

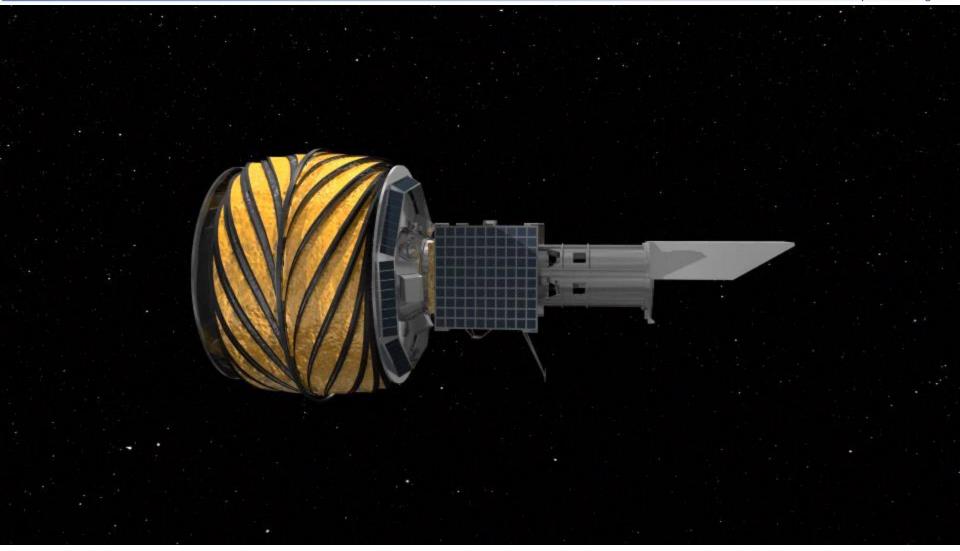
Probe Class Starshade Mission STDT Progress Report

Chair: S. Seager (MIT) W. Cash (U. Colorado) N.J. Kasdin (Princeton U.) W. Sparks (STSci) M. Turnbull (GCI) M. Kuchner, A. Roberge, and S. Goldman (NASA-GSFC) S. Shaklan and M. Thomson (NASA-JPL/Caltech)

JPL Design Team: D. Lisman, S. Martin, E. Cady D. Webb, J. Henrikson D. Scharf, and R. Trabert

March 4, 2014

"Can we find another planet like Earth orbiting a nearby star? To find such a planet would complete the revolution, started by Copernicus nearly 500 years ago, that displaced Earth as the center of the universe. . . The observational challenge is great, but armed with new technologies. . . astronomers are poised to rise to it."


-New Worlds, New Horizons, 2010

- The discovery of ExoEarths, via a space-based direct imaging mission, is a long-term priority for space astrophysics (Astro 2010)
- Exo-S is an 18-month NASA HQ-funded study of a starshade and telescope "probe" space mission (5/2013 to 1/2015)
 - Total mission cost: <\$1B (FY15 dollars)
 - Technical readiness: TRL 5 by end of Phase A, TRL 6 by end of Phase B
 - New start in 2017, launch in 2024
 - Science must be beyond the expected ground capability at end of mission
- This is the first time NASA has formed an STDT to study the starshade
- Although presently a "back up" to AFTA/WFIRST, the team considers the study a key formulation in the path to identifying Earth-like exoplanets

Starshade Concept

Starshade Concept

Inner Working Angle (IWA)

Starshade diameter 34 m

±1 m lateral control

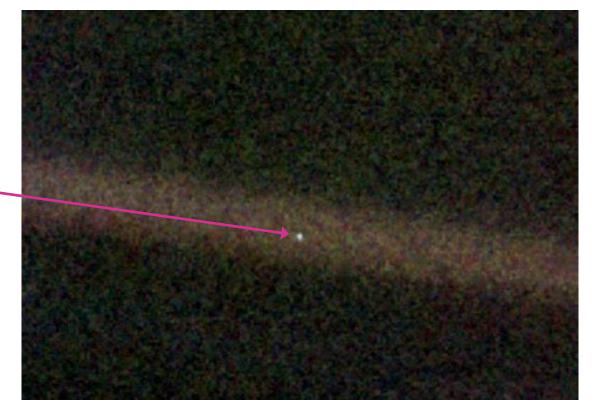
Telescope diameter 1.1 m

Separation distance 37,000 km ±250 km

> Contrast and inner working angle are decoupled from the telescope aperture size A simple space telescope can be used No wavefront correction is needed

No outer working angle

Exo-S Baseline Design Overview


Band	Blue	Green	Red
Wavelengths (nm)	400–630	510–825	600–1,000
IWA (mas)	75	95	115
Separation (Mm)	47	37	30

Off-the-shelf on-axis optical telescope (1.1-m NextView) Heliocentric, Earth-drift away orbit (Earth-Sun L2 is also a possibility) Move telescope, not starshade for retargeting Instrumentation: imager and low-resolution spectrograph

Science Goal #1: Photometric Search for New Exoplanets

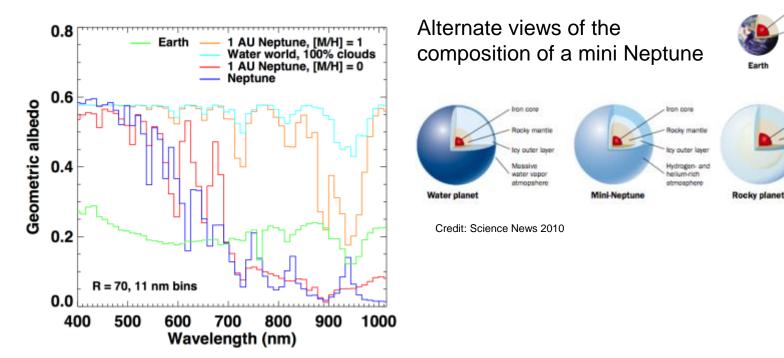
ExoPlanet Exploration Program

Earth as seen from Voyager I from 4 billion miles

- Discover planets from Jupiter-like planets down to rocky planets orbiting nearby Sun-like stars
- Image rocky planets in a Sun-like star's habitable zone
- Discover multiple planets and circumstellar dust, around target stars

Science Goal #2: Spectral Characterization of New Exoplanets

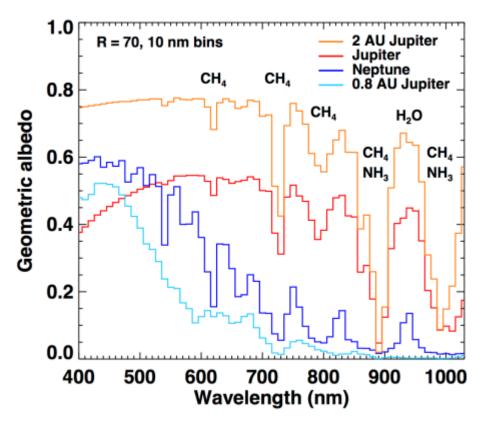
ExEP


ExoPlanet Exploration Program

Iron core

Norodon

atmosphere


tocky mantie

- Spectra of newly discovered planets from 400–1000 nm, with a spectral resolution R = 70
- Spectra of mini Neptunes to ascertain the very nature of the lowdensity, extremely common, yet mysterious planets
- Potential for rocky planet spectra, for a handful of favorable target stars

Science Goal #3: Spectroscopy of Known Jupiters

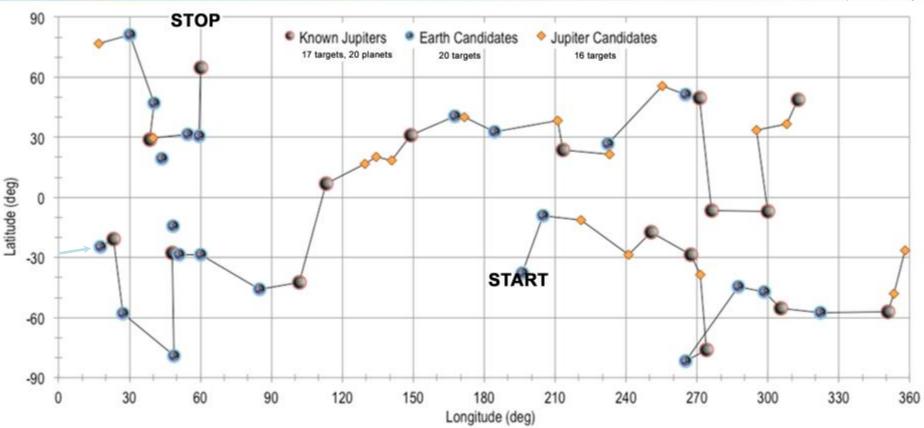
- Spectra of 17 known Jupiter-mass exoplanets
- Spectral characterization from 400-1000 nm, with a spectral resolution R = 70
- Molecular composition and presence of clouds or haze will inform us of the diversity of giant planet atmospheres
- Comparative planetology with a variety of Jupiter-type exoplanets

The known Jupiters are detectable by virtue of extrapolated position in 2024 timeframe

Target Stars in the Preliminary DRM

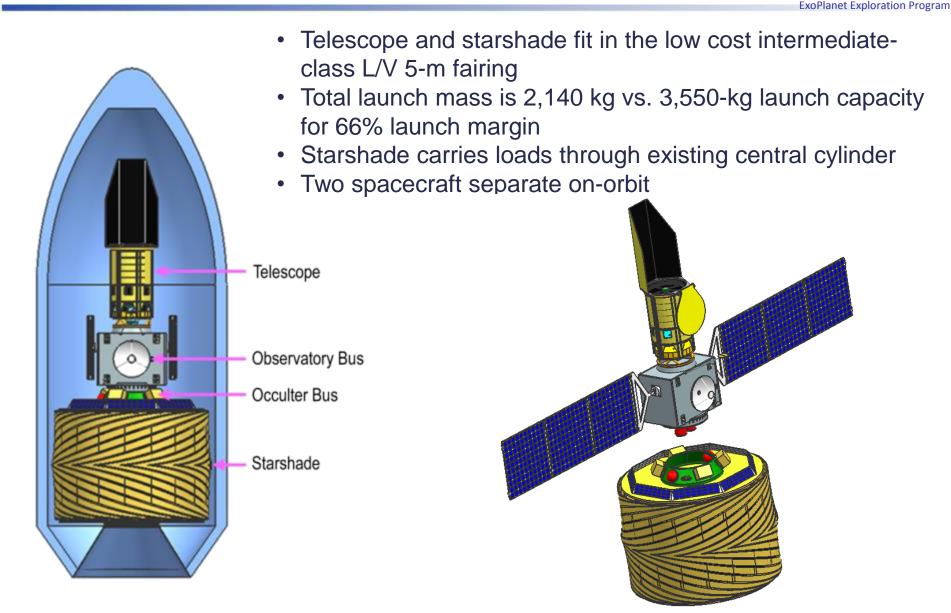
Т	arget	Target	Angles (deg)	Du	Durations (days)			∆V (m/s) & Propellant Mass (kg)			I	arget	Target Angles (deg)			Du	rations (d	lays)	∆V (m/s) & Propellant Mass (kg)			
Obs.	Hipparco	Longitude	Latitud	Slew	Slew	On	Total	Slew ΔV	Cumulative	Slew	Cumulativ	Obs. #	Hipparco	Longitude	Latitud	Slew	Slew	On	Total Mission	Slew ΔV	Cumulative	Slew	Cumulativ e Prop
#	S #	400.0	e	Arc	0	Target	Mission	0.0	ΔV	Prop	e Prop	# 28	s # 47080	134.3	20.3	Arc 5.8	4.0	Target 3.667	332	36.9	ΔV 1243.2	Prop	39.4
1	57443	196.0	-37.9	0	0	9.201	9	0.0	0.0	0	0							3.667				0.92	
2	64924	205.0	-9.3	29.7	12.4	7.171	29	55.8	55.8	1.80	1.8	29	49081	141.0	18.5	6.5	4.6		340	29.5	1272.7		40.3
3	69965	221.0	-11.3	15.9	9.4	1.667	40	48.3	104.1	1.55	3.3	30	53721	149.1	31.1	14.5	6.6	1.667	348	47.5	1320.2	1.48	41.8
4	75181	241.1	-28.8	25.6	10.0	1.667	52	48.5	152.7	1.56	4.9	31	61317	167.7	40.5	17.8	7.4	3.316	359	51.6	1371.8	1.60	43.4
5	80337	250.7	-17.3	14.4	7.3	1.667	60	38.9	191.5	1.25	6.2	32	62207	171.5	39.9	3.0	3.2	3.667	366	19.0	1390.8	0.59	44.0
6	86796	267.2	-28.4	18.8	8.6	4.518	74	41.3	232.9	1.32	7.5	33	64394	184.4	32.5	12.7	6.2	3.294	375	43.2	1434.1	1.34	45.3
7	89042	271.6	-38.6	10.8	6.1	1.667	81	35.4	268.3	1.13	8.6	34	72567	211.1	38.2	22.4	10.6	3.667	390	36.9	1470.9	1.14	46.4
8	26394	273.9	-76.0	37.4	11.5	5.284	98	63.7	332.0	2.04	10.6	35	71395	213.2	23.7	14.6	7.0	7.957	405	42.0	1512.9	1.30	47.7
9	29271	265.3	-81.8	6.0	5.4	12.72	116	19.9	351.9	0.63	11.3	36	77052	233.0	21.7	18.4	7.9	3.667	416	45.7	1558.6	1.41	49.2
10	99240	287.6	-44.7	37.8	13.6	1.667	131	48.3	400.2	1.54	12.8	37	77257	232.4	26.5	4.9	3.6	4.275	424	34.4	1593.0	1.06	50.2
11	105858	298.6	-47.0	8.0	5.4	3.221	140	29.3	429.5	0.93	13.8	38	84862	255.3	55.4	33.3	14.2	3.667	442	39.0	1632.1	1.20	51.4
12	113137	305.3	-55.5	9.5	5.3	5.642	151	40.2	469.8	1.28	15.0	39	86974	265.2	51.1	7.3	5.5	1.667	449	24.8	1656.8	0.76	52.2
13	1599	322.4	-57.7	9.6	5.9	3.263	160	32.5	502.2	1.03	16.1	40	88348	270.9	49.8	3.8	4.5	4.266	458	14.6	1671.5	0.45	52.6
14	7978	350.8	-57.3	15.2	8.0	4.102	172	35.2	537.4	1.12	17.2	41	90485	276.1	-6.5	56.5	14.9	5.087	478	67.7	1739.1	2.08	54.7
15	5862	353.4	-48.1	9.3	5.9	1.667	180	30.7	568.1	0.97	18.2	42	99825	300.0	-7.0	23.7	11.0	1.667	490	37.6	1776.7	1.15	55.9
16	2941	358.0	-26.3	22.1	8.6	1.667	190	52.7	620.8	1.67	19.8	43	95447	295.2	33.5	40.8	18.3	3.667	512	42.9	1819.6	1.32	57.2
17	8102	17.8	-24.8	17.9	7.2	1.667	199	57.7	678.5	1.83	21.7	44	98819	307.8	36.5	10.8	10.6	3.667	527	31.3	1850.9	0.96	58.1
18	9094	23.4	-20.8	6.5	4.2	6.692	210	39.9	718.4	1.26	22.9	45	98767	312.6	48.9	12.8	6.6	9.358	543	38.8	1889.7	1.19	59.3
19	15510	27.2	-58.1	37.4	12.3	3.406	225	55.8	774.2	1.76	24.7	46	100017	17.1	76.6	37.0	26.3	3.667	573	21.4	1911.1	0.66	60.0
20	23693	48.7	-78.9	21.9	9.4	6.827	242	65.9	840.1	2.08	26.8	47	96100	30.3	80.9	5.0	11.9	6.374	591	6.4	1917.5	0.20	60.2
21	16537	48.2	-27.7	51.2	15.2	1.881	259	71.8	911.9	2.26	29.0	48	3821	40.2	47.0	34.1	10.5	1.667	603	64.7	1982.2	1.98	62.2
22	17378	50.9	-28.7	2.6	2.7	1.667	263	22.2	934.1	0.70	29.7	49	7513	38.6	29.0	18.1	7.1	3.973	614	57.2	2039.4	1.75	63.9
23	19849	60.2	-28.4	8.2	7.0	4.384	274	63.0	997.1	1.98	31.7	50	7918	40.1	29.7	1.5	2.6	3.667	621	10.3	2049.7	0.31	64.2
23	27072	84.8	-45.8	26.1	9.7	1.667	286	78.3	1075.4	2.45	34.1	51	12777	54.7	31.6	12.7	8.1	2.716	631	52.8	2102.5	1.61	65.8
24	31592	101.7	-42.3	12.6	6.5	1.667	200	39.2	1114.6	1.23	35.4	52	14632	59.3	30.6	4.1	4.5	2.549	638	21.6	2124.1	0.66	66.5
26	37826	113.2	6.7	50.1	15.8	1.667	311	54.0	1168.6	1.69	37.1	53	116727	60.1	64.7	34.0	10.6	1.667	651	87.8	2211.9	2.67	69.2
20	44897	129.5	16.7	18.8	9.1	3.667	324	37.7	1206.3	1.17	38.2												
21	44097	129.5	10.7	10.0	9.1	3.007	324	51.1	1200.3	1.17	30.2												

Starshade Probe Mission: Targets in the Current DRM

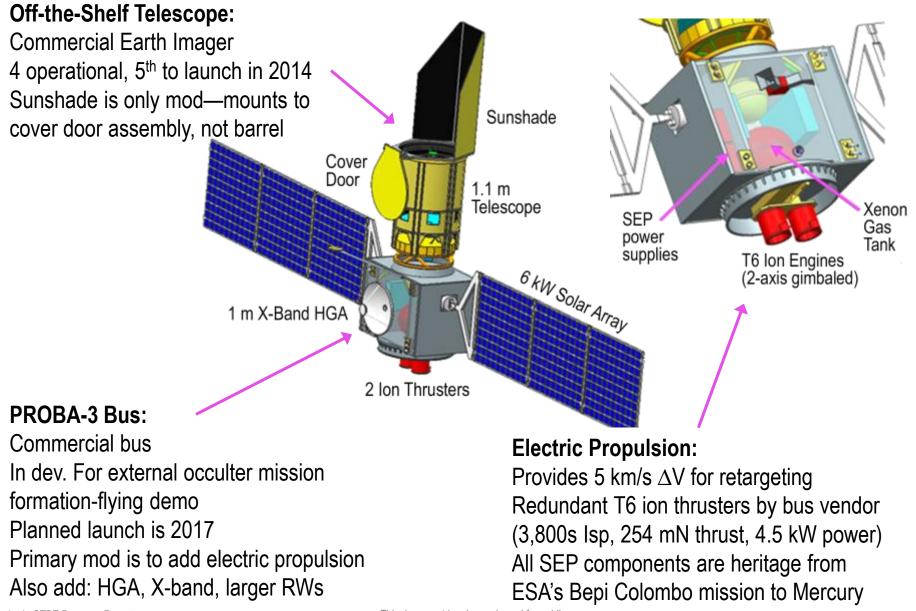


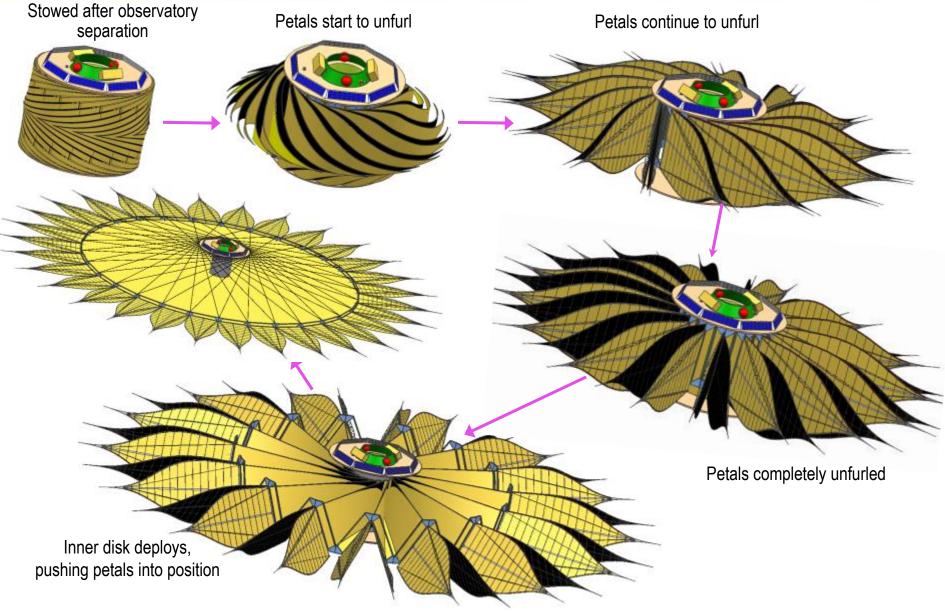
Name	d(pc)	L(L _{sun})	Spectral Type	Search Comp.	Known planets	
au Ceti	3.7	0.5	G8.5V	0.72	0	
β CVn	8.4	1.3	G0V	0.36	0	20 targets with high HZ
δ Pav	6.1	1.3	G8IV	0.46	0	completeness to search for
82 Eri	6.0	0.7	G8V	0.65	3	Earth analogs
ղ Cas	5.9	1.3	G3V	0.37	0	
]
ບ And d	13.5	3.6	F8V	1.00	4	
47 Uma b, c	14.1	1.7	G0V	1.00	3	17 targets with 19 known giant
HD 128311 c	16.5	0.3	K3V	1.00	2	planets at favorable elongation
Pollux b	10.4	40.9	КОШ	1.00	1	for characterization
ε Eri b	3.2	0.4	K2V(k)	1.00	1?	

- 16 additional "Jupiter search" targets for a total of 53 stellar systems explored in 22 months
- Targets span a range in spectral types: F, G, K, even a few giants
- Targets span a range of ages: 1–10 Gyr
- Targets span a range of metallicity: -0.5 < [Fe/H] < +0.3
- Several "classic favorites" with bright nearby companions are not included
- α Cen is not included (bright binary, large projected diameters)

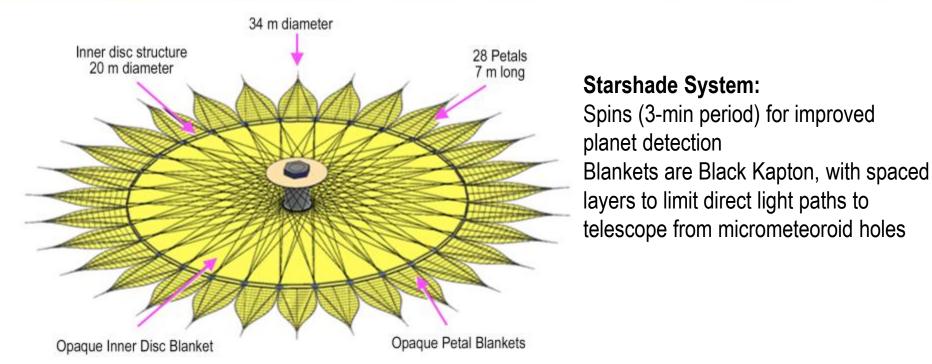

Preliminary Observing Strategy

- The prime mission is 3 years; a 22 month example observing schedule is shown with targets sequential in longitude; an additional year is available for revisits and spectroscopy
- Observation times are approximately 1 to 5 days and retargeting times are about one week
- Observations include multi-color imaging to identify planet candidates and spectroscopy for known Jupiters and newly discovered planets
- Disk science and search for Jupiter analogs around all stars
- The observing schedule is adaptable to real-time discoveries
 Starshade STDT Progress Report
 This document has been cleared for public release. Release CL#14-0952

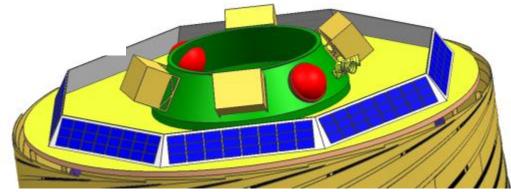

Launch Configuration



Fully Deployed Observatory



Starshade Deployment



Deployed Starshade

Starshade Bus:

Simplified copy of telescope bus, with repackaged avionics Conical structure transfers loads from observatory to starshade Fixed solar panels mount to starshade deck

ExEP

Instrument Design

< 20 cm Filters/Polarizers with Slider mechanism Planet Camera < 10 cm Spectrometer Guide Fast Field Camera Steering stop > 1400 nm Mirror Slit Selectable Dichroic Dispersive Dichroic (D2) Grating (D1)

- Exo-S instrument is small and simple
- Integrates 3 functions (planet camera, guide camera, and spectrometer) on 2 detectors on a single focal plane
- Planet camera includes capability for 3 color measurement (R = 7) and 1 of 2 polarizers
- Throughput is high (~50% cameras, ~40% spectrometer)
- Fast steering mirror provides pointing stability at >1 Hz and aligns slit on selected planet
 - Control loop is closed around guide camera

ExEP

Preliminary Cost Estimate

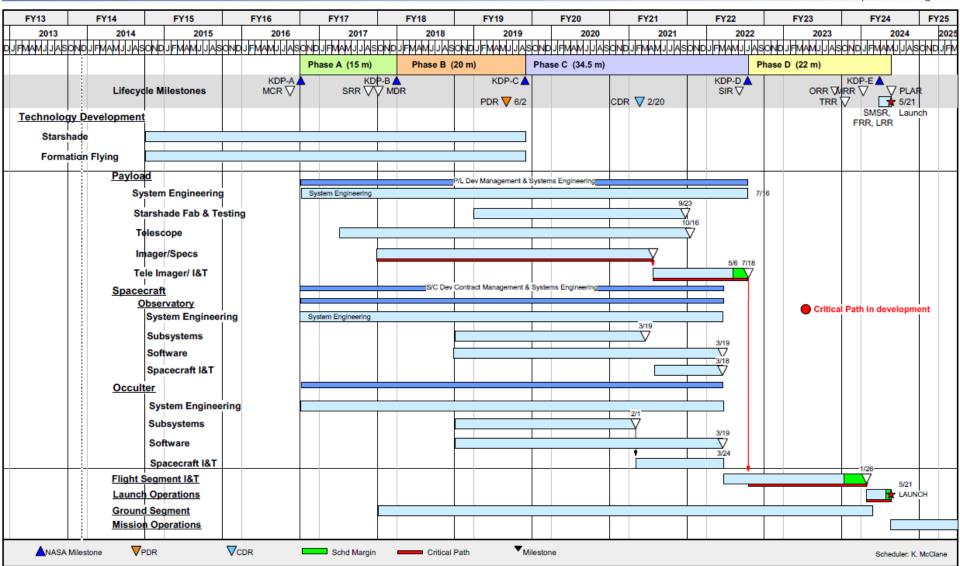
- Exo-S concept meets the Charter's requirement of a total mission cost below \$1B
- Existing capability is highly leveraged for existence-proof baseline design*
 - Observatory and starshade spacecraft buses are based on designs used by ESA for their formation-flying solar occulting mission Proba III
 - The telescope is the fifth build of a 1.1m commercial design
 - The ground system and operations will follow the Kepler model
- CATE Plans
 - Aerospace Corp. will provide an independent cost estimate through the Cost and Technical Evaluation (CATE) process
 - The Design Team will hold meetings with the CATE team to review key design issues in detail this month
 - CATE team will provide 3 estimates over the next year
 - The STDT will iterate the concept design based on these estimates

*Bus and telescope designs are for existence-proof demonstration only. Flight selection will be made through competitive bid.

Proba III

(image credit: ESA)

Basis for Preliminary Cost Estimate



- Most of the estimate is based on objective models and Kepler actual costs:
 - Instrument cost NASA Instrument Cost Model v5 (NICM)
 - Telescope cost Luedtke and Stahl telescope cost model published in SPIE's Optical Engineering in 2012 and 2013
 - Spacecraft and ATLO costs The Aerospace Corp. Small Satellite Cost Model 2010 (SSCM10)
 - Grass root electric propulsion estimate added to SSCM10. SSCM10 lacks EP estimate capability
 - Science, ground system, and most of operations came from Kepler actual costs as reported by NASA
- The starshade lacks direct analogies its estimate is based on expert judgment drawing from large deployable antenna development efforts
 - A grassroots estimate and a Price-H model estimate of the starshade will be developed for the final report
- Exo-S is holding 30% reserves

Preliminary Schedule

ExoPlanet Exploration Program

Probe studies are directed to be based on a Phase A start at the beginning of FY17, project PDR in FY19, and a launch no later than 12/31/2024. The schedule includes funded schedule reserves per JPL Design Principles.

Summary of Critical Technologies

ExoPlanet Exploration Program

Optical Model Validation

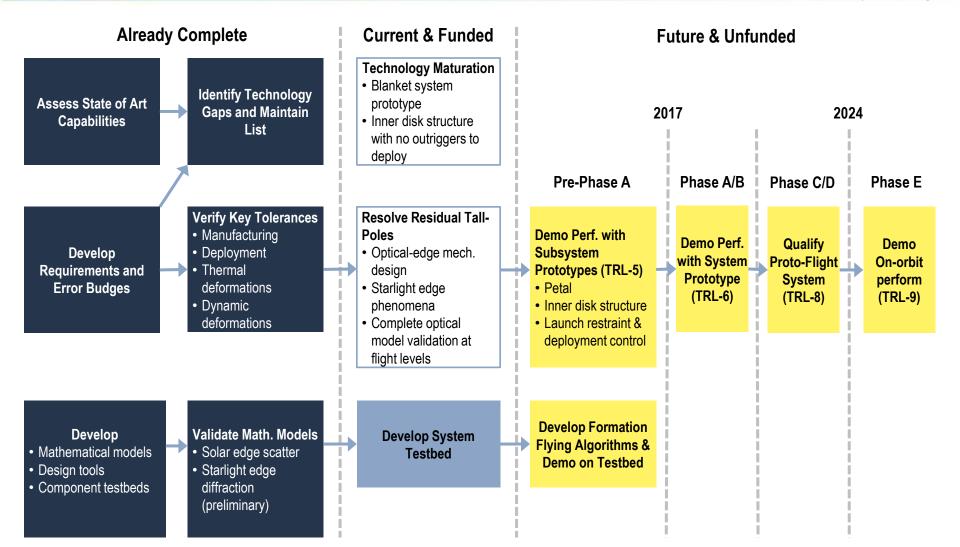
 Experimentally demonstrate that models predict performance to 10⁻¹¹ contrast

Precision Deployment and Shape Control


- Build structure that meets shape requirements
- Deploy accurately and with high reliability
- Maintain shape during on-orbit disturbances such as jitter and thermal gradients

Long Distance Formation Flying

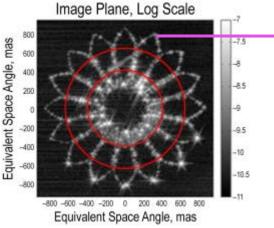
- Sense cross-track alignment errors between starshade and telescope
- Control relative position of starshade and telescope line of sight

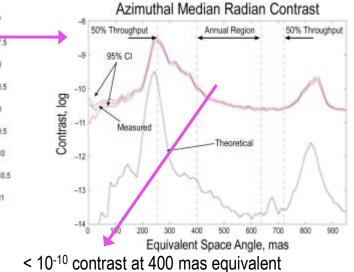

Stray Light Control

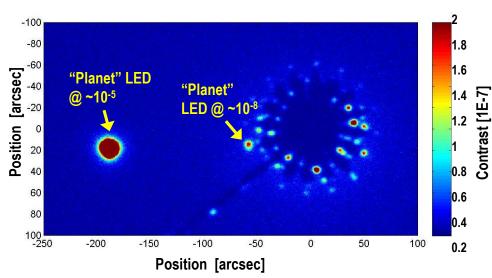
- Mitigate scattering of sunlight off edge of starshade petals
- Control transmission of sunlight and starlight through membrane

Starshade Technology Readiness Plan

ExEP

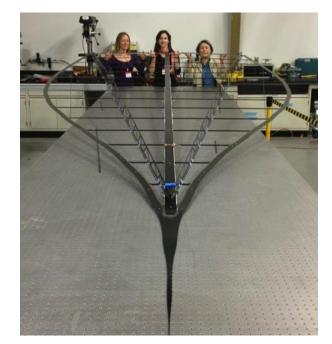

Optical Model Validation



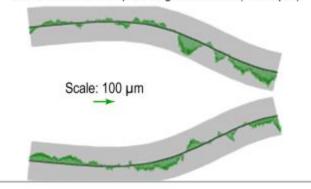

ExoPlanet Exploration Program

Lab experiments at Princeton and NGST have demonstrated contrasts close to flight levels for large flight versions

Desert field testing at 1% scale has demonstrated contrasts at 10⁻⁷; Glassman et al. 2013

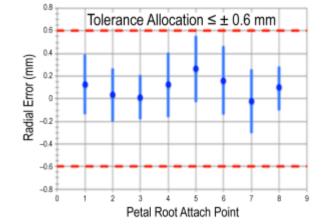

NASA funded effort is directed at larger-scale experiments closer to flight geometry and in broadband light to completely verify the propagation models.

Petal Prototype and Deployment


ExoPlanet Exploration Program

ExEP

Full-scale petal prototype with the petal width profile manufactured to required tolerances. JPL facility.



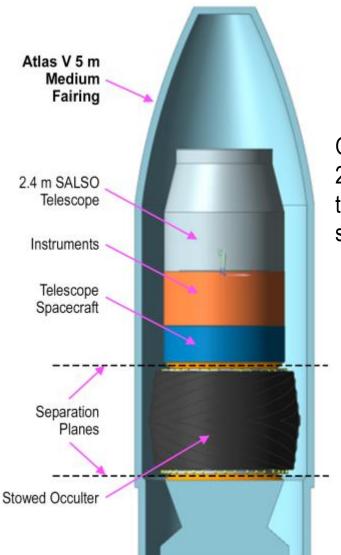
3-σ error bounds for petal edge deviations (± 100 µm)

Subscale (2/3) partial starshade prototype. 25 deployment cycles demonstrated deployed positions to within required tolerances. NGC facility.

Starshade Stowage and Deployment

STDT Next Steps

Baseline Probe Design


- Refine Design Reference Mission and science yield simulations
- Complete trades for the baseline design of starshade + telescope system

"Starshade Ready" Design

- Starshade design for a future or existing telescope (e.g., NRO)
- Starshade readiness of telescope

Technology Development

- Priorities recommended by STDT
- Where technology development will continue by the community through competed NASA technology programs; some STDT members participating



Occulter with 2.4-m NRO telescope stacked on top

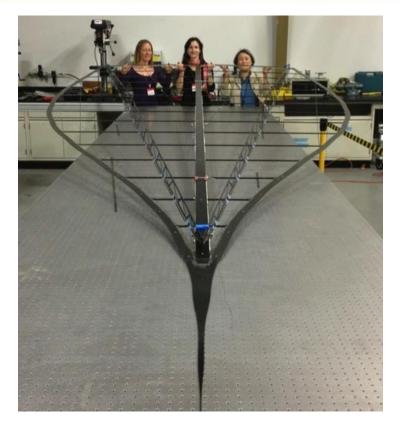
Starshade Summary

ExoPlanet Exploration Program

The starshade probe-class mission is the only way to reach down to rocky exoplanets with a relatively small space telescope

The planet-star flux contrast and IWA are nearly independent from the telescope aperture size

Technology progress is on track for a new start in 2017


Backup

Starshade Technology "Gap List"

ExoPlanet Exploration Program

 ExEP Technology Plan Appendix: http://exep.jpl.nasa.gov/techn ology/ Table A.4 Starshade Technology Gaps Listed in Priority Order.

D	Title	Description	Current	Required
S-1	Control of Scattered Sunlight	Sunlight scattered from starshade edges and surfaces risk being the dominant source of measurement noise.	Several preliminary designs of edge shapes have been studied through laboratory tests having edge radius ≥ 10 µm.	Edges manufactured of high flexural strength material with edge radius ≤ 1 μm.
S-2	Validation of starshade optical models	Experimentally validate the equations that predict the contrasts achievable with a starshade.	Experiments have validated optical diffraction models at Fresnel number of \sim 100 to contrasts of 4 × 10 ⁻¹⁰ , but with poor agreement near petal valleys and tips.	Experimentally validate models of starlight suppression to $\leq 1 \times 10^{-11}$, and perturbation intensities to 20% at Fresnel number of 10-20.
S-3	Starshade Deployment	Demonstrate that a starshade can be deployed to within the budgeted tolerances.	Millimeter-wave mesh antennas have been deployed in space with diameters up to 17m × 19m and a out-of-plane accuracy of 2.4-mm.	Demonstrate using a half-scale or larger prototype the budgeted in-plane deployment tolerances, which are millimeter to sub- millimeter depending on the specific error terms.
S-4	Petal Prototype Demonstration	Demonstrate a high- fidelity prototype starshade petal.	Low-fidelity petals have been assembled and precision petal manufacturing has been demonstrated.	Demonstrate a fully integrated petal, including blankets, edges, and deployment control interfaces.
S-5	Formation Flying GN&C	Demonstrate that the GN&C system for an occulter will enable the required slew from star to star and positional stability for science observations.	Simulations have shown that sensing and GN&C is tractable, though sensing demonstrations of lateral control has not yet been performed.	Sensors demonstrated with errors ≤ 0.25 m. Control algorithms demonstrated with lateral control errors ≤ 1 m.

Mission Options

ExEP

ExoPlanet Exploration Program

Option	Telescope	Launch Config. & Vehicle	Orbit	Propulsion Responsibility*	Status
1	Small dedicated (1.1-m Telescope)	Occulter + Telescope on low cost intermediate-class L/V	Earth Leading	Telescope System	Baseline for Interim Report
2	Larger shared existing telescope	Occulter separately on low cost intermediate-class L/V, rendezvous with telescope	Earth-Sun L2	Occulter	Deferred to Final Report
3	Larger shared existing telescope	Occulter + Telescope on intermediate-class L/V	Earth-Sun L2	Occulter	Deferred to Final Report, studied briefly for SALSO RFI

* For retargeting maneuvers and formation control

Options 2 and 3 require telescope to launch "starshade ready", with instrument, guide camera, and radio system for inter-spacecraft communications

Error Budget

	Tolerance	Contrast
Error Source	Allocation	Allocation
Petal Manufacture		
Segment Placement	+/- 60 um	1.00E-11
Segment Shape	+/- 80 um	1.00E-11
Petal Deployed Position		
Radial (common to all petals)	+/- 0.25 mm	4.50E-12
Random Radial	+/- 0.6 mm	1.40E-12
Tangential	+/- 0.5 mm	2.00E-12
Elliptical truss deformation	1 mm	5.00E-13
Thermal Deformations		
Uniform	n/a	
Monotonic gradients	+/- 35 ppm	9.00E-12
Semi-Random errors	+/- 7.5 ppm	7.00E-13
Formation flying	+/- 1 m lateral	1.00E-11
Glint and Leakage		
Solar glint calibration residual	1 um radius	1.00E-11
Micrometeoroid transmission	< 1 cm ²	1.00E-11
TOTAL		6.81E-11