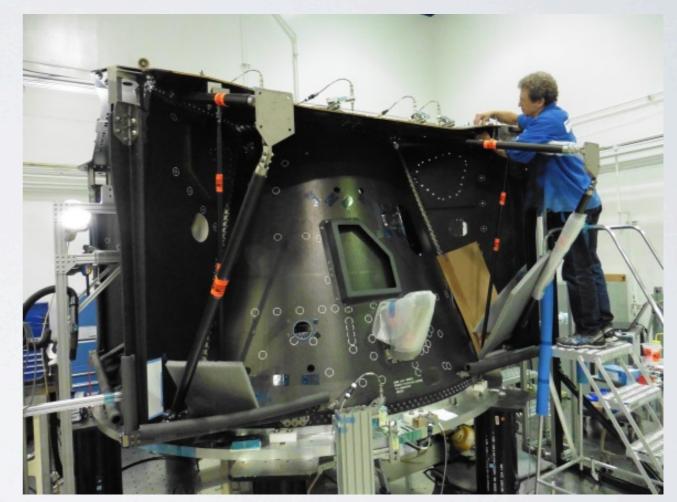
TELESCOPE ISSUES


- Working issue with Telescope wire harnesses showing nicks or cuts near their connectors.
- Fix to wire stripping and handling procedures put in place at the manufacturer. Project working remanufacturing schedule with vendor and Northrop-Grumman.
- Project evaluating the optimum sequence now for installing harnesses with the rest of the telescope build-up

OTIS TEST FLOW



TELESCOPE: PATHFINDER


Pathfinder with Two Flight Spare Mirror Segments and spare Secondary Mirror heading in the JSC Chamber A

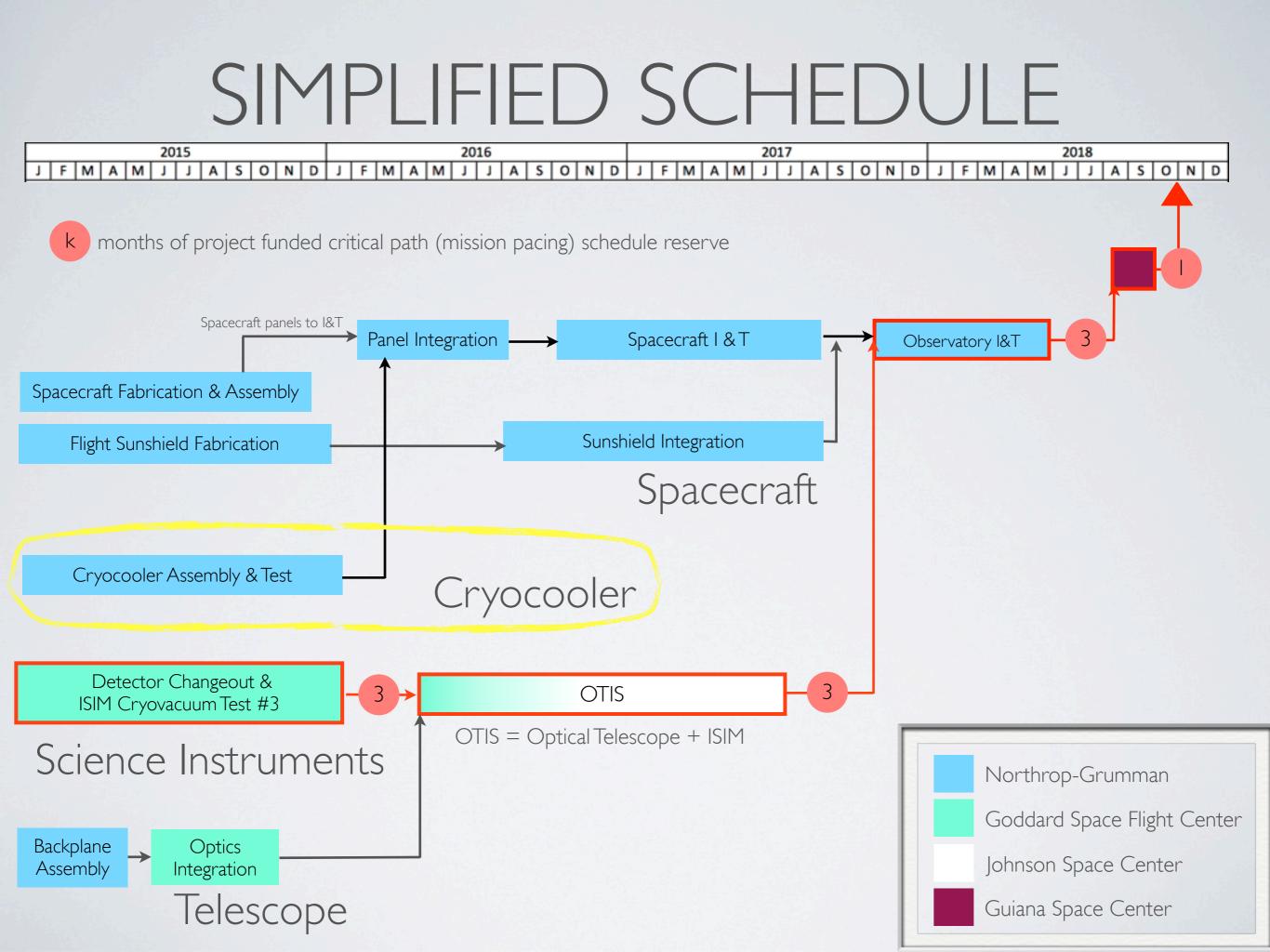
SIMPLIFIED SCHEDULE

SPACECRAFT

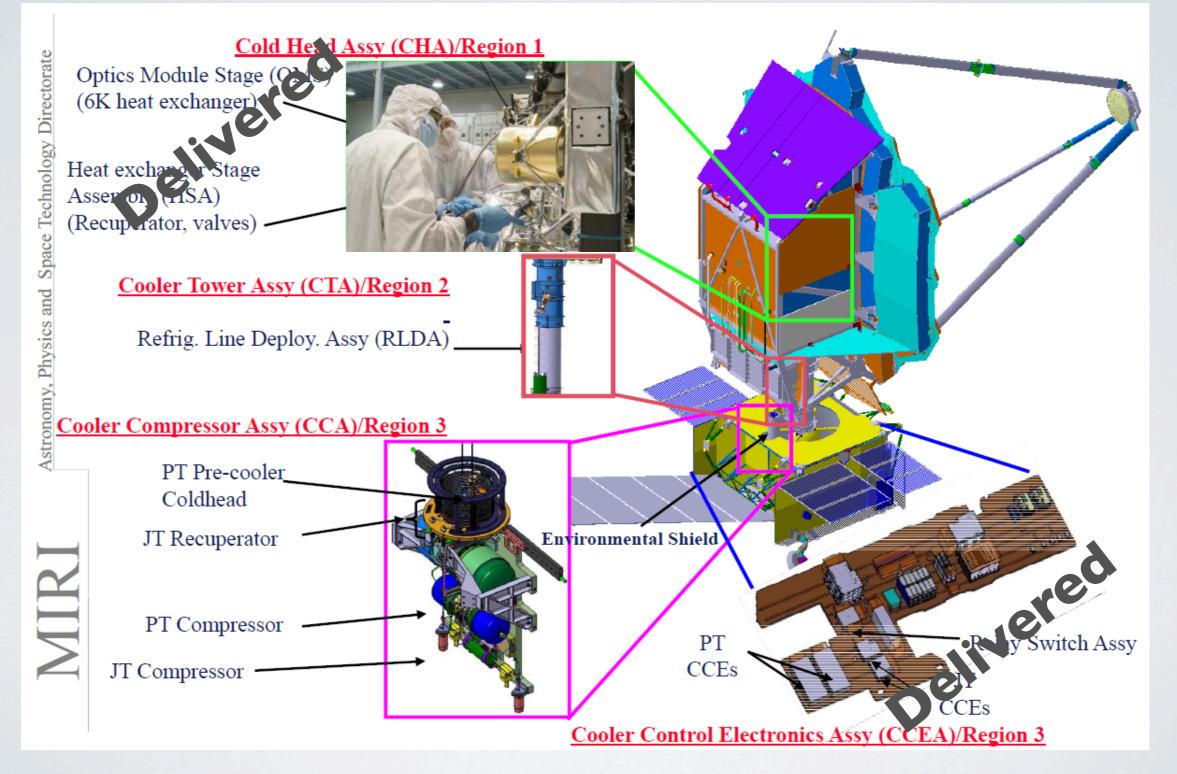
- Spacecraft build proceeding well
- >99% of Observatory, by mass, now built, in fabrication, or ready for fabrication, >60% of Observatory mass is measured mass

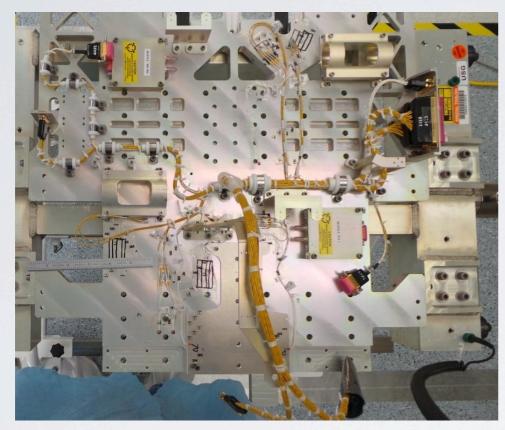
Spacecraft Bus

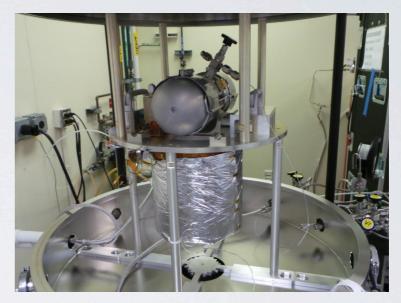
star Tracker Mockup

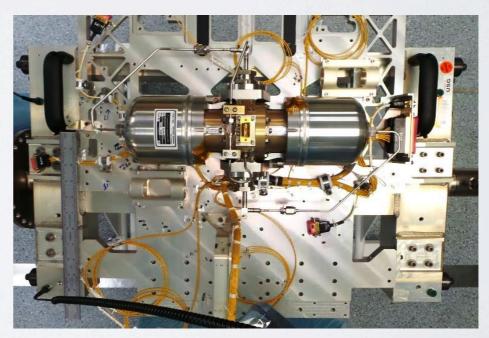

SPACECRAFT: SUNSHIELD

All full-scale engineering deployment testing successful


Flight Sunshield manufacturing underway: Layer 3 complete, Layer 4 halfway through hole-punching, Layer 5 seamed, Layer 2 gores cuts


Completed Aft Unitized Pallet Structure


CRYOCOOLER HARDWARE


CCA COMPONENTS

Harness Installation with Splices

CCA Thermal Performance Test

Joule-Thompson Compressor Fit-Check

TECHNICAL PERFORMANCE METRICS

Image Quality Parameters Strehl (NIR 2 microns) 0.80 0.836 Strehl at $\lambda = 2.0$ Hm From SLR Strehl (NIR 2 microns) 0.80 0.936 Strehl at $\lambda = 2.0$ Hm From SLR NIRCspec Channel Wavefront Error (nm) 123 Rev W (v2.1 (2) WFE Budget NIRSpec Channel Wavefront Error (nm) 238 218 Rev W (v2.1 (2) WFE Budget NIRSS Channel Wavefront Error (nm) 421 224 Rev W (v2.1 (2) WFE Budget ES stability at 2 microns Over 14 days 2.30% 0.81% From SLR EE Stability at 2 microns Over 14 days 3.00% 5.3 From SLR Deparations Parameters 0.00 77.0% From "Observation Efficiency Allocations Report JWST-RPT-004166, Revision F" Silew Time for 90 Degree Silew with 5 RWAs (min) 60.0 57.3 Predictor as cited in Pointing Budget D36177 RevH Para 5.1 Momentum Accumulation LV1 (Mms/d) 22 18.10 Updated on 81-2013 (13.JWST-207D) from Torque Tables for SC Bus IM Cycle (N Cryo Parasitic Margin (NIRCam) 60% 78.3% Predicts with Liens and Accepted Opportunities per 2015.03.04, Obs. v6.3m, LTC Cryo Parasitic Margin (Firedry) 41K (TBR) 41.5	Performance / Resource Parameters	Capability / Requirement	Estimate or Predict 3-15	Comments
INRCarr Even (m) Level 1 11.4 10.2 Prediction at EOL from 5-19-13 SI TPM Report MIRI SI sensitivity @ 10 microns (h/y) 700 679 Prediction at EOL from 5-19-13 SI TPM Report Straylight (MJyister @) NIR 2 microns) 0.091 0.089 Prediction from 4-7-14 Integrated Modeling Review Straylight (MJyister @) NIR 3 microns) 0.07 0.066 Prediction from 4-7-14 Integrated Modeling Review Straylight (MJyister @) NIR 10 microns) 3.3 0.74 Prediction from 4-7-14 Integrated Modeling Review Straylight (MJyister @) NIR 10 microns) 200 174 Prediction Tom 3-15 AWG including LTO OTE Transmission'A pr 22 2213 03 20 Transmission X budget - RevEx/stx predictions at 2 microns min marge fragge Quality Parameters Strehl (NIR 5.6 microns) 0.80 0.838 Strehl at ^= 2.0 Pm From SLR NIRCarn ChannelWasefont Error (nm) 1525 Rev W (v2.1 (2) WEE Budget NIRCarn ChannelWasefont Error (nm) 421 2244 Rev W (v2.1 (2) WEE Budget NIRCS preconsol Over 24 hours 2.07% B 76% From SLR EE Stability at 2 microns Over 24 hours 2.07% B 76% From SUB </th <th>Sensitivity Parameters</th> <th></th> <th></th> <th></th>	Sensitivity Parameters			
NRR Si Sensitivity @ 10 microns (n/y) 700 879 Prediction at EOL from 6-19-13 SI TPM Report Straylight (MJyister @ NR 3 microns) 0.07 0.086 Prediction from 4-7-14 Integrated Modeling Review Straylight (MJyister @ NR 10 microns) 3.0 0.74 Prediction from 4-7-14 Integrated Modeling ITO Straylight (MJyister @ NR 20 microns) 200 174 Predict from 3-9-15 AWG including ITO OTE Transmission* Ap m ⁴ 22 22.219 2013 02 Transmission X Budget - RevE.xisx predictions at 2 microns min marge fragments Strahl (NR 2, microns) 0.80 0.836 Strahl at $h = 2.0$ Hm from SLR NRCan ChannelWavefont Error (nm) 160 128 Rev W (02.1 (2) WFE Budget NRSS Channel Wavefont Error (nm) 180 180 Rev W (02.1 (2) WFE Budget NRSS Channel Wavefont Error (nm) 421 224 Rev W (02.1 (2) WFE Budget NRSS Channel Wavefont Error (nm) 421 224 Rev W (02.1 (2) WFE Budget NRSS Channel Wavefont Error (nm) 421 224 Rev W (02.1 (2) WFE Budget NRSS Channel Wavefont Error (nm) 421 224 Rev M (02.1 (2) WFE Budget NRSS Channel Wa		11.4	102	Prediction at EOL from 6-19-13 SI TPM Report
Straylight (MJyster @ NIR 2 microns) 0.041 0.089 Prediction from 4-7-14 Integrated Modeling Review Straylight (MJyster @ NIR 10 microns) 3.9 0.74 Prediction from 4-7-14 Integrated Modeling Review Straylight (MJyster @ NIR 20 microns) 200 174 Prediction from 4-7-14 Integrated Modeling Review Straylight (MJyster @ NIR 20 microns) 200 174 Predict from 3-9-15 AWG including LTO OTE: Transmission? A prime 22 22.21 22.	• - • •			
Straylight (MJy/ster @ NIR 3 microns) 0.07 0.086 Predict from 3-9-15 AWG including LTO Straylight (MJy/ster @ MIR 20 microns) 20 174 Predict from 3-9-15 AWG including LTO Straylight (MJy/ster @ MIR 20 microns) 200 174 Predict from 3-9-15 AWG including LTO OTE Transminssion* A pm* 22 22.219 2010 320 Transmission X Budget - RevE.xlsx predictions at 2 microns min marg Image Quality Parameters Streht (MIR 2 microns) 0.80 0.936 Streht at $\lambda = 2.0$ Iwm From SLR NIRSpec Channel Wavefront Error (nm) 150 128 Rev W (2.1 (2) WFE Budget NIRSpec Channel Wavefront Error (nm) 232 218 Rev W (2.1 (2) WFE Budget NIRSpec Channel Wavefront Error (nm) 421 224 Rev W (2.1 (2) WFE Budget NIRSpec Channel Wavefront Error (nm) 421 224 Rev W (2.1 (2) WFE Budget EE Stability at 2 microns Over 14 days 3.00% 1.95% From SLR Operations Parameters 5.3 From "Observation Efficiency Allocations Report JWST-RPT-004166, Revision F" Sitem Time for 90 Degree Size with 5 RWAs (min) 60.0 57.3 Predicts ma 3.00% 1.95%		0.091	0.089	
Straylight (MJy/ster @ MIR 10 microns) 3.9 0.74 Predict from 3-9-15 AVIG including LTO Straylight (MJy/ster @ MIR 20 microns) 200 174 Predict from 3-9-15 AVIG including LTO OTE Transinission' Ap m ² 22 22.219 2013 03 20 Transmission X Budget - RevE.xlsx predictions at 2 microns min marg Image Quality Parameters 5 22.2219 2013 03 20 Transmission X Budget - RevE.xlsx predictions at 2 microns min marg Streht (MR 5.6 microns) 0.80 0.936 Streht lot X = 5.6 km from SLR NIRCam ChannelWavefont Error (nm) 150 122 Rev W (Q.1 (2) WFE Budget NIRCam ChannelWavefont Error (nm) 421 224 Rev W (Q.2 (2) WFE Budget NIRIS Channel Wavefont Error (nm) 421 224 Rev W (Q.2 (2) WFE Budget E Stability at 2 microns Over 24 hours 2.30% 0.81% From SLR E Stability at 2 microns Over 24 hours 3.00% 1.05% From SLR Image Mucton ms for 15 sec Sidinging Window for NIRCam (mas) 6.6 5.3 From SLR Operations Parameters 70% 77.0% From "Obsendion Efficiency Allocations Report JWST-RPT-004166, Revision F" S		0.07	0.066	
Straylight (MJy/ster @ MIR 20 microns) 200 174 Predict from 39-15 AWG including LTO OTE Transmission' Ap m ⁴ 22 22.219 2013 03 20 Transmission X Budget - RexE.xlsx predictions at 2 microns min marg image Quality Parameters Strehl (MR 2 microns) 0.80 0.836 Strehl at λ = 2.0 km From SLR Strehl (MR 2 fs microns) 0.80 0.836 Strehl at λ = 2.0 km From SLR NIRScenchamel Wavefont Error (nm) 150 126 Rev W (v2.1 (2) WFE Budget NIRSS Channel Wavefont Error (nm) 180 135 Rev W (v2.1 (2) WFE Budget NIRS Channel Wavefont Error (nm) 421 224 Rev W (v2.1 (2) WFE Budget El Stability at 2 microns Over 14 days 3.00% 1.95% From SLR El Stability at 2 microns Over 14 days 3.00% 1.95% From SLR Operations Parameters Coperations Parameters From SLR Coperations Report JMOST RevH Para 5.1 Momentum Accumulation LV1 (Nms/d) 22 18.10 Updated on 81-2013 (13.1WST-2070) from Torque Tables for SC Bus IM Cycle (Norder Margin (RIRSpec FPA) 60% 68.8% Predicts with Liens and Accepted Opportunities per 2015.03.40_obs_6.3m_LTC Cryo Parast		3.9	0.74	
OTE Transimission: Ap m ² 22 222 2013 03 20 Transmission X Budget - RevE xlsx predictions at 2 microns min marg Image Quality Parameters Strehl (NR 2 microns) 0.80 0.806 Strehl at $\lambda = 2.0$ Hm From SLR Strehl (NR 5.6 microns) 0.80 0.906 Strehl at $\lambda = 2.0$ Hm From SLR NIRCam Channel Wavefont Error (nm) 150 125 Rev W (v2.1 (2) WFE Budget NIRS be Channel Wavefont Error (nm) 238 218 Rev W (v2.1 (2) WFE Budget NIRS be Channel Wavefont Error (nm) 421 224 Rev W (v2.1 (2) WFE Budget EE Stability at 2 microns Over 24 hours 2.30% 0.81% From SLR EE Stability at 2 microns Over 14 days 3.00% 1.65% From SLR Observing Efficiency 70% 77.0% Frodici		200	174	Predict from 3-9-15 AWG including LTO
Image Quality Parameters 0.80 0.836 Strehl (MR 2 microns) Strehl (MR 2 microns) 0.80 0.836 Strehl at $\lambda = 2.0$ Hm From SLR Strehl (MR 5 6 microns) 0.80 0.936 Strehl at $\lambda = 2.0$ Hm From SLR NIRGam ChannelWavefont Error (nm) 238 218 Rev W (0.2.1 (2) WFE Budget NIRSpec Channel Wavefont Error (nm) 238 218 Rev W (0.2.1 (2) WFE Budget NIRSbec Channel Wavefont Error (nm) 421 224 Rev W (0.2.1 (2) WFE Budget El Stability at 2 microns Over 24 hours 2.30% 0.81% From SLR El Stability at 2 microns Over 14 days 3.00% 1.95% From SLR Image Motion ms for 15 sec Stidinging Window for NiRCam (mas) Operations Parameters 0.00 57.3 Prom "Observation Efficiency Allocations Report JWST-RPT-004166, Revision F" Stew Time for 90 Degree Slew with 5 RWAs (min) 60.0 57.3 Prom "Observation Efficiency Allocations Report JWST-RPT-004166, Revision F" Stew Time for 90 Degree Slew with 5 RWAs (min) 60.0 57.3 Prodiction as cited in Pointing Budget D36177 RevH Pars 5.1 Momentum Accumulation LV1 (Nms/d) 22 18.10 Updated on 8-1-2013 (13-J		22	22.219	2013 03 20 Transmission X Budget - RevE.xlsx predictions at 2 microns min margin wavelength
Strehl (MR 5.6 microns) 0.80 0.936 Strehl at A = 5.6 km from SLR NRCam ChannelWavefont Error (nm) 150 125 RevW (v2.1 (2) WFE Budget NRSpec Channel Wavefont Error (nm) 238 218 RevW (v2.1 (2) WFE Budget NRS pac Channel Wavefont Error (nm) 180 135 RevW (v2.1 (2) WFE Budget MRI Channel Wavefont Error (nm) 421 224 RevW (v2.1 (2) WFE Budget EE Stability at 2 microns Over 24 hours 2.30% 0.81% From SLR EE Stability at 2 microns Over 14 days 3.00% 6.6 5.3 From SLR Observing Efficiency 70% 77.0% From "Observation Efficiency Allocations Report JWST-RPT-004166, Revision F" Stew Time for 90 Degree Siew with 5 RWAs (min) 60.0 57.3 Prediction as cited in Pointing Budget D36177 RevH Para 5.1 Momentum Accumulation LV1 (Mms/d) 22 18 100 Updated on 8-1-2013 (13-JWST-207D) from Torque Tables for SC Bus IM Cycle (Nomentum Accumulation LV1 (Mms/d) 23 18 50 Updated on 8-1-2013 (13-JWST-207D) from Torque Tables for SC Bus IM Cycle (Nomentum Accumulation LV1 (Mms/d) 23 18 50 Updated on 8-1-2013 (13-JWST-207D) from Torque Tables for SC Bus IM Cycle (Norpo Parastic Margin (NIRCam) 60% 60% 68.8% Predicits			•	
NIRCam Channel Wavefont Error (nm) 150 125 Rev W (v2.1 (2) WFE Budget NIRSpe Channel Wavefont Error (nm) 238 218 Rev W (v2.1 (2) WFE Budget NIRSD Channel Wavefont Error (nm) 130 Rev W (v2.1 (2) WFE Budget MIRS Channel Wavefont Error (nm) 421 224 Rev W (v2.1 (2) WFE Budget EE Stability at 2 microns Over 14 days 2.00% 0.81% From SLR EE Stability at 2 microns Over 14 days 3.00% 1.95% From SLR Observing Efficiency 6.6 5.3 From SLR Observing Efficiency 70% 77.0% From "Observation Efficiency Allocations Report JWST-RPT-004166, Revision F" Slew Time for 90 Degree Slew with 5 RWAs (min) 60.0 57.3 Predicton as cited in Pointing Budget D38177 RevH Para 5.1 Momentum Accumulation LV4 (Nms/d) 22 18.10 Updated on 8-1-2013 (13.JWST-207D) from Torque Tables for SC Bus IM Cycle (N Cryo Parasitic Margin (NIRCam) 60% 78.3% Predicts with Liens and Accepted Opportunities per 2015.03.04_Obs_v6.3m_LTC Cryo Parasitic Margin (NIRSpec FPA) 60% 68.8% Predicts with Liens and Accepted Opportunities per 2015.03.04_Obs_v6.3m_LTC SIM Cavity Temperature (K) 411K (TBR)	Strehl (NIR 2 microns)	0.80	0.836	Strehl at λ = 2.0 µm From SLR
NIRSpec Channel Wavefont Error (nm) 238 218 Rev W (v2.1 (2) WFE Budget NIRISS Channel Wavefont Error (nm) 180 135 Rev W (v2.1 (2) WFE Budget NIRISS Channel Wavefont Error (nm) 421 224 Rev W (v2.1 (2) WFE Budget EE Stability at 2 microns Over 24 hours 2.30% 0.81% From SLR EE Stability at 2 microns Over 24 hours 0.80% 1.95% From SLR Mage Motion rms for 15 sec Slidinging Window for NIRCam (mas) 6.6 5.3 From SLR Observing Efficiency 70% 77.0% From SLR Slew Time for 90 Degree Slew with 5 RWAs (min) 60.0 57.3 Prediction as cited in Pointing Budget D36177 RevH Para 5.1 Momentum Accumulation LV1 (Nms/d) 23 18.00 Updated on 8-1-2013 (13.JWST-207D) from Torque Tables for SC Bus IM Cycle (N Cryo Parasitic Margin (NIRCam) 60% 78.3% Predicts with Liens and Accepted Opportunities per 2015.03.04_Obs_v6.3m_LTC Cryo Parasitic Margin (NIRCam) 60% 68.8% Predicts with Liens and Accepted Opportunities per 2015.03.04_Obs_v6.3m_LTC Cryo Parasitic Margin (NIRCam) 60% 68.8% Predicts with Liens and Accepted Opportunities	Strehl (MIR 5.6 microns)	0.80	0.936	Strehl at λ = 5.6 µm from SLR
NIRSpec Channel Wavefont Error (nm) 238 218 Rev W (v2.1 (2) WFE Budget NIRISS Channel Wavefont Error (nm) 180 135 Rev W (v2.1 (2) WFE Budget NIRISS Channel Wavefont Error (nm) 421 224 Rev W (v2.1 (2) WFE Budget EE Stability at 2 microns Over 24 hours 2.30% 0.81% From SLR EE Stability at 2 microns Over 24 hours 0.80% 1.95% From SLR Mage Motion rms for 15 sec Slidinging Window for NIRCam (mas) 6.6 5.3 From SLR Observing Efficiency 70% 77.0% From SLR Slew Time for 90 Degree Slew with 5 RWAs (min) 60.0 57.3 Prediction as cited in Pointing Budget D36177 RevH Para 5.1 Momentum Accumulation LV1 (Nms/d) 23 18.00 Updated on 8-1-2013 (13.JWST-207D) from Torque Tables for SC Bus IM Cycle (N Cryo Parasitic Margin (NIRCam) 60% 78.3% Predicts with Liens and Accepted Opportunities per 2015.03.04_Obs_v6.3m_LTC Cryo Parasitic Margin (NIRCam) 60% 68.8% Predicts with Liens and Accepted Opportunities per 2015.03.04_Obs_v6.3m_LTC Cryo Parasitic Margin (NIRCam) 60% 68.8% Predicts with Liens and Accepted Opportunities	NIRCam ChannelWavefront Error (nm)	150	125	Rev W (v2.1 (2) WFE Budget
NIRISS Channel Wavefront Error (nm) 180 135 Rev W (v2.1 (2) WFE Budget MIRI Channel Wavefront Error (nm) 421 224 Rev W (v2.1 (2) WFE Budget EE Stability at 2 microns Over 24 hours 2.30% 0.81% From SLR EE Stability at 2 microns Over 14 days 3.00% 1.95% From SLR Image Motion rms for 15 sec Slidinging Window for NIRCam (mas) 6.6 5.3 From "Observation Efficiency Allocations Report JWST-RPT-004166, Revision F" Slew Time for 90 Degree Slew with 5 RWAs (min) 60.0 57.3 Prediction as cited in Pointing Budget D36177 RevH Para 5.1 Momentum Accumulation LV4 (Nms/d) 22 18.10 Updated on 81-2013 (13.JWST-207D) from Torque Tables for SC Bus IM Cycle (N Therma Parameters 70% 78.3% Predicts with Liens and Accepted Opportunities per 2015.03.04_Obs_v5.3m_LTC Cryo Parastitc Margin (NIRCam) 60% 78.3% Predicts with Liens and Accepted Opportunities per 2015.03.04_Obs_v5.3m_LTC Cryo Parastitc Margin (RS/NIRRSS) 60% 68.8% Predicts with Liens and Accepted Opportunities per 2015.03.04_Obs_v5.3m_LTC Cryo-Cooler Line Load Margin (Pinch Point / Steady State) 83% 113%/146% Cryo-Cooler Predicts from K. Banks and S. Th		238	218	
EE Stability at 2 microns Over 24 hours 2.30% 0.81% From SLR EE Stability at 2 microns Over 14 days 3.00% 1.95% From SLR Image Motion rms for 15 sec Sildinging Window for NIRCam (mas) 6.6 5.3 From SLR Operations Parameters 70% 77.0% From "Observation Efficiency Allocations Report JWST-RPT-004166, Revision F" Slew Time for 90 Degree Slew with 5 RWAs (min) 60.0 57.3 Prediction as cited in Pointing Budget D36177 RevH Para 5.1 Momentum Accumulation LV1 (Nms/d) 22 18.10 Updated on 8-1-2013 (13-JWST-207D) from Torque Tables for SC Bus IM Cycle (N Momentum Accumulation LV4 (Nms/d) 23 18.50 Updated on 8-1-2013 (13-JWST-207D) from Torque Tables for SC Bus IM Cycle (N Cryo Parastic Margin (NIRCam) 60% 78.3% Predicts with Liens and Accepted Opportunities per 2015.03.04_Obs_v5.3m_LTC Cryo Parastic Margin (NIRSec FPA) 60% 69.8% Predicts with Liens and Accepted Opportunities per 2015.03.04_Obs_v5.3m_LTC Cryo-Cooler Line Load Margin (Pinch Point / Steady State) 83% 113%/146% Cryo-Cooler Predicts from K. Banks and S. Thomson Mar 2015 Predict + Liens) Data and Link Parameters 3.00 5.80 Adverse Margin From 2013.11.01 S-Band Link (SC CDR).pdf (SC Onni at 2000 b S-Ba	NIRISS Channel Wavefront Error (nm)	180	135	
EE Stability at 2 microns Over 24 hours 2.30% 0.81% From SLR EE Stability at 2 microns Over 14 days 3.00% 1.95% From SLR Image Motion rms for 15 sec Sildinging Window for NIRCam (mas) 6.6 5.3 From SLR Operations Parameters 70% 77.0% From "Observation Efficiency Allocations Report JWST-RPT-004166, Revision F" Slew Time for 90 Degree Slew with 5 RWAs (min) 60.0 57.3 Prediction as cited in Pointing Budget D36177 RevH Para 5.1 Momentum Accumulation LV1 (Nms/d) 22 18.10 Updated on 8-1-2013 (13-JWST-207D) from Torque Tables for SC Bus IM Cycle (N Momentum Accumulation LV4 (Nms/d) 23 18.50 Updated on 8-1-2013 (13-JWST-207D) from Torque Tables for SC Bus IM Cycle (N Cryo Parastic Margin (NIRCam) 60% 78.3% Predicts with Liens and Accepted Opportunities per 2015.03.04_Obs_v6.3m_LTC Cryo Parastic Margin (NIRCam) 60% 69.8% Predicts with Liens and Accepted Opportunities per 2015.03.04_Obs_v6.3m_LTC Cryo-Cooler Line Load Margin (Pinch Point / Steady State) 83% 113%/148% Cryo-Cooler Predicts from K. Banks and S. Thomson Mar 2015 Predict + Liens) Data and Link Parameters 3.00 5.80 Adverse Margin From 2013.11.01 S-Band Link (SC CDR).pdf (SC Onni at 2000 b	MIRI Channel Wavefront Error (nm)	421	224	Rev W (v2.1 (2) WFE Budget
Image Motion ms for 15 sec Slidinging Window for NIRCam (mas) 6.6 5.3 From SLR Operations Parameters 70% 77.0% From "Observation Efficiency Allocations Report JWST-RPT-004166, Revision F" Slew Time for 90 Degree Slew with 5 RWAs (min) 60.0 57.3 Prediction as cited in Pointing Budget D36177 RevH Para 5.1 Momentum Accumulation LV1 (Nms/d) 22 18.10 Updated on 8-1-2013 (13-JWST-207D) from Torque Tables for SC Bus IM Cycle (N Thermal Parameters 70% 78.3% Predicts with Liens and Accepted Opportunities per 2015.03.04_Obs_65.3m_LTC Cryo Parasitic Margin (NIRSpec FPA) 60% 68.8% Predicts with Liens and Accepted Opportunities per 2015.03.04_Obs_65.3m_LTC Cryo Parasitic Margin (NIRSpec FPA) 60% 65.8% Predicts with Liens and Accepted Opportunities per 2015.03.04_Obs_65.3m_LTC Cryo Parasitic Margin (NIRSpec FPA) 60% 65.8% Predicts with Liens and Accepted Opportunities per 2015.03.04_Obs_65.3m_LTC Cryo-Cooler Line Load Margin (Pinch Point / Steady State) 83% 113%/146% Cryo-Cooler Predicts from K. Banks and S. Thomson Mar 2015 Predict + Liens) Orgo-Cooler OM Load Margin (B) 3.00 5.80 Adverse Margin From 2013.11.01 S-Band Link (SC CDR).pdf (SC Omni at 2000 b S-Band Dwnlink Margin (dB) 3.00 5.8	EE Stability at 2 microns Over 24 hours	2.30%	0.81%	
Operations Parameters Observing Efficiency 70% 77.0% From "Observation Efficiency Allocations Report JWST-RPT-004166, Revision F." Slew Time for 90 Degree Slew with 5 RWAs (min) 60.0 57.3 Prediction as cited in Pointing Budget D36177 RevH Para 5.1 Momentum Accumulation LV1 (Nms/d) 22 18.10 Updated on 8-1-2013 (13-JWST-207D) from Torque Tables for SC Bus IM Cycle (N Momentum Accumulation LV4 (Nms/d) 23 18.50 Updated on 8-1-2013 (13-JWST-207D) from Torque Tables for SC Bus IM Cycle (N Thermal Parameters Cryo Parasitic Margin (NIRCam) 60% 78.3% Predicts with Liens and Accepted Opportunities per 2015.03.04_Obs_v6.3m_LTC Cryo Parasitic Margin (NIRSpec FPA) 60% 65.8% Predicts with Liens and Accepted Opportunities per 2015.03.04_Obs_v6.3m_LTC Cryo-Cooler Line Load Margin (Pinch Point / Steady State) 83% 113%/146% Cryo-Cooler Predicts from K. Banks and S. Thomson Mar 2015 Predict + Liens) Cryo-Cooler OM Load Margin (B) 3.00 5.80 Adverse Margin From 2013.11.01 S-Band Link (SC CDR).pdf (SC Omni at 2000 b S-Band Downlink Margin (dB) 3.00 5.80 Adverse Margin From 2013.11.01 S-Band Link (SC CDR).pdf (SC Omni at 2000 b S-Band Downlink Margin (dB) 3.00 <	EE Stability at 2 microns Over 14 days	3.00%	1.95%	From SLR
Observing Efficiency 70% 77.0% From "Observation Efficiency Allocations Report JWST-RPT-004166, Revision F" Slew Time for 90 Degree Slew with 5 RWAs (min) 60.0 57.3 Prediction as cited in Pointing Budget D36177 RevH Para 5.1 Momentum Accumulation LV1 (Nms/d) 22 18.10 Updated on 8-1-2013 (13-JWST-207D) from Torque Tables for SC Bus IM Cycle (N Momentum Accumulation LV4 (Nms/d) 23 18.50 Updated on 8-1-2013 (13-JWST-207D) from Torque Tables for SC Bus IM Cycle (N Momentum Accumulation LV4 (Nms/d) 23 18.50 Updated on 8-1-2013 (13-JWST-207D) from Torque Tables for SC Bus IM Cycle (N Thermal Parameters 70% 78.3% Predicts with Liens and Accepted Opportunities per 2015.03.04_Obs_v5.3m_LTC Cryo Parasitic Margin (FIRSPE FPA) 60% 69.8% Predicts with Liens and Accepted Opportunities per 2015.03.04_Obs_v6.3m_LTC Cryo-Parasitic Margin (FIRSPE FPA) 60% 69.8% Predicts with Liens and Accepted Opportunities per 2015.03.04_Obs_v6.3m_LTC Cryo-Cooler Line Load Margin (Pinch Point / Steady State) 83% 113%/146% Cryo-Cooler Predicts from K. Banks and S. Thomson Mar 2015 Predict + Liens) Data and Uhink Margin (dB) 3.00 5.80 Adverse Margin From 2013.11.01 S-Band Link (SC CDR).pdf (SC Omni at 2000	Image Motion rms for 15 sec Slidinging Window for NIRCam (mas)	6.6	5.3	From SLR
Slew Time for 90 Degree Slew with 5 RWAs (min) 60.0 57.3 Prediction as cited in Pointing Budget D36177 RevH Para 5.1 Momentum Accumulation LV1 (Nms/d) 22 18.10 Updated on 8-1-2013 (13-JWST-207D) from Torque Tables for SC Bus IM Cycle (N Momentum Accumulation LV4 (Nms/d) 23 18.50 Updated on 8-1-2013 (13-JWST-207D) from Torque Tables for SC Bus IM Cycle (N Thermal Parameters Thermal Parameters 60% 78.3% Predicts with Liens and Accepted Opportunities per 2015.03.04_Obs_v6.3m_LTC Cryo Parastic Margin (NIRSpec FPA) 60% 69.8% Predicts with Liens and Accepted Opportunities per 2015.03.04_Obs_v6.3m_LTC Cryo Parastitic Margin (FGS/NIRISS) 60% 68.8% Predicts with Liens and Accepted Opportunities per 2015.03.04_Obs_v6.3m_LTC ISIM Cavity Temperature (K) 41K (TBR) 41.5 Predicts with Liens and Accepted Opportunities per 2015.03.04_Obs_v6.3m_LTC Cryo-Cooler Line Load Margin (Pinch Point / Steady State) 83% 113%/146% Cryo-Cooler Predicts from K. Banks and S. Thomson Mar 2015 Predict + Liens) Data and Link Parameters 5 83% 114%/55% Cryo-Cooler Predicts from K. Banks and S. Thomson Mar 2015 Predict + Liens) Data and Link Parameters 3.00 5.80 Adverse Margin From 2013.11.01 S-Band Link (SC CDR). pdf (SC Omni at 2000 b </td <td>Operations Parameters</td> <td></td> <td>•</td> <td></td>	Operations Parameters		•	
Momentum Accumulation LV1 (Nms/d) 22 18.10 Updated on 8-1-2013 (13-JWST-207D) from Torque Tables for SC Bus IM Cycle (N Momentum Accumulation LV4 (Nms/d) 23 18.50 Updated on 8-1-2013 (13-JWST-207D) from Torque Tables for SC Bus IM Cycle (N Thermal Parameters 0 18.50 Updated on 8-1-2013 (13-JWST-207D) from Torque Tables for SC Bus IM Cycle (N Cryo Parastic Margin (NIRCspe FPA) 60% 68.8% Predicts with Liens and Accepted Opportunities per 2015.03.04_Obs_v5.3m_LTC Cryo Parasitic Margin (RSNexpe FPA) 60% 66.8% Predicts with Liens and Accepted Opportunities per 2015.03.04_Obs_v5.3m_LTC Cryo Parasitic Margin (FGS/NIRISS) 60% 66.8% Predicts with Liens and Accepted Opportunities per 2015.03.04_Obs_v5.3m_LTC Cryo-Cooler Line Load Margin (Pinch Point / Steady State) 83% 113%/146% Cryo-Cooler Predicts from K. Banks and S. Thomson Mar 2015 Predict + Liens) Data and Link Parameters 83% 114%/55% Cryo-Cooler Predicts from K. Banks and S. Thomson Mar 2015 Predict + Liens) B-Band Uplink Margin (dB) 3.00 5.80 Adverse Margin From 2013.11.01 S-Band Link (SC CDR) .pdf (SC Omni at 2000 b S-Band Downlink Margin (dB) 3.00 3.00 4.44 Adverse Margin From 2013.10.31 Ka-band Link (SC CDR) .pdf (Both Omni's at L2 at Samad Uplink Margin (dB	Observing Efficiency	70%	77.0%	From "Observation Efficiency Allocations Report JWST-RPT-004166, Revision F"
Momentum Accumulation LV1 (Nms/d) 22 18.10 Updated on 8-1-2013 (13-JWST-207D) from Torque Tables for SC Bus IM Cycle (N Momentum Accumulation LV4 (Nms/d) 23 18.50 Updated on 8-1-2013 (13-JWST-207D) from Torque Tables for SC Bus IM Cycle (N Thermal Parameters 0 18.50 Updated on 8-1-2013 (13-JWST-207D) from Torque Tables for SC Bus IM Cycle (N Cryo Parastic Margin (NIRCspe FPA) 60% 68.8% Predicts with Liens and Accepted Opportunities per 2015.03.04_Obs_v5.3m_LTC Cryo Parasitic Margin (FGS/NIRISS) 60% 66.8% Predicts with Liens and Accepted Opportunities per 2015.03.04_Obs_v5.3m_LTC Cryo-Cooler Line Load Margin (Pinch Point / Steady State) 83% 113%/146% Cryo-Cooler Predicts from K. Banks and S. Thomson Mar 2015 Predict + Liens) Data and Link Parameters 83% 113%/146% Cryo-Cooler Predicts from K. Banks and S. Thomson Mar 2015 Predict + Liens) Data and Uplink Margin (dB) 3.00 5.80 Adverse Margin From 2013.11.01 S-Band Link (SC CDR) .pdf (SC Omni at 2000 b S-Band Downlink Margin (dB) 3.00 4.44 Adverse Margin From 2013.10.31 Ka-band Link (SC CDR) .pdf (28 Mbps) Observatory Resources 6620 6050 Estimate with Pendings From 3-12-15 Mass Report Observatory Resources	Slew Time for 90 Degree Slew with 5 RWAs (min)	60.0	57.3	Prediction as cited in Pointing Budget D36177 RevH Para 5.1
Thermal Parameters Cryo Parastic Margin (NIRCam) 60% 78.3% Predicts with Liens and Accepted Opportunities per 2015.03.04_Obs_v5.3m_LTC Cryo ParasiticMargin (NIRSpec FPA) 60% 69.8% Predicts with Liens and Accepted Opportunities per 2015.03.04_Obs_v5.3m_LTC Cryo Parasitic Margin (FGS/NIRISS) 60% 65.8% Predicts with Liens and Accepted Opportunities per 2015.03.04_Obs_v5.3m_LTC ISIM Cavity Temperature (K) 41K (TBR) 41.5 Predicts with Liens and Accepted Opportunities per 2015.03.04_Obs_v5.3m_LTC Cryo-Cooler Line Load Margin (Pinch Point / Steady State) 83% 113%/146% Cryo-Cooler Predicts from K. Banks and S. Thomson Mar 2015 Predict + Liens) Cryo-Cooler OM Load Margin (Pinch Point / Steady State) 83% 114%/55% Cryo-Cooler Predicts from K. Banks and S. Thomson Mar 2015 Predict + Liens) Data and Link Parameters 83% 114%/55% Cryo-Cooler Predicts from K. Banks and S. Thomson Mar 2015 Predict + Liens) S-Band Uplink Margin (dB) 3.00 5.80 Adverse Margin From 2013.11.01 S-Band Link (SC CDR) .pdf (SC Omni at 2000 b S-Band Downlink Margin (dB) 3.00 4.44 Adverse Margin From 2013.10.31 Ka-band Link (SC CDR) .pdf (Both Omni's at L2 at Ka-Band Downlink Margin (dB) 3.00 4.44 Adverse Margin From 3.10.31 Ka-band Link (SC CDR) .pdf (28 Mbps) Observa		22	18.10	Updated on 8-1-2013 (13-JWST-207D) from Torque Tables for SC Bus IM Cycle (Nom+rss)*MUF
Cryo Parastic Margin (NIRCam)60%78.3%Predicts with Liens and Accepted Opportunities per 2015.03.04_Obs_6.3m_LTCCryo Parasitic Margin (NIRSpec FPA)60%69.8%Predicts with Liens and Accepted Opportunities per 2015.03.04_Obs_6.3m_LTCCryo Parasitic Margin (FGS/NIRISS)60%65.8%Predicts with Liens and Accepted Opportunities per 2015.03.04_Obs_6.3m_LTCISIM Cavity Temperature (K)41K (TBR)41.5Predicts with Liens and Accepted Opportunities per 2015.03.04_Obs_6.3m_LTCCryo-Cooler Line Load Margin (Pinch Point / Steady State)83%113%/146%Cryo-Cooler Predicts from K. Banks and S. Thomson Mar 2015 Predict + Liens)Cryo-Cooler OM Load Margin (Pinch Point / Steady State)83%114%/55%Cryo-Cooler Predicts from K. Banks and S. Thomson Mar 2015 Predict + Liens)S-Band Uplink Margin (dB)3.005.80Adverse Margin From 2013.11.01 S-Band Link (SC CDR) .pdf (SC Omni at 2000 bS-Band Downlink Margin (dB)3.003.90Adverse Margin From 2013.11.01 S-Band Link (SC CDR) .pdf (Both Omni's at L2 aKa-Band Downlink Margin (dB)3.004.44Adverse Margin From 2013.11.01 S-Band Link (SC CDR) .pdf (28 Mbps)Observatory Resources066206050Estimate with Pendings From 3-12-15 Mass ReportObservatory Wet Mass (kg)66206050Estimate with Pendings From 3-12-15 Mass ReportObservatory Power Load (W)18081509Estimate + Pendings , 3-19-15 Power Report vs SA at 6 yearsObservatory Power Generation (W)2055Power Generation at 6 Years, 12-11-14 Power Report	Momentum Accumulation LV4 (Nms/d)	23	18.50	Updated on 8-1-2013 (13-JWST-207D) from Torque Tables for SC Bus IM Cycle (Nom+rss)*MUF
Cryo ParasiticMargin (NIRSpec FPA)60%69.8%Predicts with Liens and Accepted Opportunities per 2015.03.04_Obs_4.3m_LTCCryo Parasitic Margin (FGS/NIRISS)60%65.8%Predicts with Liens and Accepted Opportunities per 2015.03.04_Obs_v5.3m_LTCISIM Cavity Temperature (K)41K (TBR)41.5Predicts with Liens and Accepted Opportunities per 2015.03.04_Obs_v5.3m_LTCCryo-Cooler Line Load Margin (Pinch Point / Steady State)83%113%/146%Cryo-Cooler Predicts from K. Banks and S. Thomson Mar 2015 Predict + Liens)Cryo-Cooler OM Load Margin (Pinch Point / Steady State)83%114%/55%Cryo-Cooler Predicts from K. Banks and S. Thomson Mar 2015 Predict + Liens)Data and Link Parameters83%114%/55%Cryo-Cooler Predicts from K. Banks and S. Thomson Mar 2015 Predict + Liens)S-Band Uplink Margin (dB)3.005.80Adverse Margin From 2013.11.01 S-Band Link (SC CDR) .pdf (Both Omni's at L2 at A-Band Downlink Margin (dB)S-Band Downlink Margin (dB)3.004.44Adverse Margin From 2013.10.31 Ka-band Link (SC CDR) .pdf (Both Omni's at L2 at A-Adverse Margin From 2013.10.31 Ka-band Link (SC CDR).pdf (28 Mbps)Observatory Resources0bservatory CG Offset (mm)Area in DCl19.8Observatory Power Load (W)18081509Estimate with Pendings 3-19-15 Power Report vs SA at 6 yearsObservatory Power Generation (W)2065Power Generation at 6 Years, 12-11-14 Power Report			•	
Cryo Parasitic Margin (FGS/NIRISS)60%65.8%Predicts with Liens and Accepted Opportunities per 2015.03.04_Obs_v6.3m_LTCISIM Cavity Temperature (K)41K (TBR)41.5Predicts with Liens and Accepted Opportunities per 2015.03.04_Obs_v6.3m_LTCCryo-Cooler Line Load Margin (Pinch Point / Steady State)83%113%/146%Cryo-Cooler Predicts from K. Banks and S. Thomson Mar 2015 Predict + Liens)Cryo-Cooler OM Load Margin (Pinch Point / Steady State)83%114%/55%Cryo-Cooler Predicts from K. Banks and S. Thomson Mar 2015 Predict + Liens)Data and Link ParametersS-Band Uplink Margin (dB)3.005.80Adverse Margin From 2013.11.01 S-Band Link (SC CDR) .pdf (SC Omni at 2000 bS-Band Downlink Margin (dB)3.003.90Adverse Margin From 2013.11.01 S-Band Link (SC CDR) .pdf (Both Omni's at L2 aKa-Band Downlink Margin (dB)3.004.44Adverse Margin From 2013.10.31 Ka-band Link (SC CDR) .pdf (28 Mbps)Observatory ResourcesObservatory CG Offset (mm)66206050Estimate with Pendings From 3-12-15 Mass ReportObservatory Power Load (W)18081509Estimate + Pendings, 3-19-15 Power Report vs SA at 6 yearsObservatory Power Generation (W)2055Power Generation at 6 Years, 12-11-14 Power Report	Cryo Parastic Margin (NIRCam)	60%	78.3%	Predicts with Liens and Accepted Opportunities per 2015.03.04_Obs_v5.3m_LTO-P2_v65.xlsx
ISIM Cavity Temperature (K)41K (TBR)41.5Predicts with Liens and Accepted Opportunities per 2015.03.04_Obs_v5.3m_LTCCryo-Cooler Line Load Margin (Pinch Point / Steady State)83%113%/146%Cryo-Cooler Predicts from K. Banks and S. Thomson Mar 2015 Predict + Liens)Cryo-Cooler OM Load Margin (Pinch Point / Steady State)83%114%/55%Cryo-Cooler Predicts from K. Banks and S. Thomson Mar 2015 Predict + Liens)Data and Link ParametersS-Band Uplink Margin (dB)3.005.80Adverse Margin From 2013.11.01 S-Band Link (SC CDR) .pdf (SC Omni at 2000 b)S-Band Downlink Margin (dB)3.003.90Adverse Margin From 2013.11.01 S-Band Link (SC CDR) .pdf (Both Omni's at L2 a)Ka-Band Downlink Margin (dB)3.004.44Adverse Margin From 2013.10.31 Ka-band Link (SC CDR) .pdf (28 Mbps)Observatory Resources66206050Estimate with Pendings From 3-12-15 Mass ReportObservatory CG Offset (mm)Area in DCl19.8CG uncertainty ellipse to 5 mm margin Ariane Static Unbalance Domain with PendingsObservatory Power Load (W)18081509Estimate + Pendings, 3-19-15 Power Report vs SA at 6 yearsObservatory Power Generation (W)2055Power Generation at 6 Years, 12-11-14 Power Report	Cryo ParasiticMargin (NIRSpec FPA)	60%	69.8%	Predicts with Liens and Accepted Opportunities per 2015.03.04_Obs_v5.3m_LTO-P2_v65.xlsx
Cryo-Cooler Line Load Margin (Pinch Point / Steady State)83%113%/146%Cryo-Cooler Predicts from K. Banks and S. Thomson Mar 2015 Predict + Liens)Cryo-Cooler OM Load Margin (Pinch Point / Steady State)83%114%/55%Cryo-Cooler Predicts from K. Banks and S. Thomson Mar 2015 Predict + Liens)Data and Link ParametersS-Band Uplink Margin (dB)3.005.80Adverse Margin From 2013.11.01 S-Band Link (SC CDR) .pdf (SC Omni at 2000 bS-Band Downlink Margin (dB)3.003.90Adverse Margin From 2013.11.01 S-Band Link (SC CDR) .pdf (Both Omni's at L2 aKa-Band Downlink Margin (dB)3.004.44Adverse Margin From 2013.10.31 Ka-band Link (SC CDR) .pdf (Both Omni's at L2 aKa-Band Downlink Margin (dB)3.004.44Adverse Margin From 2013.10.31 Ka-band Link (SC CDR) .pdf (28 Mbps)Observatory Resources66206050Estimate with Pendings From 3-12-15 Mass ReportObservatory CG Offset (mm)Area in DCl19.8CG uncertainty ellipse to 5 mm margin Ariane Static Unbalance Domain with PendObservatory Power Load (W)18081509Estimate + Pendings, 3-19-15 Power Report vs SA at 6 yearsObservatory Power Generation (W)2055Power Generation at 6 Years, 12-11-14 Power Report	Cryo Parasitic Margin (FGS/NIRISS)	60%	65.8%	Predicts with Liens and Accepted Opportunities per 2015.03.04_Obs_v5.3m_LTO-P2_v65.xlsx
Cryo-Cooler OM Load Margin (Pinch Point / Steady State)83%114%/55%Cryo-Cooler Predicts from K. Banks and S. Thomson Mar 2015 Predict + Liens)Data and Link ParametersS-Band Uplink Margin (dB)3.005.80Adverse Margin From 2013.11.01 S-Band Link (SC CDR) .pdf (SC Omni at 2000 b)S-Band Downlink Margin (dB)3.003.90Adverse Margin From 2013.11.01 S-Band Link (SC CDR) .pdf (Both Omni's at L2 a)Ka-Band Downlink Margin (dB)3.004.44Adverse Margin From 2013.10.31 Ka-band Link (SC CDR) .pdf (Both Omni's at L2 a)Observatory Resources66206050Estimate with Pendings From 3-12-15 Mass ReportObservatory CG Offset (mm)Area in DCl19.8CG uncertainty ellipse to 5 mm margin Ariane Static Unbalance Domain with Pendings Power Load (W)Observatory Power Generation (W)18081509Estimate + Pendings, 3-19-15 Power Report vs SA at 6 yearsObservatory Power Generation (W)2055Power Generation at 6 Years, 12-11-14 Power Report	ISIM Cavtity Temperature (K)	41K (TBR)	41.5	Predicts with Liens and Accepted Opportunities per 2015.03.04_Obs_v5.3m_LTO-P2_v65.xlsx
Data and Link Parameters S-Band Uplink Margin (dB) 3.00 5.80 Adverse Margin From 2013.11.01 S-Band Link (SC CDR) .pdf (SC Omni at 2000 b S-Band Downlink Margin (dB) 3.00 3.90 Adverse Margin From 2013.11.01 S-Band Link (SC CDR) .pdf (Both Omni's at L2 a Ka-Band Downlink Margin (dB) 3.00 4.44 Adverse Margin From 2013.10.31 Ka-band Link (SC CDR) .pdf (28 Mbps) Observatory Resources 0bservatory Resources 6620 6050 Estimate with Pendings From 3-12-15 Mass Report Observatory CG Offset (mm) Area in DCI 19.8 CG uncertainty ellipse to 5 mm margin Ariane Static Unbalance Domain with Pendings Power Load (W) Observatory Power Generation (W) 1808 1509 Estimate + Pendings, 3-19-15 Power Report vs SA at 6 years	Cryo-Cooler Line Load Margin (Pinch Point / Steady State)	83%	113%/146%	Cryo-Cooler Predicts from K. Banks and S. Thomson Mar 2015 Predict + Liens)
S-Band Uplink Margin (dB)3.005.80Adverse Margin From 2013.11.01 S-Band Link (SC CDR) .pdf (SC Omni at 2000 bS-Band Downlink Margin (dB)3.003.90Adverse Margin From 2013.11.01 S-Band Link (SC CDR) .pdf (Both Omni's at L2 aKa-Band Downlink Margin (dB)3.004.44Adverse Margin From 2013.10.31 Ka-band Link (SC CDR).pdf (28 Mbps)Observatory Resources0bservatory ResourcesObservatory Wet Mass (kg)66206050Estimate with Pendings From 3-12-15 Mass ReportObservatory CG Offset (mm)Area in DCI19.8CG uncertainty ellipse to 5 mm margin Ariane Static Unbalance Domain with Pendings From 2013, 3-19-15 Power Report vs SA at 6 yearsObservatory Power Generation (W)18081509Estimate + Pendings, 3-19-15 Power Report	Cryo-Cooler OM Load Margin (Pinch Point / Steady State)	83%	114%/55%	Cryo-Cooler Predicts from K. Banks and S. Thomson Mar 2015 Predict + Liens)
S-Band Downlink Margin (dB)3.003.90Adverse Margin From 2013.11.01 S-Band Link (SC CDR) .pdf (Both Omni's at L2 at Adverse Margin (dB)Ka-Band Downlink Margin (dB)3.004.44Adverse Margin From 2013.10.31 Ka-band Link (SC CDR).pdf (28 Mbps)Observatory ResourcesObservatory Wet Mass (kg)66206050Estimate with Pendings From 3-12-15 Mass ReportObservatory CG Offset (mm)Area in DCI19.8CG uncertainty ellipse to 5 mm margin Ariane Static Unbalance Domain with Pendings 7.91-15 Power Report vs SA at 6 yearsObservatory Power Load (W)18081509Estimate + Pendings, 3-19-15 Power Report vs SA at 6 yearsObservatory Power Generation (W)2055Power Generation at 6 Years, 12-11-14 Power Report	Data and Link Parameters		•	
S-Band Downlink Margin (dB)3.003.90Adverse Margin From 2013.11.01 S-Band Link (SC CDR) .pdf (Both Omni's at L2 at Adverse Margin (dB)Ka-Band Downlink Margin (dB)3.004.44Adverse Margin From 2013.10.31 Ka-band Link (SC CDR).pdf (28 Mbps)Observatory ResourcesObservatory Wet Mass (kg)66206050Estimate with Pendings From 3-12-15 Mass ReportObservatory CG Offset (mm)Area in DCI19.8CG uncertainty ellipse to 5 mm margin Ariane Static Unbalance Domain with Pendings 7-15 Power Report vs SA at 6 yearsObservatory Power Load (W)18081509Estimate + Pendings, 3-19-15 Power Report vs SA at 6 yearsObservatory Power Generation (W)2055Power Generation at 6 Years, 12-11-14 Power Report	S-Band Uplink Margin (dB)	3.00	5.80	Adverse Margin From 2013.11.01 S-Band Link (SC CDR) .pdf (SC Omni at 2000 bps)
Observatory Resources Observatory Wet Mass (kg) 6620 6050 Estimate with Pendings From 3-12-15 Mass Report Observatory CG Offset (mm) Area in DCI 19.8 CG uncertainty ellipse to 5 mm margin Ariane Static Unbalance Domain with Pendings From 3-19-15 Power Report vs SA at 6 years Observatory Power Generation (W) 1808 1509 Estimate + Pendings, 3-19-15 Power Report vs SA at 6 years	S-Band Downlink Margin (dB)	3.00	3.90	Adverse Margin From 2013.11.01 S-Band Link (SC CDR) .pdf (Both Omni's at L2 at 200 bps)
Observatory Wet Mass (kg)66206050Estimate with Pendings From 3-12-15 Mass ReportObservatory CG Offset (mm)Area in DCI19.8CG uncertainty ellipse to 5 mm margin Ariane Static Unbalance Domain with PendingsObservatory Power Load (W)18081509Estimate + Pendings, 3-19-15 Power Report vs SA at 6 yearsObservatory Power Generation (W)2055Power Generation at 6 Years, 12-11-14 Power Report	Ka-Band Downlink Margin (dB)			Adverse Margin From 2013.10.31 Ka-band Link (SC CDR).pdf (28 Mbps)
Observatory CG Offset (mm)Area in DCI19.8CG uncertainty ellipse to 5 mm margin Ariane Static Unbalance Domain with PeneObservatory Power Load (W)18081509Estimate + Pendings, 3-19-15 Power Report vs SA at 6 yearsObservatory Power Generation (W)2055Power Generation at 6 Years, 12-11-14 Power Report	Observatory Resources			
Observatory Power Load (W) 1808 1509 Estimate + Pendings, 3-19-15 Power Report vs SA at 6 years Observatory Power Generation (W) 2055 Power Generation at 6 Years, 12-11-14 Power Report	Observatory Wet Mass (kg)	6620	6050	Estimate with Pendings From 3-12-15 Mass Report
Observatory Power Generation (W) 2055 Power Generation at 6 Years, 12-11-14 Power Report	Observatory CG Offset (mm)	Area in DCI	19.8	CG uncertainty ellipse to 5 mm margin Ariane Static Unbalance Domain with Pendings (3-12-15)
	Observatory Power Load (W)	1808	1509	Estimate + Pendings, 3-19-15 Power Report vs SA at 6 years
I&T Parameters	Observatory Power Generation (W)		2055	Power Generation at 6 Years, 12-11-14 Power Report
	I&T Parameters			
JSC Timeline (Days) 120 88 Partners Workshop Presentation 2-11	JSC Timeline (Days)	120	88	Partners Workshop Presentation 2-11

WATCH LIST UPDATE

items from last CAA presentation

Issue	Trend	Comment
Cryocooler Cost, Schedule	\longleftrightarrow	Cryocooler compressor cost and schedule performance remain at historical levels
• Low FY2015 UFE	\longleftrightarrow	Project managing reserves well so far in FY2015
• ¾'' NEA, Spacecraft Radiator	\longleftrightarrow	Spacecraft Radiator work progressing on schedule. ³ /4'' NEA redesigned, working to show sufficient margin.
 Observatory Mid-IR Stray Light 		Observatory predicted to meet Mid-IR stray light requirement.
Resolution of FGS-ISIM comm issue	Resolved	New FPGA developed at to correct problem. One mounted on flight board, second in progress, third awaiting software update for validation prior to installation.

PROGRAM WATCH LIST

- FY I 5 project reserves tight, began year at approximately the same percentage as last year.
- Critical path funded schedule reserve decreased from 11 to 10 months due to Sensor Chip Assembly and microshutter electronics work on ISIM. ISIM is now the critical path (still above plan however).
- Cryocooler (schedule, technical, cost).
- Potential OTE schedule impact from harness rework and remanufacture
- 3/4'' Non Explosive Actuator, shock spectrum, design change, qualification
- NIRSpec microshutter control electronics repair progressing well

MILESTONE PERFORMANCE

Since the September 2011 replan JWST reports high-level milestones monthly to numerous stakeholders

	Total Milestones	Total Milestones Completed	Number Completed Early	Number Completed Late	Deferred to Next Year
FY2011	21	21	6	3	0
FY2012	37	34	16	2	3
FY2013	41	38	20	5	3
FY2014	36	23	10	8	11
FY2015	48	25	16	5*	0

7 of 11 deferred FY2014 milestones on cryocooler components

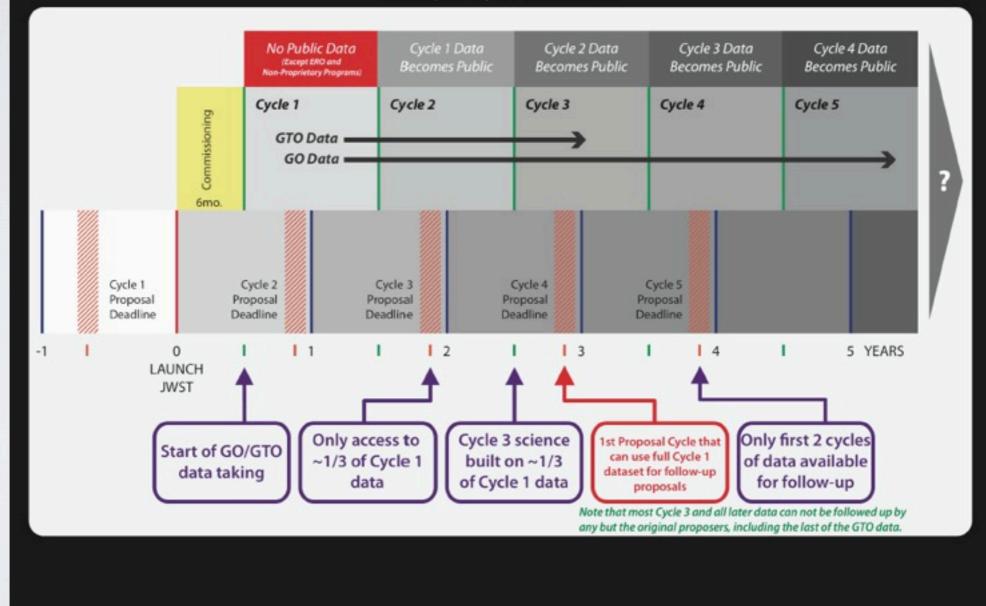
*Late milestones have been or are forecast to complete within the year. Deferred milestones are not included in the numbercompleted-late tally

JWST EXCLUSIVE USE PERIOD

BACKGROUND

- NASA seeks to maximize the scientific return from all of its science missions
- The more people who have access to NASA data the more science studies will be performed using those data
 - Archival science products are more numerous now than general observer products (e.g., HST, Chandra)
 - Access to data fosters better informed proposals which increases science productivity
- JWST is a life limited mission
 - 5 year prime mission
 - 10 year consumables limit

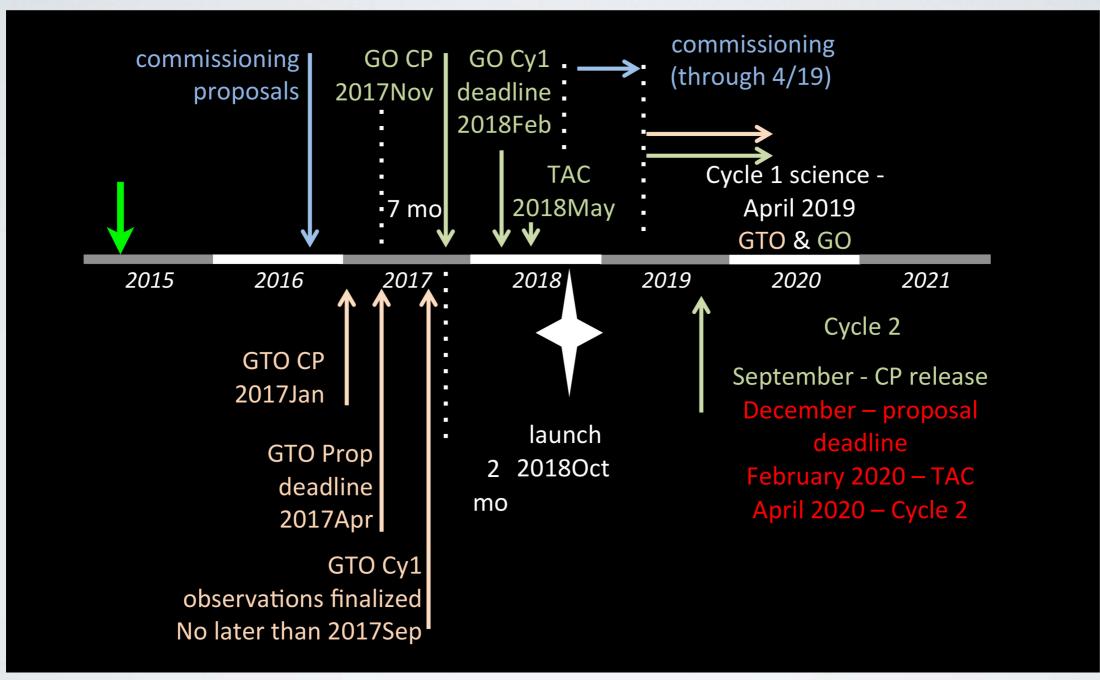
JWST GENERAL OBSERVERS


- Like HST, JWST will select a pool of General Observers (GOs) yearly
- Current science policy states GOs will have a 12 month exclusive use rights to their data (can be waived), and STScI Director can recommend different lengths for this period
- In July of 2014, the STScI Director recommended the GO exclusive user period be set at 6 months based upon advice from the JWST Space Telescope Advisory Committee (JSTAC)

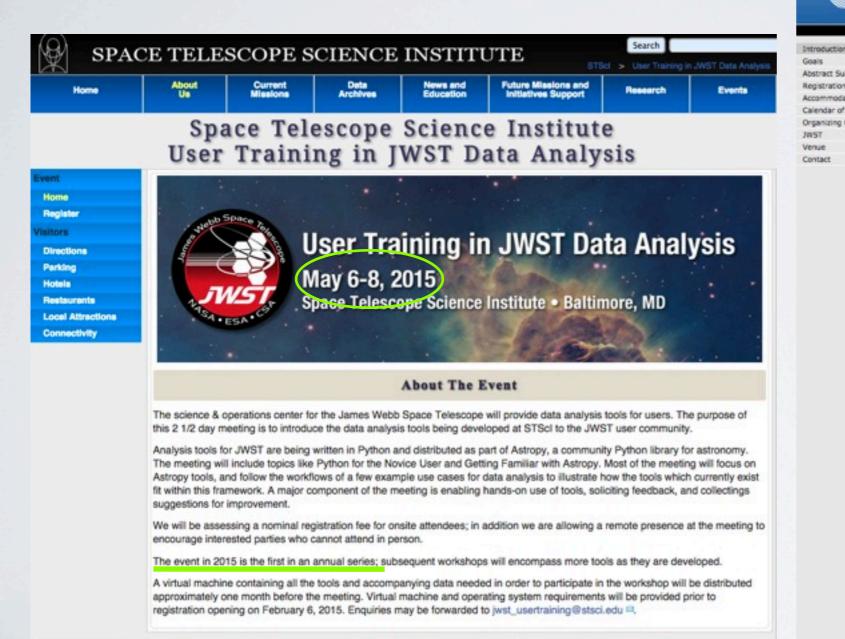
ISTAC

- •STScl employs the JSTAC to provide the Director with advice on technical readiness, policies and other matters (see <u>http://www.stsci.edu/jwst/</u> <u>advisory-committee</u>)
- •This committee performed a study that showed how changing to a 6 months exclusive use period would dramatically affect the amount of public data for Cycles 2 and 3 of the JWST proposal timeline

12 MONTH EXCLUSIVE USE


JWST Science Data Availability Relative to Proposal Deadlines (for required 5yr science mission)

SUMMARY


- Changing the default exclusive use period for JWST general observers from 12 to 6 months can benefit the science community and NASA by making more data available to proposers earlier in the limited lifetime of JWST
- The STScI Director recommended, the JWST SWG and NASA Astrophysics Subcommittee endorse this proposal
- NASA is working with ESA and CSA and their advisory processes to ensure all agencies concur with such a change.

SCIENCE PLANNING TIMELINE

courtesy I.N. Reid, STScl

SCIENCE PREPARATIONS

Copyright I Help

f 🔁 🛥

Intranet

our Solar System to the most distant galaxies. mmittee With JWST's launch date approaching steadily and a first call for proposals scheduled for the end of 2017, it is important to give the astronomical community opportunities to present, highlight and discuss scientific programs that will be made possible by JWST. In this context, we are organizing the scientific conference JWST-2015 "Exploring the Universe with			European Space Agency
 The James Webb Space Telescope (JWST), scheduled for launch in October 2018, will be one of the next decade. JWST and its suite of 4 instruments will provide imaging, spectroscopic and coronagraphic capabilities over the 0.6 to 28.5 micron wavelength range and will offer an unprecedented combination of sensitivity and spatial resolution to study targets ranging from our Solar System to the most distant galaxies. With JWST's launch date approaching steadily and a first call for proposals scheduled for the end of 2017, it is important to give the astronomical community opportunities to present, highlight and discuss scientific programs that will be made possible by JWST. In this context, we are organizing the scientific conference JWST-2015 "Exploring the Universe with JWST", which will take place during the week of the 12th to the 16th of October 2013 at ESTEC, one of the centers of the European Space Agency (ESA) This conference will cover a broad range of scientific topics that will be organized in the following categories: The assembly of galaxies. The formation and evolution of stars and planets. Our Solar system. The attendance will be limited to approximately 250 persons. 			List of events
 The James Webb Space Telescope (JWST), scheduled for launch in October 2018, will be one of the next decade. JWST and its suite of 4 instruments will provide imaging, spectroscopic and coronagraphic capabilities over the 0.6 to 28.5 micron wavelength range and will offer an unprecedented combination of sensitivity and spatial resolution to study targets ranging from our Solar System to the most distant galaxies. With JWST's launch date approaching steadily and a first call for proposals scheduled for the end of 2017, it is important to give the astronomical community opportunities to present, highlight and discuss scientific programs that will be made possible by JWST. In this context, we are organizing the scientific conference JWST-2015 "Exploring the Universe with JWST", which will take place during the week of the 12th to the 16th of October 2013 at ESTEC, one of the centers of the European Space Agency (ESA) This conference will cover a broad range of scientific topics that will be organized in the following categories: The assembly of galaxies. The formation and evolution of stars and planets. Our Solar system. The attendance will be limited to approximately 250 persons. 		•	Introduction
 great observatories of the next decade. JWST and its suite of 4 instruments will provide imaging, spectroscopic and coronagraphic capabilities over the 0.6 to 28.5 micron wavelength range and will over Solar System to the most distant galaxies. With JWST's launch date approaching steadily and a first call for proposals scheduled for the end of 2017, it is important to give the astronomical community opportunities to present, highlight and discuss scientific programs that will be made possible by JWST. In this context, we are organizing the scientific conference JWST-2015 "Exploring the Universe with JWST", which will take place during the week of the 12th to the 16th of October 2015 at ESTEC, one of the centers of the European Space Agency (ESA) This conference will cover a broad range of scientific topics that will be organized in the following categories: The end of the "dark ages": first light and reionisation. Panetary systems and the origins of life (exoplanets). Our Solar system. The attendance will be limited to approximately 250 persons. 		•	
 spectroscopic and coronagraphic capabilities over the 0.6 to 28.5 micron wavelength range and will offer an unprecedented combination of sensitivity and spatial resolution to study targets ranging from our Solar System to the most distant galaxies. With JWST's launch date approaching steadily and a first call for proposals scheduled for the end of 2017, it is important to give the astronomical community opportunities to present, highlight and discuss scientific programs that will be made possible by JWST. In this context, we are organizing the scientific conference JWST-2015 "Exploring the Universe with JWST", which will take place during the week of the 12th to the 16th of October 2015 at ESTEC, one of the centers of the European Space Agency (ESA) This conference will cover a broad range of scientific topics that will be organized in the following categories: The end of the "dark ages": first light and reionisation. The assembly of galaxies. Danotary systems and the origins of life (exoplanets). Our Solar system. The attendance will be limited to approximately 250 persons. 	155:01	•	
offer an unprecedented combination of sensitivity and spatial resolution to study targets ranging from our Solar System to the most distant galaxies. With JWST's launch date approaching steadily and a first call for proposals scheduled for the end of 2017, it is important to give the astronomical community opportunities to present, highlight and discuss scientific programs that will be made possible by JWST. In this context, we are organizing the scientific conference JWST-2015 "Exploring the Universe with JWST", which will take place during the week of the 12 th to the 16 th of October 2015 at ESTEC, one of the centers of the European Space Agency (ESA) This conference will cover a broad range of scientific topics that will be organized in the following categories: The end of the "dark ages": first light and reionisation. The assembly of galaxies. Danetary systems and the origins of life (exoplanets) Our Solar system. The attendance will be limited to approximately 250 persons. "Exploring the Universe with JWST" 		•	
With JWST's launch date approaching steadily and a first call for proposals scheduled for the end of 2017, it is important to give the astronomical community opportunities to present, highlight and discuss scientific programs that will be made possible by JWST. In this context, we are organizing the scientific conference JWST-2015 "Exploring the Universe with JWST", which will take place during the week of the 12 th to the 16 th of October 2015 at ESTEC, one of the centers of the European Space Agency (ESA) This conference will cover a broad range of scientific topics that will be organized in the following categories: • The end of the "dark ages": first light and reionisation. • The assembly of galaxies. • Danetary systems and the origins of life (exoplanets) • Our Solar system. The attendance will be limited to approximately 250 persons. "Exploring the Universe with JWST"		•	offer an unprecedented combination of sensitivity and spatial resolution to study targets ranging from
• With JWST's launch date approaching steadily and a first call for proposals scheduled for the end of 2017, it is important to give the astronomical community opportunities to present, highlight and discuss scientific programs that will be made possible by JWST. In this context, we are organizing the scientific conference JWST-2015 "Exploring the Universe with JWST", which will take place during the week of the 12 th to the 16 th of October 2015 at ESTEC, one of the centers of the European Space Agency (ESA) This conference will cover a broad range of scientific topics that will be organized in the following categories: • The end of the "dark ages": first light and reionisation. • The assembly of galaxies. • Danetary systems and the origins of life (exoplanets). • Our Solar system. The attendance will be limited to approximately 250 persons. "Exploring the Universe with JWST"		٠	
2017, it is important to give the astronomical community opportunities to present, highlight and discuss scientific programs that will be made possible by JWST. In this context, we are organizing the scientific conference JWST-2015 "Exploring the Universe with JWST", which will take place during the week of the 12 th to the 16 th of October 2015 at ESTEC, one of the centers of the European Space Agency (ESA) This conference will cover a broad range of scientific topics that will be organized in the following categories: The end of the "dark ages": first light and reionisation. The assembly of galaxies. Danetary systems and the origins of life (exoplanets). Our Solar system. The attendance will be limited to approximately 250 persons.	mmittee		
 discuss scientific programs that will be made possible by JWST. In this context, we are organizing the scientific conference JWST-2015 "Exploring the Universe with JWST", which will take place during the week of the 12th to the 16th of October 2015 at ESTEC, one of the centers of the European Space Agency (ESA) This conference will cover a broad range of scientific topics that will be organized in the following categories: The end of the "dark ages": first light and reionisation. The assembly of galaxies. The formation and evolution of stars and planets. Planetary systems and the origins of life (exoplanets) Our Solar system. The attendance will be limited to approximately 250 persons. 		•	
In this context, we are organizing the scientific conference JWST-2015 "Exploring the Universe with JWST", which will take place during the week of the 12 th to the 16 th of October 2015 at ESTEC, one of the centers of the European Space Agency (ESA). This conference will cover a broad range of scientific topics that will be organized in the following categories: • The end of the "dark ages": first light and reionisation. • The assembly of galaxies. • The formation and evolution of stars and planets. • Planetary systems and the origins of life (exoplanets). • Our Solar system. The attendance will be limited to approximately 250 persons. *Exploring the Universe with JWST			
JWST", which will take place during the week of the 12 th to the 16 th of October 2015 at ESTEC, one of the centers of the European Space Agency (ESA) This conference will cover a broad range of scientific topics that will be organized in the following categories: • The end of the "dark ages": first light and reionisation. • The assembly of galaxies. • The formation and evolution of stars and planets. • Planetary systems and the origins of life (exoplanets) • Our Solar system. The attendance will be limited to approximately 250 persons. *Exploring the Universe with JWST"			discuss scientific programs that will be made possible by JWST.
the centers of the European Space Agency (ESA) This conference will cover a broad range of scientific topics that will be organized in the following categories: The end of the "dark ages": first light and reionisation. The assembly of galaxies. The formation and evolution of stars and planets. Planetary systems and the origins of life (exoplanets) Our Solar system. The attendance will be limited to approximately 250 persons. Exploring the Universe with JWST"			In this context, we are organizing the scientific conference JWST-2015 "Exploring the Universe with
This conference will cover a broad range of scientific topics that will be organized in the following categories: • The end of the "dark ages": first light and reionisation. • The assembly of galaxies. • The formation and evolution of stars and planets. • Planetary systems and the origins of life (exoplanets) • Our Solar system. The attendance will be limited to approximately 250 persons. • Exploring the Universe with JWST			7WST", which will take place during the week of the 12th to the 16th of October 2015 at ESTEC, one of
categories: • The end of the "dark ages": first light and reionisation. • The assembly of galaxies. • The formation and evolution of stars and planets. • Planetary systems and the origins of life (exoplanets) • Our Solar system. The attendance will be limited to approximately 250 persons. • Exploring the Universe with JWST "			the centers of the European Space Agency (ESA)
categories: • The end of the "dark ages": first light and reionisation. • The assembly of galaxies. • The formation and evolution of stars and planets. • Planetary systems and the origins of life (exoplanets) • Our Solar system. The attendance will be limited to approximately 250 persons. • Exploring the Universe with JWST "			
The end of the "dark ages": first light and reionisation. The assembly of galaxies. The formation and evolution of stars and planets. Planetary systems and the origins of life (exoplanets) Our Solar system. The attendance will be limited to approximately 250 persons. "Exploring the Universe with JWST"			
The assembly of galaxies. The formation and evolution of stars and planets. Planetary systems and the origins of life (exoplanets) Our Solar system. The attendance will be limited to approximately 250 persons. "Exploring the Universe with JWST"			categories:
The assembly of galaxies. The formation and evolution of stars and planets. Planetary systems and the origins of life (exoplanets) Our Solar system. The attendance will be limited to approximately 250 persons. "Exploring the Universe with JWST"			 The end of the "dark ages": first light and reionisation.
The formation and evolution of stars and planets. Planetary systems and the origins of life (exoplanets) Our Solar system. The attendance will be limited to approximately 250 persons. "Exploring the Universe with JWST"			
Our Solar system. The attendance will be limited to approximately 250 persons. "Exploring the Universe with JWST"			
The attendance will be limited to approximately 250 persons. "Exploring the Universe with JWST"			 Planetary systems and the origins of life (excolanets)
"Exploring the Universe with JWST"			Our Solar system.
"Exploring the Universe with JWST"			The attendance will be limited to approximately 250 persons.
			"Exploring the Universe with JWST"
AS ESLAD SYMPOSIUM			
			49- Larko symposium
			forgen fan fan y
			7WST is a joint mission between NASA, ESA and CSA.
TWST is a joint mission between NASA, ESA and CSA.			and is a joint master detreet made, can and can

More information on the JWST mission can be found using the following links: NASA JWST web site: <u>http://www.iwst.nasa.gov/</u> ESA JWST SoTech web site: <u>http://si.esa.int/iwst/</u> STScI JWST web site: <u>http://www.stsci.edu/iwst/</u>

Register to receive the JWST newsletter: http://iwst.nasa.gov/newsletters.html

Copyright @ European Space Agency. All rights reserved

SUMMARY

Challenges arising in critical manufacturing and I&T phases. UFE tight in FY15 will require prudent fiscal control. MIRI Cryocooler Compressor continues to be a schedule challenge ISIM team preparing for cryovacuum test #3 and working heat pipe connector issue before vibration testing.

Technical Performance Metrics look excellent for the mission

JWST team continues to execute to our Launch Readiness Date commitments within budget.

