Global-scale Observations of the Limb and Disk (GOLD) Mission Update and First Science Results

Richard Eastes & the GOLD Science Team

GOLD is the next logical step in lonosphere-Thermosphere studies

- Decades of research using observations from low earth orbiting (LEO) spacecraft and ground-based facilities
- Can not separate daily spatial temporal variability
- Enabled the characterization of the I-T system 'climate'

• GOLD images the I-T system from geostationary orbit (GEO)

- NASA Explorers Mission of Opportunity
- Near-hemispherical measurements of dayside composition (O/N₂) and temperature with 30-minute cadence
- Enables the first characterization of the I-T system 'weather'

GOLD Mission Overview

Host Mission

- SES-14, in geostationary orbit at 47.5° west (over mouth of the Amazon River)

GOLD Instrument

- Two identical, independent imaging spectrographs covering 132-162 nm

Measurements

- Earth's disk
 - Tdisk & O/N₂ Daytime: from spatial-spectral image cubes of O-135.6 nm and N₂-LBH emission
 - Nmax Nighttime: from images of O-135.6 nm emission
- Earth's limb
 - Texo Altitude profiles of N_2 -LBH emission
 - O_2 density profile Stellar occultations

GOLD Uses Whiskbroom Imaging to Build Spatial-Spectral Image Cubes

Dayside Disk Imaging

Temperature & O/N₂ Ratio

LIMB/HR slit in place

N hem. day. W to E

nterrupt for star occultation

Technique

- Telescope equipped with a scan mirror images the T-I system onto the slit of an imaging spectrograph
- The limiting resolution is ~ 50 km
- Measurements include stellar <
 occultations and altitude profiles on the limb

The spectrograph records spectra as a function of slit height at each point on the disk

Star Occultation

O₂ Density Profile

OCC slit in place

OCC

SW region, E to W

3a

2

Dayside Limb Scan

N₂ Emission Profile

LIMB/HR slit in place

NW region, E to W

4h

Return to HR scan location HR scan, S hem. day, W to E

Dayside Disk Imaging

Temperature & O/N₂ Ratio

3b

GOLD Disk Imaging Simulation

- Entrance slit of one (of two) channel is shown as white rectangle
- Slit step rate and position are commandable, can dwell on selected longitude range

GOLD Disk Imaging Simulation

- Entrance slit of one (of two) channel is shown as white rectangle
- Slit step rate and position are commandable, can dwell on selected longitude range

Comparison with lamp spectra acquired during ground calibration shows the relative band strengths are in reasonable agreement

Comparison of Laboratory Electron-Impact Spectrum and Flight Data

Full Disk Observations at 135 nm

October 9, 2019 0300-2000 LT (0600-2300 UT) observations by channel A

Sum of 135.6 nm emission, which is primarily from atomic oxygen (O)

30 minute cadence for whole image, spatial grid is 125 km x 125 km at nadir

- Eclipse starts ~ 17 UT at 37S, 158W
- Greatest duration: 17S, 108.6 W (near longitudes GOLD observes on limb)
- Duration of totality:
 ~ 5 minutes

From NASA

GOLD Observation: Difference from Previous Day

Observed versus Modeled Difference at 135.6 nm

Both channels observed at fixed locations for 6 hours

Channels view adjacent locations

Temporal difference for changes indicative of propagation direction

K_p index was initially 2 or less, increased to ~4 during last 3 hours

October 13, 2018

Yes, There are Waves

Brightness difference from background as function of time and latitude.

Locations of apparent wave features marked by symbols (plus and circle)

Channel B, 135.6 nm Residual

England et al. (2019, in review) GOLD Mission, Oct 2, 2019 Page 15

Storm-time changes in the middle thermosphere (~160 km)

NOAA 3-hourly Kp-index

Observations: GOLD (135.6 nm brightness; indicator of O density near 160 km)

Modeling: TIE-GCM + GLOW (brightness)

Changes in O 135.6 nm B(R) from before the storm indicate changes

GOLD

TIE-GCM

+ GLOW

135.6 nm brightness: GOLD vs. TIE-GCM + GLOW

- Pre-storm: model missed mid-latitude enhancement
- Storm-period: modeled depletion in the northern hemisphere was 100-200 R low (~1/2 observed)
- Wave forcing seen prestorm may be important factor during the storm

Modeled Difference O Emission During Storm

GLOW Day 309 UT1500

- Geomagnetic storm (Kp=6) began on Nov 4, 2018
- Oxygen emission in the auroral region decreases
- Shows that storm decreased
 O density near 160 km
- Observed decrease is ~2 times greater than modeled
- GOLD will lead to better modeling of space weather events

GOLD <u>Observed</u> Difference O Emission During Storm

GOLD Day 308 0630UT

Gan et al. (2019, in review)

Predawn O 135.6 nm emissions

Magnetic conjugate to dawn

Magnetic equator

Model at ~4 Local Time (O line)

Model – Observations (O line)

Dayglow Conjugate Point Emissions

Solomon et al. (2019 submission pending)

- Nightside Observations Focus on O 135.6 nm emissions from Equatorial Ionization Anomaly
- Spatial Resolution ~ 100 km
- Single channel 17-20 LT; 30 min imaging cadence
- Both channels 20-21 LT; 15 min imaging cadence
- Green line marks the magnetic equator

October 17, 2018 (day 290)

GOLD Routinely Observes Plasma Depletions (Bubbles)

 The increased signal-to-noise available with the nightside observing mode reveals a complex and variable EIA structure

October 17, 2018 (day 290)

GOLD Routinely Observes Plasma Depletions (Bubbles)

- The increased signal-to-noise available with the nightside observing mode reveals a complex and variable EIA structure
- Plasma depletions initially appear as the lack of emission on the equatorial edges of the bright crests
 - Produced by instabilities generated near the magnetic equator
 - Symmetric about the magnetic equator
 - Aligned ~ N-S along field lines
- GOLD observed depletions 80% of the days in Oct – Dec 2018

October 17, 2018 (day 290)

- Images constructed from two pairs of N-S scans of ~ 30° longitude, each pair taken near sunset
- Image pairs are separated in time by 2 hours

- Images constructed from two pairs of N-S scans of ~ 30° longitude, each pair taken near sunset
- The GOLD instrument observed extensive quasi-periodic structures on some nights
- Some periodic behavior, defined as at least 3 equally spaced depletions, appeared on ~ 30 nights in October – December 2018
- Spacing varied from night to night
- Periodic seeding mechanism? Large scale wave structures have been suggested

Eastes et al. (GRL, 2019) GOLD Mission, Oct 2, 2019

Equatorward zonal winds consistent with a major SSW event

NCEP reanalysis at Latitude = 60N, Altitude = 30 km 230 Zonal wind (m/s) 3($20 \mathbf{M}$ **Reversal of zonal** winds indicative of major SSW 10 205 200-1(30 10 20 50 60 0 40 Days since Nov.26th, 2018

**Planetary waves are often enhanced significantly during SSW

Original, geographic coordinates

Remap images into magnetic coordinates

The crests are asymmetric with respect to the magnetic equator in the magnetic coordinate system

Observations Show ~16-Day Oscillations

Using brightness versus time in 10 degree section centered on 20 degrees mag. longitude

* Solid: absolute difference. Dash: percent (%) difference

Inputs From Above: Kp and F10.7 cm

Kp: 27 and 9 day periodicity;

F10.7 cm: ~ 24 day periodicity;

therefore, planetary wave periodicities of 10-20 and < 8 days will be distinct

Amp. (K)

15

15

60

SABER T Anomalies

Contour plot: wavelet analysis of T anomalies Blue curve: T anomalies at 285 E Red curve: sine wave fit to T anomalies at 285 E

30

40

50

Spectrum analyses confirm a quasi-16-day wave, westward propagating, zonal wavenumber 1 in the mesosphere Gan et al. (2019, pending submission)

- Appear to observe larger changes during eclipse than expected in the oxygen emissions
- Atmospheric gravity waves in the thermosphere have been observed and tracked
- Observations suggest that storm-time changes in the oxygen densities in the thermosphere may be 30-40% greater than models predict
- Observations of nightside emission at points magnetically conjugate to the dayglow may match well with initial model calculations except at locations near the aurora
- Nightside emissions show more structure than was anticipated, including for the first time, significant 16-day oscillations that appear related to the 16-day wave activity lower in the atmosphere

GOLD Daily Observation Example

Observations of Earth's Space Environment

Dayside Disk Imaging Nightside Disk Imaging

Dayside Limb Scan Stellar Occultations