

NAS

Jeffrey Kruk WFIRST Project Scientist

 NASA GODDARD SPACE FLIGHT CENTER • JET PROPULSION LABORATORY • HARRIS • BALL AEROSPACE • TELEDYNE • NASA KENNEDY SPACE CENTER • • SPACE TELESCOPE SCIENCE INSTITUTE • INFRARED PROCESSING AND ANALYSIS CENTER•

Science Program (no changes)

The full distribution of planets around stars

Kruk - APAC

- We passed the Confirmation Review!
- We are in Phase C!

- We passed the Confirmation Review!
- We are in Phase C!

- Last presentation to the APAC was late last October, during the Mission PDR
- Only changes to the mission baseline since then:
 - Coronagraph programmatic status:
 - CGI is now Class D
 - No Level-1 Baseline performance requirements
 - Has separate cost cap and schedule
 - No changes to CGI design
 - Increased flexibility to respond to potential delays in schedule

- Engineering Peer Reviews and Element PDRs throughout 2019
 - GSFC and JPL internal review boards
 - A number of SRB members participated in the lower level reviews
- MPDR October 28 November 1, 2019
 - SRB concerns led to creation of CGI Tiger Team by Program Office
- Center Management Council December 20, 2019
 - SRB presents findings
- DPMC January 31, 2020
 - SRB presents findings
 - By this point, CGI Tiger Team recommendations had been largely implemented (or implementation plan agreed-upon)
 - Other SRB concerns likewise addressed
- APMC February 28, 2020
 - SRB presents updated findings
 - No actions
 - Plans had been pre-briefed to stakeholders in advance
 - All concerns had been addressed by time of the meeting

- CGI Stakeholders team formed
 - First meeting February 25th 2020
 - Group is to provide input to CGI Project to guide decision-making (more in later slides)
 - Includes representatives of potential future coronagraph missions
- Decadal Survey EOS1 panel briefing March 17th
 - "The panel should get a brief reminder of the science that WFIRST is designed to address -- you can skip the CGI part as that will be addressed by a separate talk.
 - We would like to know what the status is of completing the design, retiring risks, and getting started on fabrication of long-lead items.
 - We would also like to understand the project schedule and the projected funding needed until the start of Phase E.
 - The SRB representative should address the risk, costs, and schedule concerns that they may have. "

- Build the mission!
 - Next major milestone: Mission CDR in July 2021
 - This does not have an HQ KDP associated with it.
- The flight mission elements have been in Phase C since their respective PDRs
 - Instrument Carrier, WFI are half-way to their CDRs
- The SOC/SSC work is still effectively in Phase B
 - The data processing S/W workshops this week (and perhaps more later) along with the working groups are an important part of the preparations for the Ground System PDR part 2.
- Engineering test unit filters for wide-field instrument
 - Meet specs; one has slight exceedance of ripple spec, but deviation is very small.

- Telescope primary mirror has finished 4 of 6 ion figuring runs and has just completed cold tests
 - Test report due soon
 - Progress continues ahead of schedule
- Fabrication of engineering test units for new hardware components
- Fabrication of flight units for build-to-print hardware not inherited from the original owner is under way.
- Refiguring of secondary mirror close to done one more ion-figuring run planned.

- To date, 5 SCAs have passed acceptance testing in the DCL and appear to be good flight candidates.
 - Test reports for the flight candidates and test results for all SCAs are available on the project file server
- Test data for all SCAs is being made available to FSWG
- SCA characterization testing has started.
 - Intra-Pixel response showed similar results to test program SCAs (meets expectations)
 - Flux Dependent Non-linearity testing on first detector has started
- If the flight yield continues to meet expectations, we should receive our 18th flight SCA in January 2021, meeting FPS schedule needs for an on-time delivery.
 - Current yield is slightly higher than the yield assumption.
 - Yield projection is based on the use of only high Zn substrate material

- The first flight SCAs will need to be selected in June 2020 in order to support the start of triplet testing (SCA + cable + SCE) in late summer 2020
- SCA alignment (5 SCAs used) has been demonstrated to meet requirements on an EDU Mosaic Plate
 - 18 SCAs to be aligned this summer 2020 during ETU FPA build and test
- SCE development: 2nd generation ACADIA passed ambient tests; now testing cold
 - ACADIA performance thus far exceeds expectations!

- First **5** flight candidate detectors identified. See properties in table.
- Total SCAs tested at DCL passing Teledyne Cold Functional: 14
- Flight candidate SCAs are being delivered and tested at a rate of 1/week.
- The current flight yield and delivery schedule will support an on-time integration of the flight FPA.

	Total Noise	Dark Current	Persiste	nce (300 ke)*
Spec	<6.5 e	<0.05 e/s	<0.50 e/s	<0.8 e/s/pix
SCA	Median (e)	Median (e/s)	Median (e/s)	(%) Pixels passing
20829	5.73	0.000	0.207	99.96
20833	4.97	0.000	0.074	99.93
20828	5.34	0.000	0.144	99.90
20663	5.48	0.000	0.100	99.88
20849	5.41	0.001	0.173	99.90

*10 min after stimulus

Ground System Architecture

CMD – Command; TLM – Telemetry; TRK – Tracking; HK – Housekeeping; SCI – Science; SIT – Science Investigation Teams; GO/GI – General Observer/Guest Investigator; CTC – Coronagraph Technology Center; PSP – Participating Scientist Program;

Ground System Architecture

- SMD has begin a cloud-computing initiative
- Looking to provide option of a NASA-funded cloud environment
 - Bulk purchasing discounts are significant
 - Provides infrastructure (e.g. IT security) at no cost to Project
- Number of basic questions to be considered in coming months
 - Which computing and storage functions to put in cloud, and which to keep on-site
 - Should all cloud functions go into a common cloud (likely lowest cost) or are there reasons to use different clouds?
 - Possible further segmentation within a given "cloud"
 - The NASA DAPHNE system can send data from ground station directly to a cloud
 - Tempting to never move the data again bring *all* the computing to the data, not just high-level user processing. Whether this really makes sense is TBD.

Launch Vehicle

Status / Update

Jason Hylan

WFIRST Observatory Manager - <u>https://wfirst.gsfc.nasa.gov</u> NASA Goddard Space Flight Center -

https://www.nasa.gov/goddard

- Launch Vehicle Certification
 - NASA's Launch Service Program (LSP) is beginning the process of certifying the SpaceX Falcon Heavy. They expect that to be completed in 2021.
 - LSP typically waits for a mission to be awarded on a vehicle *before* starting the certification effort. A typical certification effort takes ~2 years. In those cases, LSP's goal is to certify the vehicle no later than L-6 months. LSP expects any other LV candidate to follow this approach.
- WFIRST is pursuing an early acquisition of the launch vehicle. The expected award is ~L-56 months (as opposed to a typical L-30 months).
- CLA cycle 3 is being moved forward to better accommodate element testing.
- Environments have enveloped all candidate launch vehicles through PDR. This is conservative and is driving design. Environment are being revised.

	Task name	CY 2018	CY 2019	CY 2020	CY 2021	CY 2022	CY 2023	CY 2024	CY 2025
		Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4 Q1
Risk : Mission-00050 can lift an 11,000 kg p	LSP does not have a certified, heavy-coordinate to L2.	lass launch vehicle	that	2/6	Phase	C	KDP-D 9/14	Phase I	KDP-E
	Mission Milestones	MDR 2/27	MPDR				SIR 		PSR LRD PLAR
	Optical Telescope Assembly (OTA) *	SRR Prelin	PDR Design	CDF Detailed Design	Inherited Telescope Complete Fa	b, Assy, Test	OTA Complete		
	Widefield Instrument (WFI)	SRR Prelim	PDR	12/1 CDR iled Design	J Fab,	Assy, Test	5/2 WFI Complete	8.6 Mon Funde	ths (181 work days) of d Critical Path Margin
	Coronagraph Instrument (CGI) *	8/8 SRR	6/18 PDR	11/3 CDR	Fal	Annu Trat	4/28 CGI Complete		Secondary Critical Path
	Instrument Carrier (IC)	5/8 SRR	9/17 PDR	11/16	Fau	IC Complete	5/26		Project Controlled FSM
		6/27	Dsgn Detaile 5/29	1 Dsgn //29 7/29	Fab, Assy, Test	5/16 ^{32d}		20d	
LSP has commu that they will be certification in e goal of completi by ear	nicated to WFIRST egin Falcon Heavy early 2020 with the ng the certification rly 2021.	SRIP Prelin 4/25	PDR n Design 10/28	Detailed Design	CDR	Fab, Assy, Test, Integ	SC Complete 7/26	2005 5/1 -12/28- EMI Acou	
	Launch Vehicle (LV)					ATP	Award Laund 3/4	Obs I&1	LV Available
	Ground System (GS)	SRR 6/19	PDR Pt. 1 9/24	PDR Pt. 2	CDR CDR Ev T	R1.0 1 Dev. 8/17	MOR 9/26 Rev 2 Dev.	R3.0 Rev 3 Dev.	GS FOR ORR Ready 3/5 6/5 10/17

20

22

- Designs through PDR have been compliant with environments that envelope all candidate LVs.
- However, enveloping all candidate LV environments throughout design lifecycle will overdrive design.
- As the environments are refined, WFIRST will document environments used for design in
 - the LV Interface Requirements Document (IRD) which is delivered to LSP for the purpose of communicating requirements to potential LV vendors.
 - The Mechanical Systems Spec (MSS) which is used to govern mechanical design on WFIRST.

SpaceX Falcon Heavy

Blue Origin New Glenn

United Launch Alliance Vulcan

- First cut at defining verification approaches to the SRD requirements flowdown is under way.
 - Survey level requirements will be assessed via large scale simulations
 - First round already done and most published
 - Additional work needed to be comprehensive
 - Calibration requirements will be linked to entries in the calibration plan, and from there to ground tests, flight observing plans, etc.
 - Data product requirements will likely be by roll-up.
 - First iteration of spreadsheet for tracking verification already done
 - Have begun working with SITs on inputs we need from them (primarily simulations of candidate observing scenarios)

WFIRST Project Master Schedule

Task name	CY 2018	CY 2019	2020	CY 2021	CY 2022	CY 2023	CY 2024	CY 2025
	Q1 Q2 Q3 Q4	Q1 Q2 Q Q4	Q1 Q2 3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4 Q1
Project Phases	KDP-B		KDP-C			KDP-D		KDP-E
	1	Phase B		Phas	e C		Phase I	
	SRR/ 5/22		2/28	MODE		9/14		9/5
Mission Milestones	MDR							$ \land \land$
	2/27	10/2-		7/14		7/22		5/4 10/17 1/5
				Inherited Telescope		OTA		
Optical Telescope Assembly (OTA) *	SRR	PDR	CD	R Complete		Complete		
	Pre	lim Design 🔶 🗌	Detailed Design	Fa	b, Assy, Test	102d 9/25		
	6/27	9/18	12/1	10	l 🕇	5/2	8.6 Mon	ths (181 work days) of
Widefield Instrument (W/EI)	SRR	PDR	CDR			WFI Complete	Funde	d Critical Path Margin
Wideneid instrument (WFI)	Preli	m. Dsgn 🔶 Detai	iled Design	Fab,	Assy, Test	99d 9/19		Primary Critical Path
	8/8	6/18	11/3			4/28		
	SPR	PDR		CDR		CGI		Secondary Critical Path
Coronagraph Instrument (CGI) *	Prelin	n. Design	Detailed Design		Fab, Assy, Test	55d = 8/15		Tertiary Critical Path
	5/8	9/17		2/23		5/26		Project Controlled FSM
	SPP	PDP	CDR		IC Complete			Flowent Controlled FSM
Instrument Carrier (IC)	Prelim	Dsgn Detailed		Fab Assy Test	6/30			Element Controlled F3W
	6/27	5/29	7/29	,,,	5/16 32d			
Payload Integration & Test							20d	
							3/0	
						sc		
Spacecraft (SC)	SRR	PDR	Details 1 Design	CDR	Fall Assoc Tool Intern	Complete	- 10/00	
	4/25	Im Design	Detailed Design	7/14	Fab, Assy, Test, Integ	7/26	12/28	
	4720	10/20				1120	Vibe/	TV I
Observatory Integration/Test & Launch							EMI ACOU ▼ ▼	LRD
							Obs I&	T 10/17
								4/0 120
Lounah Vahiola (LV)					ATP	Award		LV Available
					\land	Launo	ch Vehicle Prep.	
					8/4	3/4		10/17
		PDR	PDR					GS
Ground System (GS)	SRR	Pt. 1	Pt. 2	CDR	R1.0	MOR 9/26	6 R3.0	FOR ORR Ready
		•	$ \rightarrow $	Rev	1 Dev.	Rev 2 Dev.	Rev 3 Dev.	
	6/19	9/24	7/21	5/18	8/17	R2.0 9/20	10/17	3/5 6/5 10/17

- Have just completed "Preliminary Design"
 - ~130 engineering peer reviews leading up to Preliminary Design Review
 - Engineering development units of many hardware items already built, more in progress
 - For much of observatory, design now is what will be built and what will fly
 - PDR & KDP processes include extensive management and cost reviews
 - Plan to execute the mission is as big a part of the reviews as the engineering design
- FY2020 and FY2021 are the peak budget years
 - Approaching 1000 people working on WFIRST!

- Have just completed "Preliminary Design"
 - ~130 engineering peer reviews leading up to Preliminary Design Review
 - Engineering development units of many hardware items already built, more in progress
 - For much of observatory, design now is what will be built and what will fly
 - PDR & KDP processes include extensive management and cost reviews
 - Plan to execute the mission is as big a part of the reviews as the engineering design
- FY2020 and FY2021 are the peak budget years
 - Approaching 1000 people working on WFIRST!
- FY21 White House Budget proposes termination of WFIRST for 3rd time, 4th time if you count 2013
 - Direction is to proceed according to plan while Congress deliberates

We are on track for a launch "no later than 2026" Project working to October 2025 launch

QUESTIONS?

For more information, see:

https://wfirst.gsfc.nasa.gov/

https://wfirst.gsfc.nasa.gov/science/WFIRST_Reference_Informatio n.html

- All observing time to be selected competitively
 - Some close to launch, the rest periodically thereafter
- All data will be public immediately
 - Archival research will be funded on a par with GO programs
- Scientific priorities to be updated throughout mission, based on landscape at the time
- Coronagraph available through a Participating Scientist Program
- Present Science Investigation Teams in place until CDR
 - Call for new teams to follow as soon as possible

- Future science team call for proposals
 - HQ looking to put a placeholder in ROSES 2020 so that we can insert a real call for proposals in late 2020 should that turn out to be the right timing.

WFIRST will measure expansion history and growth of structure

- If results discrepant -> breakdown of general relativity
- If results agree -> learn about nature of dark energy WFIRST provides multiple probes, enabling cross-checks for

astrophysical and instrumental systematics

1 WFIRST FoV

Z = 0.00

Luminosity distance from SNIa

Hubble diagram from Betoule et al 2014, w/best-fit Λ -CDM model

Key next steps are to reduce systematic uncertainties, increase sample at redshift > 1

Compete the Census of Exoplanets - Microlensing

Kruk - APAC

- Assembly and star-formation histories of galaxies
 - Nearby galaxies & globular clusters out to high redshift
 - Compare high & low density environments, including voids
- Probing the epoch of reionization
- Milky Way kinematics and formation history
- EM counterparts of GW events; multi-messenger astronomy
- Transiting planets in MW disk and bulge
- Astrometric planet detection around nearby stars
- Census of free-floating planets, neutron stars, black holes in MW disk
- Growth & evolution of galaxy clusters (+ X-ray, SZ, LSST, ELTs...)
- Cosmic infrared background
- Discovery of high-z quasars
- Stellar IMF in different environments

Sample from 50+ WFIRST-related white papers submitted to Astro-2020

Band	Element name	Min (μm)	Max (µm)	Center (µm)	Width (μm)	R
R	F062	0.48	0.76	0.620	0.280	2.2
Z	F087	0.76	0.977	0.869	0.217	4
Y	F106	0.927	1.192	1.060	0.265	4
J	F129	1.131	1.454	1.293	0.323	4
Н	F158	1.380	1.774	1.577	0.394	4
	F184	1.683	2.000	1.842	0.317	5.81
Wide	F146	0.927	2.000	1.464	1.070	1.37
GRS	G150	1.0	1.93	1.465	0.930	461λ(2pix)
PRS	P127	0.75	1.80	1.275	1.05	80-170 (2pix)

Limiting point-source sensitivity (AB mag) in 1 hour of exposure time, Zodiacal light set at twice minimum.

Imaging, 5σ							
R062	Z087	Y106	J129	H158	F184	W149	
28.5	28.2	28.1	28.0	28.0	27.5	28.3	

Spectroscopy, 10 σ per pixel in continuum						
	0.8 μm 1.1 μm 1.5 μm					
Grism	N/A	20.78	20.48			
Prism	22.87	23.45	23.54			

Emission line flux detected at 6.5σ in one hour, with zodiacal light set at twice minimum. Units are 10^{-17} ergs/cm²/sec

Wavelength	Source half-light radius			
μm	0.0"	0.2″		
1.05	7.8	17.0		
1.15	5.6	12.25		
1.25	5.0	10.5		
1.35	4.8	9.7		
1.45	4.8	9.6		
1.55	5.0	9.8		
1.65	5.5	10.5		
1.75	5.9	11.3		
1.85	6.7	12.3		

- The power of WFIRST is not just that it has a large field of view: it is also very efficient
 - Rapid slew & settle, no Earth occultations, no South Atlantic Anomaly
- Comparisons of total elapsed time for large HST surveys with WFIRST for equivalent area+depth:
 - 3-D HST: 1400 ksec grism spectroscopy over 0.17 sq deg
 - -> WFIRST: 1.9 ksec or 730x faster
 - COSMOS: 3300 ksec imaging over 2 sq deg
 - -> WFIRST: 26 ksec or 125x faster
 - CANDELS Wide NIR: 0.22 sq deg in 1790 ksec
 - -> WFIRST: 1.7ksec or 1050x faster
 - PHAT: 2360 ksec multi-band imaging over 0.5 sq deg
 - -> WFIRST: 1.6 ksec or 1475x faster

For details, see Akeson et al 2019 https://arxiv.org/abs/1902.05569

Field of Regard

3/5/20

WFIRST Field of View

Diffraction-limited imaging 0.28 square degree FoV 0.11" pixels 18 4kx4k NIR detectors R~4 filters spanning 0.48-2.0 µm Sensitivity: 27.8 H(AB) @5**o** in1hr

Slitless grism: 1.0-1.93 μm R: 435-865

Slitless prism: 0.75-1.8 μm R: 80-170