

Lightweight X-ray Optics

William W. Zhang NASA Goddard Space Flight Center

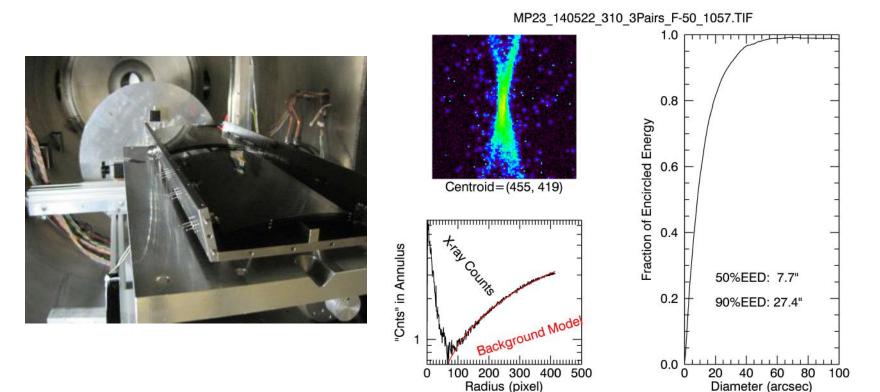
William W. Zhang NASA/GSFC

- **PSF:** Angular Resolution
- Mass per unit Effective Area
- Cost per unit Effective Area

Definition of Progress:

10 times better than existing technology in one or more of the three metrics

Missions in Operations



	Chandra	XMM- Newton	NuSTAR
Agency	NASA	ESA	NASA
PSF (" HPD)	0.5	15	58
Mass/EffArea (kg/m²)	~18,000	~2,000	~180
Cost/EffArea (\$/m², 2013\$)	~\$10,000M	~\$413M	~\$50M

Technology for IXO

Based on glass slumping. Mature. Ready for missions requiring 10" PSF.

Future Missions

	PSF (" HPD)	Mirror Area (m²)
HST	0.1	5
Chandra	0.5	19
ТМТ	~0.1	~700
Athena	5	~700
X-ray Surveyor	~0.5	~700
Probes, Explorers	0.1 - 10	20 - 200

• Mirror Fabrication

Make ~10² m² of lightweight optics at reasonable cost in reasonable time

• Coating

Coat 15nm of iridium without degrading figure

• Alignment and Bonding

Integrate ~10⁴ mirrors into an assembly at reasonable cost in reasonable time

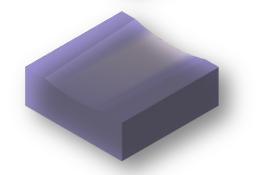
• Use single crystal silicon

- Perfect structure, no internal stress
- Low density, high thermal conductivity, low CTE, and high stiffness

Use "grind & polish"

- Proven technique for making high quality optics

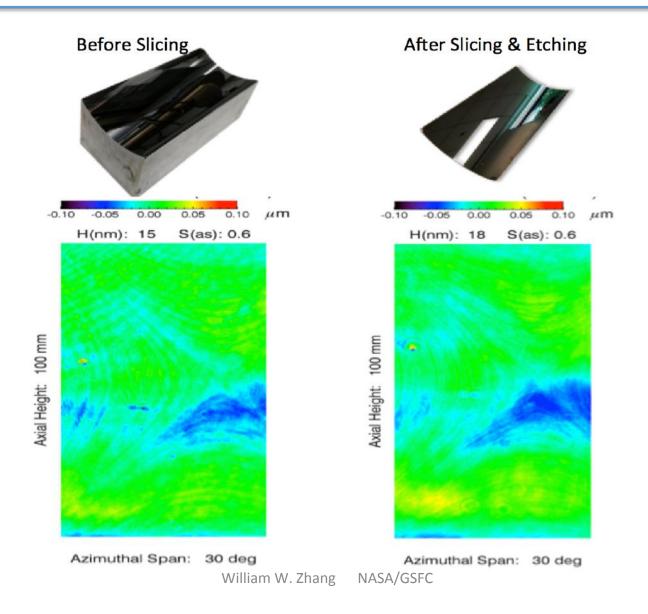
• Develop and perfect


- A process to make thin & lightweight mirrors
- A mass-production process to lower cost and production time

Mirror Fabrication Concept

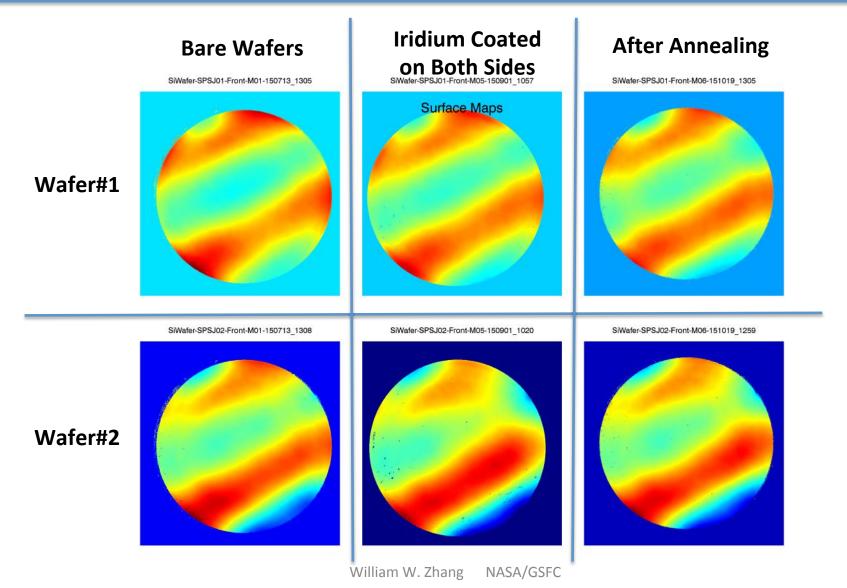
Single crystalline silicon: Stress free

A high quality mirror, made with existing polishing


Light-weighting: Slicing and removal of damage by acid etch

William W. Zhang NASA/GSFC

Concept Proven



- Sputter both sides of silicon mirrors with 15nm of iridium to minimize net stress
- Anneal coated mirrors to eliminate residual net stress

Coating Concept Proven

Alignment and Bonding Concept

Each mirror kinematically supported to minimize distortion. Implementation and testing underway. Initial results by December 2016.

- Slumped glass technology ready for making 10" X-ray telescopes
 - 10 times lighter than XMM-Newton's, comparable angular resolution
 - 10 times better angular resolution than Suzaku's, comp arable weight
- Single crystal silicon mirror technology under development
 - Mirrors currently at ~2" level
 - Diffraction-limited performance possible (~0.1")
 - Coating, alignment and bonding being worked on
 - ~2" X-ray images expected for December 2016
 - Likely to reach 1" by 2020, ready to support the X-ray Surveyor mission

- Efforts to improve the glass slumping process
 - MPE, Germany (Winter et al.)
 - OAB, Italy (Gigho et al.)

• Efforts to improve slumped glass mirrors

- Differential deposition at MSFC (Ramsey et al.) & RXO (Windt)
- Piezo adjustable at SAO & PSU (Reid et al.)
- Magnetic smart material at Northwestern Univ. (Ulmer et al.)
- Ion implant at MIT (Schattenburg et al.)

• Efforts to grind and polish thin full shells

- OAB, Italy (Pareschi et al.)
- MSFC (Gubarev et al.)

• Efforts to improve mirror bonding

- Using solder at MIT (Schattenburg et al.)

K. D. Allgood¹, M.P. Biskach¹, K.W. Chan², J.R. Mazzarella¹, R.S. McClelland¹, J. Niemeyer¹, A. Numata¹, L.G. Olsen, R.E. Riveros², T.T. Saha, M.J. Schofield¹, M.V. Sharpe¹, P.M. Solly¹, W.W. Zhang NASA Goddard Space Flight Center ¹ Stinger Ghaffarian Technologies, Inc. ² University of Maryland, Baltimore County J.M. Carter, J.A. Gaskin, W.D. Jones, J.J. Kolodziejczak, S.L. O'Dell NASA Marshall Space Flight Center **Undergraduate Interns** Dillon Martin University of Central Florida

Tony Zheng Stony Brook University

William W. Zhang NASA/GSFC

Acknowledgement

This work has been funded by NASA through APRA and SAT Programs.