National Aeronautics and Space Administration

Astrophysics

NAC Astrophysics Subcommittee NASA Headquarters March 15, 2016 **Paul Hertz**

Director, Astrophysics Division Science Mission Directorate @PHertzNASA

Eyes on Exoplanets Update

K2 discoveries now visible in 'Eyes on Exoplanets'

Brown Dwarf 2M1207A and Companion • Hubble Space Telescope WFC3/IR

Hours

Glow from the Big Bang Allows Discovery of Distant Black Hole Jet (B3 0727+409)

Why Astrophysics?

Astrophysics is humankind's scientific endeavor to understand the universe and our place in it.

- 1. How did our universe begin and evolve?

3. Are We Alone?

These national strategic drivers are enduring

Astrophysics Driving Documents

December 2014

http://science.nasa.gov/astrophysics/documents

Astrophysics - Big Picture

- The FY16 appropriation and FY17 President's budget request provide funding for NASA astrophysics to continue its programs, missions, projects, and supporting research and technology.
 - The total funding (Astrophysics including JWST excluding STEM) remains at ~\$1.35B.
 - Fully funds JWST to remain on plan for an October 2018 launch.
 - Funds WFIRST formulation (new start) starting in February 2016.
 - Will require some adjustments to FY16 plans in response to appropriation levels.
 - Will require some adjustments to FY17 proposal depending on Senior Review outcome.
- The operating missions continue to generate important and compelling science results, and new missions are under development for the future.
 - Chandra, Fermi, Hubble, Kepler/K2, NuSTAR, Spitzer, Swift, ESA's XMM-Newton all operating well; Senior Review is in Spring 2016 for FY17 and beyond.
 - SOFIA is in 5-year prime operations as of May 2014; HAWC+ 2nd generation instrument to begin commissioning in Spring 2016; 3rd generation instrument concept studies selected; Senior Review for SOFIA is in Spring 2018.
 - ESA's LISA Pathfinder successfully launched on December 3, 2015.
 - JAXA's Hitomi (neé ASTRO-H) successfully launched on February 17, 2016.
 - Missions under development for launch include NICER (2017), ISS-CREAM (2017), TESS (2017), JWST (2018), ESA's Euclid (2020), WFIRST (mid-2020s).
 - 5 SMEX and MO concept studies selected in 2015; MIDEX AO in 2016; NASA joining ESA's Athena X-ray observatory and ESA's L3 gravitational wave observatory.

• Progress being made toward recommendations of the 2010 Decadal Survey.

- NRC Mid Decade Review (with NSF, DOE) underway; Jackie Hewitt (MIT) is chair; NRC Mid Decade Review committee report expected in May 2016.
- NASA initiating large mission concept studies as input for 2020 Decadal Survey.

Proposal Selections Since January 2015

Status: February 25, 2016

	Proposal Due Date	Notify Date	Days past received	Number received	Number selected	% selected
Kepler K2 GO – Cycle 1	Sep 23, 2014	Jan 16, 2015	115	92	36	39%
Swift GI – Cycle 11	Sep 25, 2014	Jan 6, 2015	123	165	39	24%
Roman Tech Fellows	Nov 6, 2014	Feb 3, 2015	89	8	3	38%
NuSTAR GO – Cycle 1	Nov 25, 2014	Apr 17, 2015	143	193	35	18%
Fermi GI – Cycle 8	Jan 22, 2015	June 26, 2015	155	190	36	19%
NESSF-15	Feb 6, 2015	June 2, 2015	116	134	10	7%
Kepler K2 GO – Cycle 2	Feb 27, 2015	June 12, 2015	105	76	35	46%
Chandra GO – Cycle 17	Mar 17, 2015	July 17, 2015	122	582	175	30%
APRA (Basic Research)	Mar 20, 2015	Aug 12, 2015	145	149	40	27%
SAT (Technology)	Mar 20, 2015	Aug 12, 2015	145	27	11	41%
Hubble GO – Cycle 23	Apr 10, 2015	June 24, 2015	75	1114	261	23%
EPDS (Doppler Spectr)	Apr 24, 2015	July 2, 2015	69	6	2	33%
ADAP (Data Analysis)	May 15, 2015	Sep 29, 2015	137	250	51	20%
Exoplanet Research	May 22, 2015	Oct 15, 2015	146	43	7	16%
Kepler K2 GO – Cycle 3	Jul 1, 2015	Oct 14, 2015	105	72	32	44%
SOFIA GI – Cycle 4	Jul 10, 2015	Oct 22, 2015	104	155	82	53%
Spitzer GO – Cycle 12	Sep 11, 2015	Oct 26, 2015	45	104	31	30%
SOFIA 3rd Gen Instrument	Oct 7, 2015	Dec 10, 2015	64	3	2	67%
WFIRST Sci. Inv. Teams	Oct 15, 2015	Dec 18, 2015	64	38	12	32%
Swift GI – Cycle 12	Sep 25, 2015	Jan 19, 2016	116	185	43	23%
NuSTAR GO – Cycle 2	Dec 11, 2015	NESSE Proconfection				
Fermi GI – Cycle 9	Jan 22, 2016	by Linda Sparke ₁₇ (HQ)				

100% of 2015 selections announced within 155 days

R&A Selection Rate: 23%; GO Selection Rate: 28%

9

2015-2016 Antarctic LDB Campaign

Gamma-Ray Imager/ Polarimeter for Solar flares (GRIPS) Stratospheric Terahertz Observatory (STO-II)

http://www.nsbf.nasa.gov/ http://www.csbf.nasa.gov/antarctica/ice.htm

2015-2016 Antarctic LDB Campaign

Gamma-Ray Imager/ Polarimeter for Solar flares (GRIPS)

Launched January 19, 2016 Flight successfully completed January 30, 2016 Data vault and other critical components recovered

http://www.nsbf.nasa.gov/ http://www.csbf.nasa.gov/antarctica/ice.htm

Recent & Upcoming Suborbital Launches

- Fall/Winter FY16 Sounding Rocket Launches @ White Sands NM
 - Colorado High-resolution Echelle Stellar Spectrograph (CHESS 2); K. France, U. Colorado (Feb 21, 2016)
 - Micro-X; E. Figueroa, Northwestern U. (~Nov 2017)
 - CIBER-2; Bock, Caltech (~Dec 2017)
- Winter FY16 Long Duration Balloon Campaign @ McMurdo Antarctica
 - Stratospheric Terahertz Observatory (STO-II); C. Walker, U. Arizona (Dec 2016)
 - Due to weather, payload will be stored in place to be part of next Antarctica campaign.
- Spring FY16 Ultra Long Duration Balloon Campaign @ Wanaka NZ
 - Compton Spectrometer and Imager (COSI); S. Boggs, U.C. Berkeley (Apr 2016)

- CHESS 2 (The Colorado High-resolution Echelle Stellar Spectrograph) sounding rocket experiment facilitates observations of Atomic-to-Molecular transitions phases in translucent clouds for the local Interstellar Medium (ISM) by observing nearby stars that were too bright for Hubble and FUSE.
- Detailed composition and temperature maps at the diffuse/translucent ISM boundary will be possible for the first time with data from CHESS 2.
- The target for CHESS observations is the star Lambda Ori.
- CHESS 2 was launched on a Black Brant 9 from White Sands Missile Range in New Mexico.

2016 Senior Review Timeline

Action	Date	Done
Draft Call for Proposals issued	August 20, 2015	~
Deadline to send comments on draft to NASA	September 10, 2015	~
Final Call for Proposals issued	September 25, 2015	\checkmark
Senior Review Proposals due	January 22, 2016	\checkmark
Main panel meets in Washington, DC	February 22-25, 2016	\checkmark
HST review and site visit in Baltimore, MD	March 8-10, 2016	\checkmark
CXO review and site visit in Cambridge, MA	March 22-24, 2016	
Delivery of panel reports to NASA HQ	April 2016	
NASA Response/direction to projects. Reports released on APD website.	May-June 2016	

For more information:

http://science.nasa.gov/astrophysics/2016-senior-review-operating-missions/

Explorers MIDEX and MO AO in 2016

The target schedule for the solicitation:

Release of draft AO: Spring 2016 (target)

Release of final AO: Late summer 2016 (target)

Proposals due: 90 days after AO release

Selection for 9-month competitive Phase A studies: Summer 2017 (target)

Down-selection: Late 2018 (target)

MIDEX Parameters

PI-managed mission cost cap is \$250M (FY17\$), not including the cost of the Expendable Launch Vehicle (ELV) or any contributions.

Standard launch services on an ELV will be provided for MIDEX missions at no charge against the mission cost cap; no MIDEX ISS-attached payloads.

MIDEX launch readiness date no later than December 2023.

Mission of Opportunity Parameters

PI-managed mission cost cap is \$70M (FY17\$) for Partner MOs and Small Complete Mission MOs, including ISS-attached payloads.

PI-managed mission cost cap is \$35M (FY17\$) for suborbital-class MO.

Small Complete Mission launch readiness date no later than December 2022.

Partner Mission of Opportunity endorsement need date before January 2022.

Astrophysics Explorer Program planning budget is sufficient to select and execute one MIDEX mission and one MO.

http://explorers.larc.nasa.gov/APMIDEX2016/

ST-7/LISA Pathfinder ST-7/Disturbance Reduction System (DRS)

- ESA Mission with NASA Collaborating
- Project Category: 3 Risk Class: C
- DRS flies on the ESA LISA Pathfinder spacecraft
- Sun-Earth L1 halo orbit
- Drag-free satellite to offset solar pressure
- Payload delivery: July 2009
- Launched: December 3, 2015 GMT
- LPF prime mission: 7 months
- Data Analysis: 12 months

http://sci.esa.int/lisa-pathfinder/

CURRENT STATUS:

- LISA Pathfinder successfully launched on December 3, 2015.
- Satellite reached Earth-Sun L1 on Jan 22 and all systems are nominal.
- Test masses released on Feb 15 ("Elwood") and Feb 16 ("Jake") are operating nominally.
- Began science operations on March 1, 2016.

- ESA's LISA Test Package for 90 days
- NASA's Disturbance Reduction System for 90 days
- ESA planning short (2-3 months) mission extension if all goes well

APS Update by Ira Thorpe (GSFC)

NASA's L3 Study

- NASA intends to partner with ESA on the ESA-led L3 gravitational wave mission with launch in 2034. This responds to the recommendations of the 2010 Astrophysics Decadal for a space-based gravitational wave observatory.
- Following the successful launch of the LISA Pathfinder, NASA has formed an L3 Study Team (L3ST) drawing membership from members of the US astrophysics community.
- The goals of the L3ST are:
 - 1. Analyze the options for NASA participation in the L3 mission and work with the European L3 consortium on proposals to ESA; and
 - 2. Prepare a report to the 2020 Decadal Survey on NASA's participation, including possible options, in the L3 mission as a minority partner.
- 15 members (plus 6 member technology analysis group). David Shoemaker (MIT) is Chair. ESA has appointed an observer.
- First meeting held February 17, 2016.
- The L3ST Charter and list of selected members can be found at http://pcos.gsfc.nasa.gov/studies/L3.

NASA's Plans for a GW Observatory

Implications of the LIGO detection and announcement: it is about funding and priorities and timing.

- Either we do a US-led LISA, or we participate in ESA's L3 gravitational wave observatory. If we do a US-led LISA, then we do it either before or after WFIRST.
 - We are not doing it before WFIRST, because the Decadal Survey said WFIRST was the higher priority.
 - We would not change this unless the 2020 Decadal Survey tells us to do US-led LISA after WFIRST rather than one of the four large mission concepts that we are beginning to study.
 - ESA plans to launch L3 in 2034.
- Possible outcomes from the 2020 Decadal Survey regarding a space based GW observatory.
 - Continue on the path we are on for a 10% share of L3 in 2034.
 - Increase our share to ensure that the third arm is reinstated and that more US technology is included, subject to ESA approval. This would require the Decadal Survey to allocate a medium-size mission priority to a US share in L3. This gets a better L3 at the expense of not doing something else in the NASA portfolio.
- By the time of the 2020 Decadal Survey, we will have:
 - Outcome of LISA Pathfinder (so far so good but not successful yet).
 - Another 4 years of LIGO results to inform our priorities for GW observatories beyond LIGO.

APS Update by Neil Cornish (Montana St)

Hitomi (formerly ASTRO-H) Soft X-ray Spectrometer and Soft X-ray Telescope Mirrors

- Explorer Mission of Opportunity
- PI: R. Kelley, Goddard Space Flight Center
- Launch Date: Feb 17. 2016 on JAXA H-IIA
- Science Objectives: Study the physics of cosmic sources via high-resolution X-ray spectroscopy. The SXS enables wide range of physical measurements of sources from stellar coronae to clusters of galaxies.
- Operations: Prime Mission is 3 years

https://heasarc.gsfc.nasa.gov/docs/astroh/

CURRENT STATUS

The U.S. provided instrument contributions to the JAXA Hitomi mission.

- Soft X-ray telescope mirrors (SXT-S and SXT-I)
- X-ray Calorimeter Spectrometer Insert (CSI), including Adiabatic Demagnetization Refrigerator (ADR) and ADR Controller
- Aperture Assembly
- X-ray Electronics Box (X-box)
- High Temperature Superconducting Leads
- Successfully launched from Tanegashima Space Center, Hitomi is continuing on-orbit checkout.

- Feb 25 SXS first light \checkmark
- Feb 28 Deployment of extendable optical bench ✓
- Mar 6 Turn on SXI instrument ✓
- April 8 Open SXS gate valve
- Early April 2016 (TBC) NASA Cycle 1 GO call

APS Update by Richard Kelley (GSFC)

SOFIA Stratospheric Observatory for Infrared Astronomy

- World's Largest Airborne Observatory
- 2.5-meter telescope
- 80/20 Partnership between NASA and the German Aerospace Center (DLR)
- Science Center and Program Management at NASA-Ames Research Center
- Science Flight Operations at NASA-Armstrong Flight Research Center
- Four US and Two German science instruments commissioned
 - Provide imaging, spectroscopy and photometry ranging from visible to far infrared
 - Advanced science instruments under development for future operation

CURRENT STATUS:

- In the 2nd year of prime mission operation
- Observing status:
 - Cycle 4 started in February 2016
 - Occultation data (Cycle 3) synergetic with New Horizons
 - Calibrated data from Horsehead nebula released to the astronomical community in February 2016 with no proprietary restrictions
 - 7-week, 3 science instrument deployment to Christchurch, New Zealand planned from June 4th – July 25th, 2016
- Second generation instruments:
 - Commissioned upGREAT, multi-pixel heterodyne spectrometer (German instrument)
 - Testing/integrating HAWC+, far infrared imager & polarimeter; 2016 commissioning (U.S. instrument)
- Two Third-generation instruments selected in 2016 for six month study. Down select in November 2016
- Implemented science community feedback and IG recommendations for improved science productivity
 - Large impact science observation program offerings
 - Increased support for guest investigators by a factor of 3
 - Increased capacity to deploy multiple instruments
 - Increased support for future science instrumentation
- Recompeting contract for science mission operations

https://www.sofia.usra.edu/

Astrophysics Missions in Development

NICER Neutron star Interior Composition Explorer

- All subsystems/sub-assemblies have completed fabrication and environmental testing.
- The NICER project has now started final payload integration. ✓
- December 10-11, 2015: Preenvironmental Review ✓
- January 28, 2016: Start Phase D ✓
- February 2016: Start of payload environmental testing
- Payload will be delivered to KSC in July 2016 and stored at KSC until launch.
- March 2017 (TBC): Launch on SpaceX-11 commercial resupply service (CRS) flight to ISS

https://heasarc.gsfc.nasa.gov/docs/nicer/

DAPS (Deployment & Pointing System) TVAC integration & testing

TESS Transiting Exoplanet Survey Satellite

Standard Explorer (EX) Mission

PI: G. Ricker (MIT)

Mission: All-Sky photometric exoplanet mapping mission.

Science goal: Search for transiting exoplanets around the nearby, bright stars.

Instruments: Four wide field of view (24x24 degrees) CCD cameras with overlapping field of view–operating in the Visible-IR spectrum (0.6-1 micron).

Operations: NLT June 2018 launch with a 3year prime mission including 2 years of spacecraft operations and an additional 1 year ground-based observations and analysis. High-Earth elliptical orbit (17 x 58.7 Earth radii).

http://tess.gsfc.nasa.gov/

CURRENT STATUS:

- CDR held Aug 4-7, 2015
- Delta CDR held Dec 7, 2015
- Spacecraft bus structure delivered Feb 2016.
- Instrument Flight Lens delivery Feb/Mar 2016.
- Completed flight instrument lens hood and spacecraft propulsion tank.

Instrument lens hood

Spacecraft propulsion tank

UPCOMING EVENTS:

- Spring-Summer 2016 TESS bus integration and instrument integration ongoing.
- Fall 2016-Spring 2017 TESS Observatory integration and test.
- Fall 2016 System Integration Review (SIR)
- Fall 2016 KDP-D
- Summer 2017 TESS delivery to KSC launch site.

JWST James Webb Space Telescope

Large Infrared Space Observatory

Top priority of 2000 Decadal Survey

Science themes: First Light; Assembly of Galaxies; Birth of Stars and Planetary Systems; Planetary Systems and the Origins of Life

Mission: 6.5m deployable, segmented telescope at L2, passively cooled to <50K behind a large, deployable sunshield

Instruments: Near IR Camera, Near IR Spectrograph, Mid IR Instrument, Near IR Imager and Slitless Spectrograph

Operations: 2018 launch for a 5-year prime mission

Partners: ESA, CSA

2015 Accomplishments

- Completed Telescope Structure
- Completed second Telescope Pathfinder test at JSC
- All updates/fixes made to ISIM following 2nd cryovacuum test
- Spacecraft Bus Structure delivered to I&T
- Final ISIM cryovacuum test started
- Mirror installation onto Telescope Structure started

2016 Plans

- Complete ISIM cryovacuum testing ✓
- Complete mirror installation \checkmark
- Install ISIM into Telescope Structure
- Complete Flight Sunshield Membranes
- Conduct final GSE test at JSC before test of Flight telescope and instruments

http://www.jwst.nasa.gov/

Changes Since Last Meeting

- Working with new GAO examiner team for FY2016 audit.
- ISIM successfully completed its third and final cryovacuum test and is back in the GSFC cleanroom awaiting its next integration steps.
- All primary mirror segments installed onto Telescope Structure, Aft Optics System scheduled to begin this week.
- Optical Ground Support Equipment (OGSE) test #2 analysis completed.
- The "Core2" test hardware is nearly completely assembled at GSFC in preparation for cryo testing this Spring.
- Flight sunshield membrane manufacturing continues. 3 layers still in manufacturing, 2 assembled and shape tested, final membrane seaming completed.
- Significant progress on all other sunshield hardware.
- Redesigned ³/₄ actuator undergoing final analysis.
- Spacecraft bus structure testing almost complete, about to head into propulsion I&T.
- Flight Cryocooler Compressor Assembly (CCA) in final testing stage at JPL and proceeding per plan.
- New horizontal shaker table complete at GSFC, working with vendor resolve vertical shaker table issue .
- Sunshield/Spacecraft are the critical path at 7.5 months of margin with 31 months to go.

JWST Top Level Schedule

JWST Funded Schedule Reserve

JSC: Next Major Test Preparations

JWST Hardware Progress

Integrated Science Instrument Module (ISIM) post CV3

Optical Telescope Element All Mirrors (PMSAs) Installed

JWST remains on track for an October 2018 launch within its replan budget guidelines

http://jwst.nasa.gov/webcam.html

James Webb Space Telescope Summary

- While challenges are arising during final manufacturing and I&T phases:
 - We continue careful monitoring of FY16 UFE and now FY17 UFE,
 - Assembly of the Telescope is almost complete,
 - The MIRI Flight Cryocooler Compressor Assembly at JPL for testing continues to proceed nominally,
 - Good progress is being made on plan for the spacecraft,
 - OTIS integration and testing has entered an important phase, and
 - Must preserve schedule reserve for future challenges
- JWST team continues to execute to our LRD commitments

Euclid

A visible and near-infrared telescope to explore cosmic evolution

- ESA Cosmic Vision 2015-2025 Mission, M-Class with NASA participation.
- 1.2-m mirror, visible & near-IR images, spectra
- Launch Date: December 2020

• Science Objectives:

- Euclid will look back 10 billion years into cosmic history.
- Probe the history of cosmic expansion (influenced by dark energy and dark matter) and how gravity pulls galaxies together to form the largest structures.
- The shapes of distant galaxies appear distorted because the gravity of dark matter bends their light (gravitational lensing). Measuring this distortion tells us how the largest structures were built up over cosmic time.
- Measuring how strongly galaxies are clumped together tells us how gravity influences their motions, and how dark energy has affected the cosmic expansion.

CURRENT STATUS:

- Currently in implementation phase.
- ~60 U.S. scientists are members of the Euclid Science Team that will analyze the data, and make maps of the sky.
- The qualification detectors from the detector vendor are currently being tested at GSFC's Detector Characterization Lab, and JPL has taken delivery of the first flight detectors.
- NASA has all contracts in place for detector fabrication.
- NASA replan was completed on February 26, 2016 which has the first flight detectors being delivered to ESA in March 2017.
 - ENSCI formally made part of the project
 provides US science node; reserves augmented to improve risk posture.

http://sci.esa.int/euclid/

WFIRST Wide-Field Infrared Survey Telescope

CURRENT STATUS:

- Completed Mission Concept Review (MCR) held in December 2015
- Formulation Science Investigation Teams selected in December 2015; first meeting held February 2016.
- Passed Key Decision Point A (KDP-A) in Feb 2016
 - Official start of formulation phase
 - Supported by FY16 appropriation and FY17 request
 - Developed and signed Formulation Authorization Document (FAD), Project Formulation Agreement (PFA), and preliminary Program Level Requirements Appendix (PLRA).
 - Successful KDP-A DPMC held January 26, 2016.
 - Successful KDP-A APMC held February 17, 2016.
- Schedule under revision to account for FY16 appropriation of \$90M and FY17 budget request of \$90M. Notional runout of FY17 budget request provides in-guide budget supporting launch in mid-2020s.

APS Update by Neil Gehrels (GSFC)

WFIRST has begun Formulation

Wide-Field Infrared Survey Telescope

Top priority of 2010 Decadal Survey

Science themes: Dark Energy, Exoplanets, Large Area Near Infrared Surveys

Mission: 2.4m widefield telescope at L2; using existing hardware, images 0.28deg² at 0.8-2µm

Instruments (design reference mission): Wide Field Instrument (camera plus IFU),

Coronagraph Instrument (imaging/IFS)

Phase: Currently in Formulation (Phase A)

http://wfirst.gsfc.nasa.gov/

Astrophysics Science Mission Events Last updated: February 22, 2016 CY 2015 2016 2020 2021 2017 2018 2019 Developing NICER Planned Mar **ISS CREAM** Planned Jul 🔽 TESS Aug Mgd by Wet PO Transfer to Astrophysics Div Webb Oct KDP-E Euclid (ESA) Start of Formulation WFIRST WFIRST launching in mid 2020s **Opportunities** MIDEX/MO AOs Explorer SMEX/MO AOs 3G Instrument ★ 4G Instrument SOFIA * Formulation SWG WFIRST Implementation SWG Operating Sr Rev Sr Rev Sr Rev Hubble Chandra XMM-Newton (ESA) Spitzer Continued Swift operation depends on Fermi results of the 2016 Kepler/K2 Sr Review NuSTAR SOFIA LPF(ESA)/ST-7 Hitomi (JAXA) ASTRO-H \diamond \diamond \diamond \diamond Balloons Rockets Launch Date (mission

FY16 Appropriation

Outyears are notional planning from FY16 President's budget request

(\$M)	2014	2015	2016	2017	2018	2019	2020
Astrophysics*	\$678	\$685	\$731	\$707	\$750	\$986	\$1118
JWST	\$658	\$645	\$620	\$569	\$535	\$305	\$198
Total	\$1336	\$1330	\$1351	\$1273	\$1285	\$1291	\$1316

* Excludes "SMD STEM Activities" in all years.

- Provides \$90M for WFIRST and directs NASA to start Formulation.
- Provides full funding (\$85M) for SOFIA operations and places SOFIA into the 2018 Astrophysics Senior Review.
- Provides full funding (\$98M) for continued Hubble operations.
- Provides \$37M for SMD STEM education activities.
- Requires reduction of \$36M in rest of Astrophysics portfolio.

(\$M)	FY16 Request	FY16 Approps	Delta
JWST	\$620	\$620	
WFIRST	\$14	\$90	+\$76
SOFIA	\$85	\$85	
Hubble	\$97	\$98	+\$1
Rest of Astrophys*	\$493	\$457	-\$36 (-7%)
Total	\$1309	\$1351	+\$42

* Excludes "SMD STEM Activities."

FY17 Budget Request

	Astrophysics	JWST	STEM	Astrophysics including JWST excluding STEM	Astrophysics including JWST including STEM
FY16 appropriation	\$731M excluding STEM	\$620M	\$37M	\$1351M	\$1388M
FY17 notional runout of FY16 request	\$727M including STEM	\$569M	\$20M	\$1276M	\$1296M
FY17 request	\$782M including STEM	\$569M	\$25M	\$1326M	\$1351M

FY17 Budget Request

Outyears are notional planning from FY17 budget request

(\$M)	2015	2016	2017	2018	2019	2020	2021
Astrophysics*	\$685	\$731	\$757	\$737	\$967	\$1094	\$1168
JWST	\$645	\$620	\$569	\$534	\$305	\$197	\$150
Total*	\$1330	\$1351	\$1326	\$1271	\$1272	\$1291	\$1318

* Excludes "SMD STEM Activities" in all years.

- This budget request is an excellent budget request for NASA Astrophysics (\$1,326M excluding STEM).
- It compares well with the FY16 Appropriation (\$1,351M excluding STEM) and significantly exceeds the FY17 notional runout in the President's FY16 request for NASA Astrophysics including JWST (\$1,276M excluding STEM).
- This budget request and the notional runout allows WFIRST to be executed without additional funding.
- This budget request and the notional runout support other Decadal Survey priorities.
 - Continued Explorer AOs at the cadence of 4 per decade.
 - Partnerships on ESA's Athena X-ray observatory and L3 gravitational wave observatory.
 - Precursor exoplanet science and technology including Large Binocular Telescope Interferometer, Extreme Precision Doppler Spectrometer, and WFIRST Coronagraph.
 - Retains prior growth in R&A and suborbital programs.
- Senior Review funding may be inadequate to continue all currently operating missions.
 - FY16 budget for Six Senior Review missions is \$62M. FY17 Senior Review budget is \$37M.

CY16 and FY17 Planned Accomplishments

- JAXA's Hitomi (nee ASTRO-H) mission launched (KDP-E) on February 17, 2016.
- WFIRST entered formulation (KDP-A) on February 17, 2016.
- The main panel of the Astrophysics Senior Review was held February 2016. The Fermi Gamma-ray Space Telescope, Kepler/K2, Nuclear Spectroscopic Telescope Array (NuSTAR), Spitzer Space Telescope, Swift Explorer, and XMM-Newton were reviewed.
- The Astrophysics Senior Review for the Hubble Space Telescope and Chandra X-ray Observatory will be held in March 2016.
- NASA's ST7/DRS experiment on ESA's LPF will begin science operation in June 2016.
- **NICER** will be delivered to Kennedy Space Center by July 2016 and launched to the International Space Station (KDP-E) on CRS SpaceX-11 in FY17.
- Commissioning flights for the second-generation High-resolution Airborne Wideband Camera (HAWC+) instrument will be completed aboard **SOFIA** by August 2016.
- An Announcement of Opportunity (AO) for the next Astrophysics Medium-Class Explorer (MIDEX) and Mission of Opportunity will be released in FY16 [NET September 2016].
- The payload for **TESS** will be integrated and tested (KDP-D) by September 2016.
- The Step 2 downselect will be made for the next Astrophysics Small Explorer (SMEX) and Explorer Mission of Opportunity in FY17 [NET December 2016].
- The ISS-CREAM experiment will be launched to the International Space Station (KDP-E) on CRS SpaceX-12 in FY17.
- A critical design review for **SOFIA**'s third-generation instrument will be conducted in FY17.
- Spacecraft integration and testing will be completed for **TESS** in FY17.
- WFIRST will have its System Requirements Review (KDP-B) in FY17.
- Four **Balloon** campaigns are planned in FY16, and four campaigns are planned in FY17.
- Four Astrophysics Sounding Rocket payloads have been successfully launched in FY16, 37
 and at least two are planned in FY17

Progress Toward Decadal Survey Priorities

The NASA FY16 Appropriation, the President's FY17 Budget Request, and its notional out year budget planning guidance support:					
Complete JWST	JWST remains within budget guidelines and on track for an October 2018 launch.				
Large-scale 1. WFIRST	2 years of preformulation and focused technology development for WFIRST (a 2.4m version of WFIRST with a coronagraph) are complete. Formulation (new start) commenced in February 2016.				
Large-scale 2. Augmentation to Explorer Program	Astrophysics Explorers planned budget increased to support cadence of four AOs per decade including a SMEX AO in Fall 2014 and a MIDEX AO in Fall 2016.				
Large-scale 3. LISA	Planning partnership on ESA's L3 gravitational wave observatory and participating in ESA-led assessments in 2014-2015. Strategic astrophysics technology investments plus support of LISA Pathfinder. Established L3 Study Team.				
Large-scale 4. IXO	Planning a partnership on ESA's L2 Athena X-ray observatory; the Athena study phase, with U.S. participation, is underway. Strategic astrophysics technology investments.				
Medium-scale 1. New Worlds Technology Development Program	Focused technology development for coronagraph on WFIRST, strategic astrophysics technology investments, exoplanet probe mission concept studies. Partnership with NSF to develop precision Doppler spectrometer as facility instrument. Exozodi survey using LBTI.				

Progress Toward Decadal Survey Priorities

-- -

the Droc

notional out year budget planning guidance support:						
Medium-scale 2. Inflation Probe Technology Development	Balloon-borne investigations plus strategic astrophysics technology investments. Studying partnership on JAXA's LiteBIRD.					
Small-scale. Research Program Augmentations	Increased annual R&A budget by 10% from FY10 to FY12 and another 10% from FY14 to FY16. Within R&A: established Theoretical and Computational Astrophysics Networks program with NSF; funding available for astrophysics theory; funding available for lab astrophysics; funding available for suborbital payloads.					
Small-scale. Intermediate Technology development Augmentation	Established competed Strategic Astrophysics Technology program element; directed technology funding for WFIRST and other large-scale decadal priorities (e.g., WFIRST coronagraph, Athena detectors).					
Small-scale. Future Ultraviolet-Visible Space Capability	Strategic Astrophysics Technology and Astrophysics R&A investments; mission concept studies.					
Small-scale. SPICA (U.S. contribution to JAXA-led)	Not supported as a strategic contribution; candidate for Explorer Mission of Opportunity.					

ASTROPHYSICS

Decadal Survey Missions

2001 Decadal Survey JWST

2010 Decadal Survey WFIRST

1972 Decadal Survey and Astrophysics for the 1970's Hubble

1982 and Astrophysic for the 1980 Decadal

Survey Chandra Decadal Survey Spitzer, SOFIA

1991

ASTRONOM ASTROPHYSICS

Preparing for the 2020 Decadal Survey Large Mission Concepts

NASA has begun to study large mission concepts as input to the 2020 Decadal Survey

- STDTs have a significant role and responsibility
 - Develop science case
 - Flow science case into mission parameters
 - Vet technology gap list
 - Direct trades of science vs cost/capability
- STDT members appointed by NASA HQ
- STDTs chartered by HQ and administered through the Program Offices
 - Charter and management plan available at:

http://science.nasa.gov/astrophysics/2020-decadal-survey-planning/

Decadal Survey Concept Study Deliverables

M1	Comments on Study Requirements and Deliverables	April 29 2016 ¹
	 Provide rationale for modifying requirements/deliverables 	
01	Optional: Initial Technology Gap Assessment	June 30 2016
	 To impact PCOS/COR/ExEP 2016 technology cvcle 	
M2	Detailed Study Plan	August 26 2016
	 Document starting point CML 	J
	 Deliver detailed study plan for achieving Decadal CML 	
	 Deliver resource required to meet the deliverables for the study duration 	
	 Deliver schedule to deliver milestones 	
M3	Complete Concept Maturity Level 2 Audit	February 2017 ²
	 Identify, quantify and prioritize technology gaps for 2017 technology cycle 	
02	Optional: Update Technology Gap Assessments	June 2017
M4	Interim Report	Early Dec 2017 ²
M4	Interim Report – Substantiate achieving Concept Maturity Level 3	Early Dec 2017 ²
M4	 Interim Report Substantiate achieving Concept Maturity Level 3 Deliver initial technology roadmaps; estimate technology development cost/schedule 	Early Dec 2017 ²
M4 M5	 Interim Report Substantiate achieving Concept Maturity Level 3 Deliver initial technology roadmaps; estimate technology development cost/schedule Update Technology Gap Assessments 	Early Dec 2017 ² June 2018
M4 M5	 Interim Report Substantiate achieving Concept Maturity Level 3 Deliver initial technology roadmaps; estimate technology development cost/schedule Update Technology Gap Assessments In support of 2018 technology cycle 	Early Dec 2017 ² June 2018
M4 M5 M6	 Interim Report Substantiate achieving Concept Maturity Level 3 Deliver initial technology roadmaps; estimate technology development cost/schedule Update Technology Gap Assessments In support of 2018 technology cycle Complete Decadal Concept Maturity Level 4 Audit and Freeze Point Design 	Early Dec 2017 ² June 2018 August 2018
M4 M5 M6	 Interim Report Substantiate achieving Concept Maturity Level 3 Deliver initial technology roadmaps; estimate technology development cost/schedule Update Technology Gap Assessments In support of 2018 technology cycle Complete Decadal Concept Maturity Level 4 Audit and Freeze Point Design Support independent cost estimation/validation process 	Early Dec 2017 ² June 2018 August 2018
M4 M5 M6 M7	 Interim Report Substantiate achieving Concept Maturity Level 3 Deliver initial technology roadmaps; estimate technology development cost/schedule Update Technology Gap Assessments In support of 2018 technology cycle Complete Decadal Concept Maturity Level 4 Audit and Freeze Point Design Support independent cost estimation/validation process Final Report 	Early Dec 2017 ² June 2018 August 2018 January 2019
M4 M5 M6 M7	 Interim Report Substantiate achieving Concept Maturity Level 3 Deliver initial technology roadmaps; estimate technology development cost/schedule Update Technology Gap Assessments In support of 2018 technology cycle Complete Decadal Concept Maturity Level 4 Audit and Freeze Point Design Support independent cost estimation/validation process Final Report Finalize technology roadmaps, tech plan and cost estimates for technology maturity 	Early Dec 2017 ² June 2018 August 2018 January 2019
M4 M5 M6 M7 M8	 Interim Report Substantiate achieving Concept Maturity Level 3 Deliver initial technology roadmaps; estimate technology development cost/schedule Update Technology Gap Assessments In support of 2018 technology cycle Complete Decadal Concept Maturity Level 4 Audit and Freeze Point Design Support independent cost estimation/validation process Final Report Finalize technology roadmaps, tech plan and cost estimates for technology maturity Submit to Decadal 	Early Dec 2017 ² June 2018 August 2018 January 2019 March 2019

² Timed to influence following NASA budget cycle

http://science.nasa.gov/astrophysics/2020-decadal-survey-planning/

Preparing for the 2020 Decadal Survey Large Mission Concepts

NASA is initiating community-led studies of the following four large mission concepts.

	Community STDT Chairs	Center Study Scientist	Study Lead Center	HQ Program Scientist
Far IR Surveyor	Asantha Cooray Margaret Meixner	David Leisawitz	GSFC	Kartik Sheth
Habitable Exoplanet Imaging Mission	Scott Gaudi Sara Seager	Bertrand Mennesson	JPL	Martin Still
Large UV/Optical/IR Surveyor	Debra Fischer Bradley Peterson	Aki Roberge	GSFC	Mario Perez
X-ray Surveyor	Feryal Ozel Alexey Vikhlinin	Jessica Gaskin	MSFC	Dan Evans

APS Update by

D. Leisawitz (GSFC), B. Mennesson (JPL), A. Roberge (GSFC), J. Gaskin (MSFC)

National Aeronautics and Space Administration

Astrophysics

BACKUP

Astrophysics Program Content

	Actual	Enacted	Request				
	<u>FY 2015</u>	<u>FY 2016</u>	<u>FY 2017</u>	<u>FY 2018</u>	<u>FY 2019</u>	<u>FY 2020</u>	<u>FY 2021</u>
Astrophysics	730.7		781.5	761.6	992.4	1,118.6	1,192.5
Astrophysics Research	201.7		226.1	236.3	235.7	248.5	252.0
Science Education	42.0		25.0	25.0	25.0	25.0	25.0
Astrophysics Research and Analysis	71.1		72.7	73.0	73.0	73.0	73.0
Balloon Project	38.0		37.0	37.3	37.4	38.9	40.4
Other Missions and Data Analysis	50.6		91.4	101.0	100.3	111.6	113.6
Astrophysics Data Curation and Archival	18.6		17.8	18.8	18.9	18.9	18.9
Astrophysics Data Program	17.0		17.6	17.6	17.6	17.6	17.6
Astrophysics Senior Review	-		37.4	49.3	40.5	33.6	34.0
Contract Administration, Audit & QA Svcs	15.0		14.9	15.0	15.0	15.1	15.1
Astrophysics Directed R&T	-		3.7	0.2	8.4	26.4	28.1
Cosmic Origins	201.0		198.5	198.4	197.3	195.5	209.5
Hubble Space Telescope (HST)	98.6		97.3	98.3	98.3	98.3	98.3
Stratospheric Observatory for Infrared Astronon	70.0		83.8	84.8	84.8	84.8	84.8
Other Missions and Data Analysis	32.4		17.4	15.3	14.2	12.4	26.4
Cosmic Origins Future Missions	1.2		1.1	1.5	1.5	1.5	1.5
Spitzer	14.6		3.5	-	-	-	-
Herschel	5.1		1.0	-	-	-	-
Cosmic Origins SR&T	8.8		9.3	10.9	9.8	8.0	22.0
Cosmic Origins Program Management	2.6		2.5	2.9	2.9	2.9	2.9

Astrophysics Program Content (cont'd)

	Actual	Enacted	Request		Noti	onal	
	<u>FY 2015</u>	<u>FY 2016</u>	<u>FY 2017</u>	<u>FY 2018</u>	<u>FY 2019</u>	<u>FY 2020</u>	<u>FY 2021</u>
Physics of the Cosmos	104.1		94.1	88.0	94.1	97.7	94.0
Physics of the Cosmos Future Missions	0.1		0.5	2.1	2.1	2.5	2.5
Euclid	7.5		12.9	7.5	7.7	9.9	6.1
Chandra X-Ray Observatory	55.6		52.4	56.7	57.4	58.4	58.4
Fermi Gamma-ray Space Telescope	16.9		-	-	-	-	-
XMM	2.9		-	-	-	-	-
Planck	6.0		-	-	-	-	-
Physics of the Cosmos SR&T	12.0		25.4	18.5	23.7	23.8	23.9
Physics of the Cosmos Program Management	3.0		2.9	3.2	3.2	3.2	3.2
Exoplanet Exploration	100.6		133.8	148.0	309.3	373.3	450.8
Decadal Strategic Mission (WFIRST)	50.0		90.0	108.2	267.7	331.8	409.9
Exoplanet Exploration Future Missions	0.9		0.5	1.1	8.2	8.3	8.3
Kepler	17.2		2.8	-	-	-	-
Keck Operations	6.0		6.1	6.2	-	-	-
Large Binocular Telescope Interferometer	2.0		1.3	-	-	-	-
Exoplanet Exploration SR&T	19.4		28.0	26.5	27.6	26.9	26.2
Exoplanet Exploration Program Management	5.1		5.1	6.0	5.9	6.3	6.4

Astrophysics Program Content (cont'd)

	Actual	Enacted	Request	Notional			
	<u>FY 2015</u>	<u>FY 2016</u>	<u>FY 2017</u>	<u>FY 2018</u>	<u>FY 2019</u>	<u>FY 2020</u>	<u>FY 2021</u>
Astrophysics Explorer	123.3		129.0	91.0	156.0	203.5	186.2
Transiting Exoplanet Survey Satellite (TESS)	80.1	73.5	87.0	27.9	9.1	2.5	0.0
Other Missions and Data Analysis	43.2		42.0	63.1	146.9	201.1	186.2
Astrophysics Explorer Future Missions	1.1		16.8	42.7	132.2	192.6	178.5
A STRO-H (SXS)	11.3		12.0	11.4	9.5	-	-
NICER	11.7		3.5	1.3	-	-	-
Nuclear Spectroscopic Telescope Array	7.4		-	-	-	-	-
Sw ift	4.9		-	-	-	-	-
Suzaku (ASTRO-E II)	0.6		-	-	-	-	-
Astrophysics Explorer Program Management	6.2		9.8	7.7	5.1	8.5	7.7
James Webb Space Telescope	645.4	620.0	569.4	533.7	304.6	197.2	149.8
Astrophysics + Webb Total	1,376.1		1,350.9	1,295.3	1,297.0	1,315.8	1,342.3

SMD Organization Chart

Astrophysics Division, Science Mission Directorate

