

Status of Gravitational-Wave Mission Concept Study

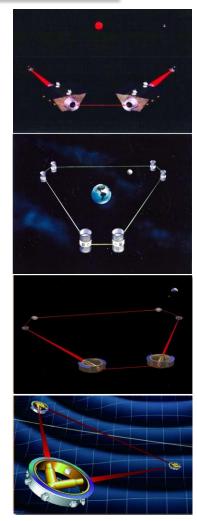
Robin Stebbins, Study Scientist Astrophysics Subcommittee Meeting NASA HQ, 23 February 2012

Outline

- Mission Concept Study
- Context
- RFI Responses
- Assessment of the responses
- Science performance analysis
- Team-X Studies

- Develop mission concepts that will accomplish some or all of the LISA science objectives at lower cost points.
- Explore alternative mission architectures and technical solutions (e.g., instrument concepts, enabling technologies).
- Assess the technical readiness and risk of the mission concepts, instruments and technologies.
- Report the options for science return at multiple cost points .

Elements of the Study



- Request for Information (RFI) due Nov. 10th.
- Core Team ~25 GSFC, JPL & university scientists and engineers critically reviewing RFI responses
- Science task force ~15 volunteer scientists evaluating science performance of concepts
- Community Science Team (CST) 10 scientists
- Public workshop December 20-21st
- Concurrent engineering studies by JPL's Team-X in March and April
- Final Report to NASA Headquarters June 6th
- Presentation to the Committee on Astronomy and Astrophysics (CAA) of the National Research Council (NRC)

Context of the Study – A Brief History of LISA

- 1974 A dinner conversation: Weiss, Bender, Misner and Pound
- 1985 LAGOS Concept (Faller, Bender, Hall, Hils and Vincent)
- 1993 LISAG ESA M3 study: six S/C LISA & Sagittarius
- 1997 JPL Team-X Study: 3 S/C LISA
- 2001-2015 LISA Pathfinder and ST-7 DRS
- 2001 NASA/ESA project began
- 2003 TRIP Review
- 2005 GSFC AETD Review
- 2007 NRC BEPAC Review
- 2009 Astro2010 Review
- 2011 NASA/ESA partnership ended
- 2011 Next Generation Gravitational-Wave Observatory (NGO) started

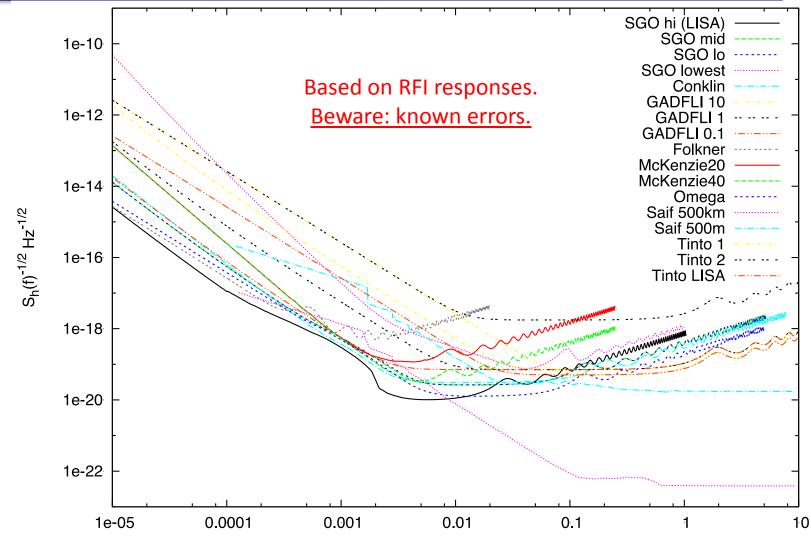
This document contains no ITAR-controlled information and is suitable for public release.

Context of the Study – Activities in Europe

- LISA Pathfinder
 - Demonstration of space-based GW technology, in late stages of I&T
 - 2014 launch
- Technology development
 - Inertial sensor electronics, charge control
 - Optical system
 - Laser system
 - Pointing and point-ahead mechanisms
- NGO
 - Candidate for ESA's Cosmic Visions L1, decision April 25th, before the end of the Study!

RFI Responses

- 17 responses total
 - 12 for mission concepts
 - 3 for instrument concepts
 - 2 for technologies
- Four natural groups
 - No drag-free concepts (2)
 - Geocentric orbits (4)
 - LISA-like (5)
 - Other (2)


What constitutes "LISA-like?"

- Drag-free control
 - Free-falling test mass
 - Precision stationkeeping
- Continuous laser ranging
- Heliocentric orbits
 - Constellation in stable equilateral triangle
 - No orbital maintenance
- Million-kilometer arms
- Laser frequency noise subtraction (TDI)
 - Michelson's white-light fringe condition through postprocessing

Science Performance

Group	Group 1 (No drag-free)		
Proposal Number	3	16	
Lead Author	Folkner	McKenzie	
Acronym		LAGRANGE	
Novel Idea	Long baseline, no drag-free	No drag-free, geometric reduction	
Proposal Type	Concept	Concept	
Number of Alternates	2	2	
Arm length (km)	2.6 x 10 ⁸	2.09 x 10 ⁷	
Spacecraft/Constellation	3/equilateral triangle //4/square	3/isosceles triangle	
Orbit	Heliocentric	Heliocentric/ Earth-Sun L2	
Trajectory	Not specified beyond HEO parking, double lunar assist. Solar electric propulsion mentioned.	Direct escape to L2, "drift" of SC1/3 to 8° leading/trailing	
Inertial Reference	None	GOCE accelerometer	
Displacement Measurement	3 arms, 6 links	2 arms, 4 links	
Launch vehicle		Falcon 9 Block 3	
Baseline/Extended Mission Duration	3 arms, 6 links	2	
Telescope Diameter (cm)	30	20/40	
Laser power out of telescope, EOL (W)	1	1.2	
Sensitivity curve	Yes	Yes	
Residual acceleration (m/s ² /Hz ^{1/2})	1.0 × 10 ⁻¹³	4.4 x 10 ⁻¹⁴ (0.001/f)^0.75	
Displacement sensitivity (m/Hz ^{1/2})	550 x 10 ⁻¹²	150 x 10 ⁻¹²	

No-Drag-Free Concept Issues

- Misunderstanding about S/N ratio
- Inconsistent representation of noise sources
- Critical considerations
 - Rely on either very long arms (50X LISA) or geometry (100X reduction) to compensate for using the spacecraft as the test mass.
 - Disturbances are solar radiation pressure variability, solar wind, interplanetary magnetic field
 - Measure, model and remove spurious forces (10² 10⁴ X)
 - LISA test masses achieve 3x10⁻¹⁵ m/s²/VHz residual acceleration 0.1-10 mHz
 - Displacement noise from motions of the spacecraft CG, owing to, say, thermoelastic effects

Geocentric Concepts

Group	Group 2 (Geocentric)				
Proposal Number	4	17	7	10	
Lead Author	Tinto	McWilliams	Hellings	Conklin	
Acronym	GEOGRAWI	GADFLI	OMEGA	LAGRANGE	
	Geocentric orbit, single spherical	Smaller telescope and laser,	Novel trajectories, Explorer cost	Earth-Moon Lagrange points,	
Novel Idea	TM	smaller satellites	approach	spherical test mass, grating	
Proposal Type	Concept	Concept	Concept	Concept	
Number of Alternates	3	3	1	1	
Arm length (km)	7.3×10^4	7.3×10^4	1.04 x 10 ⁶	6.7 x 10 ⁵	
Spacecraft/Constellation	3/equilateral triangle	3/equilateral triangle	6/triangle	3/equilateral triangle	
Orbit	Geostationary	Equatorial, geostationary	600,000 km geocentric, earth- moon plane (retrograde)	Earth-Moon L3, L4, L5	
Trajectory	Not specified	Direct launch together to geostationary, re-phase 2 S/C	Butterfly trajectories to Weak Stability Boundary, 384 days total	Either: direct to WSB, return and lunar fly-by; direct to Trans Lunar Injection, return and lunar fly-by	
Inertial Reference	Single, spherical	Two, rectangular	Single, rectangular	Single, spherical	
Displacement Measurement	3 arms, 6 links	3 arms, 6 links			
Launch vehicle		Falcon 9 Block 2	Small Delta or Falcon 9	Falcon 9	
Baseline/Extended Mission Duration		2	3	5	
Telescope Diameter (cm)	Same as LISA	15	30	20	
Laser power out of telescope, EOL (W)	Same as LISA	0.7	0.7	1	
Sensitivity curve	Yes	Yes	Yes	Yes	
Residual acceleration (m/s²/Hz ^{1/2})	3.0 x 10 ⁻¹⁵	3.0 x 10 ⁻¹⁵	3.0 x 10 ⁻¹⁵	3.0 x 10 ⁻¹⁵	
Displacement sensitivity (m/Hz ^{1/2})	7 x 10 ⁻¹²	8 x 10 ⁻¹²	5 x 10 ⁻¹²	5 x 10 ⁻¹²	

Geocentric Concept Issues

- Inconsistent treatment of noise
- Some technical issues
 - Less benign thermal environment
 - Sun in the telescope
- A big cost issue: can you do this for a factor of 4 less by employing nanosat technology, lower reliability standards, standard bus, a different way of doing business, ...

LISA-like Concepts

Group	Group 3 (LISA-like)				
Proposal Number	11	14	15	12	13
Lead Author	Shao	Stebbins	Livas	Thorpe	Baker
Acronym		SGO High	SGO Mid	SGO Low	SGO Lowest
Novel Idea	Formation-flying payload, torsion suspension for test mass	LISA with all known cost savings	Smallest LISA-like design with 6 links	Smallest LISA-like design with 4 links	Smallest in-line LISA-like design with 4 links
Proposal Type	Instrument	Concept	Concept	Concept	Concept
Number of Alternates	1	1	1	1	1
Arm length (km)	5.0 x 10 ⁶	5.0 x 10 ⁶	1.0 x 10 ⁶	1.0×10^{6}	2.0 x 10 ⁶
Spacecraft/Constellation	3+3/triangle	3/equilateral triangle	3/equilateral triangle	4/triangle (60-deg Vee)	3/In-line: Folded SyZyGy
Orbit	LISA-like	22° heliocentric, earth-trailing	9° heliocentric, earth drift-away	9° heliocentric, earth drift-away	≤9° heliocentric, earth drift-away
Trajectory		Direct injection to escape with recircularization and out-of-plane boost, 14 months	Direct injection to escape with out- of-plane boost, 21 months	Direct injection to drift away, with out-of-plane boosts, 21 months	Direct injection to escape, with small delta-v for S/C separation, 18 months
Inertial Reference	Single, torsion pendulum	Two, rectangular	Two, rectangular	Single, rectangular	Single, rectangular
Displacement Measurement		3 arms, 6 links	3 arms, 6 links	2 arms, 4 links	2 unequal arms, 4 links
Launch vehicle	Falcon 9	Shared Falcon Heavy	Falcon 9 Block 3	Shared Falcon 9 Heavy	Falcon 9 Block 2
Baseline/Extended Mission Duration	5	5/3.5	2/2	2/2	2/0
Telescope Diameter (cm)		40	25	25	25
Laser power out of telescope, EOL (W)		1.2	0.7	0.7	0.7
Sensitivity curve	No	Yes	Yes	Yes	Yes
Residual acceleration (m/s ² /Hz ^{1/2})		3.0 x 10 ⁻¹⁵	3.0 x 10 ⁻¹⁵	3.0 x 10 ⁻¹⁵	3.0 x 10 ⁻¹⁵
Displacement sensitivity (m/Hz ^{1/2})		8 x 10 ⁻¹²	8 x 10 ⁻¹²	8 x 10 ⁻¹²	8 x 10 ⁻¹²

LISA-like Concept Issues

- How far can the LISA architecture be descoped?
- No technical or performance issues
- Science performance falls off much faster than cost
- Found the bottom!

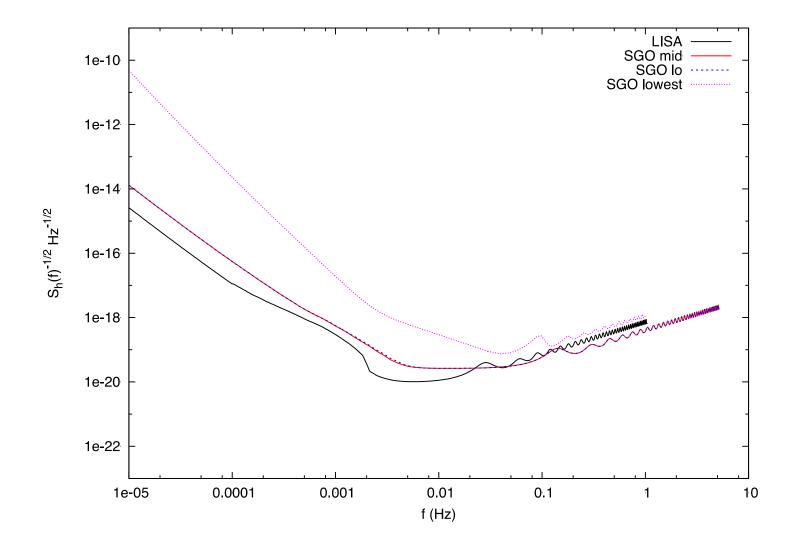
Other Concepts

Group	Group 4 (Other)			Instrument Concepts/Technologies
Proposal Number	5	8	9	6
Lead Author	Saif	Yu	Gulian	de Vine
Acronym	InSpRL			
	Atom interferometry	Atom inteferometer for inertial	Electrons in superconductor	Replace optical bench with
Novel Idea		sensor	Electrons in superconductor	photonic integrated circuit
Proposal Type	Concept	Instrument	Concept	Instrument
Number of Alternates	2			
Arm length (km)	0.5/500			
Spacecraft/Constellation	1//2/in-line		1	
Orbit	1200 km above geostationary	LISA-like	Not specified.	Comparable to LISA
Trajectory	Not specified	LISA-like	Not specified	
Inertial Reference	Atom interferometers			
Displacement Measurement				
Launch vehicle	Falcon			
Baseline/Extended Mission				
Duration				
Telescope Diameter (cm)				
Laser power out of telescope,	10-20			
EOL (W)	10-20			
Sensitivity curve	Yes			Comparable to LISA
Residual acceleration				
(m/s ² /Hz ^{1/2})				
Displacement sensitivity				5 x 10 ⁻¹²
(m/Hz ^{1/2})				5 X 10

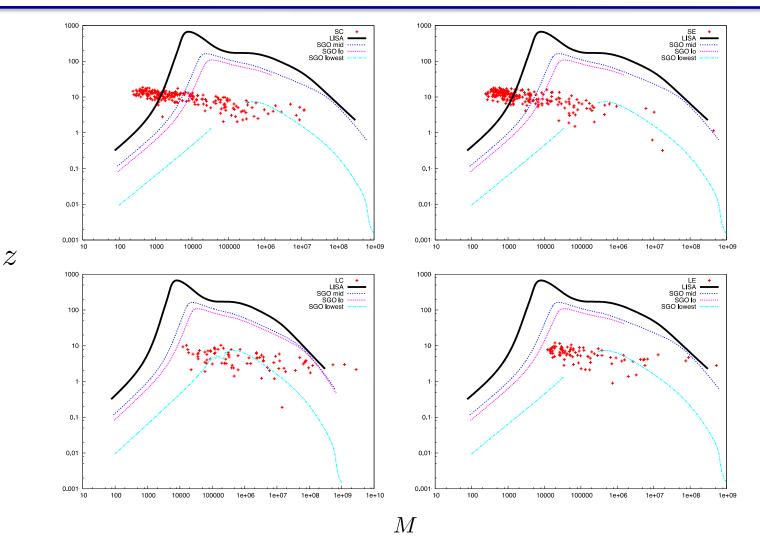
Other Concept Issues

- The superconductor idea doesn't work.
- Atom Interferometry
 - Atoms clouds as test masses
 - Atom interferometer as a phasemeter
- InSpRL
 - Most aggressive proposal, overlooked laser frequency noise
 - Lacks enough definition to evaluate
 - Seems to require a few orders of magnitude improvement in several key performance parameters
- Yu proposal doesn't promise to be cheaper.
- Digital Interferometry is interesting.

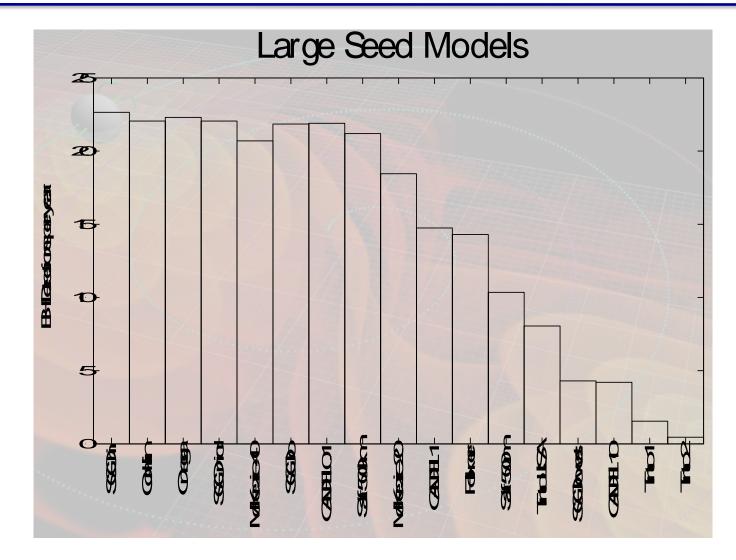
Astro2010 Endorsed LISA Science


- "Astro2010 endorsed LISA science" comes from NWNH and the Panel reports
- Origin and evolution of massive black hole binaries
- Galactic dynamics from extreme-mass-ratio inspirals (EMRIs) – stellar mass objects falling into central engines
- Galactic structure and stellar evolution from compact binaries
- Testing relativity with EMRIs
- Discovery of unanticipated sources, e.g., cosmological backgrounds, cosmic strings, etc.

Science Performance

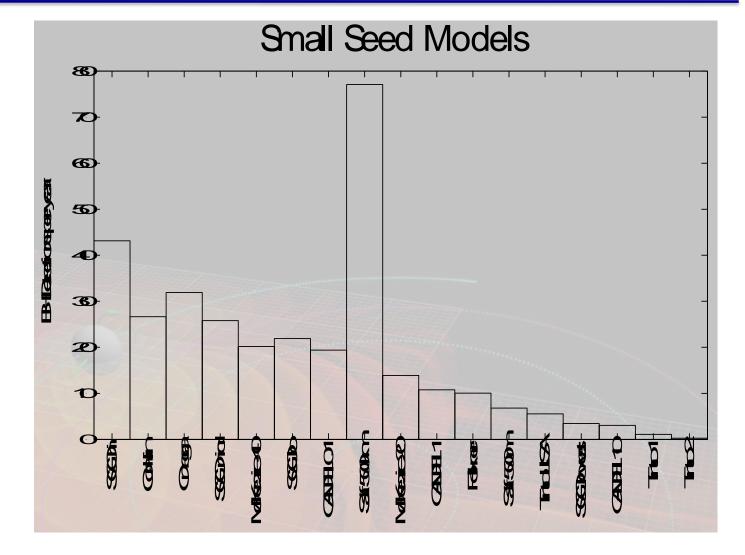

- The GW community can predict science performance from sensitivity curves.
- Plan
 - First use submitted sensitivity curves, then use corrected/complete sensitivity curves
 - Preliminary assessment of horizons with fiducial systems, rates/numbers
 - Estimate the accuracy of astrophysical parameters (masses, spins, luminosity distances, sky location, ...) for representative populations
- Preliminary assessment
 - Horizons and rates with submitted sensitivity curves
 - Some parameter estimation on no-drag-free concepts
- Warning: The following 9 slides are preliminary results with known problems. They are only illustrative of the analysis in progress.

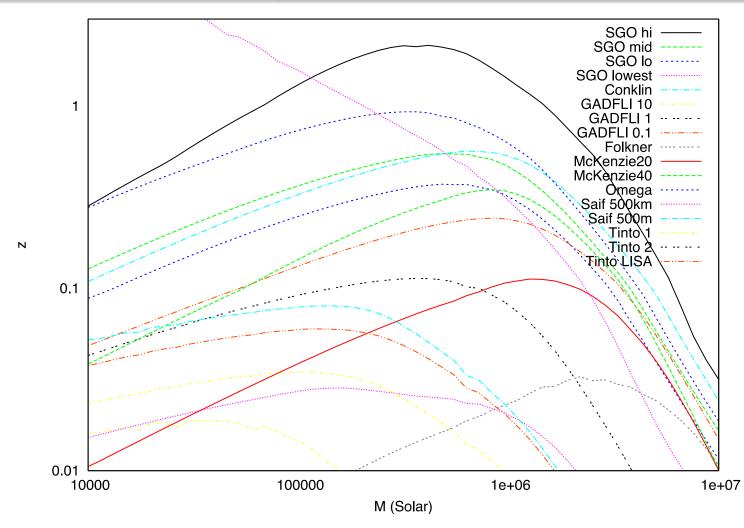
Massive Black Hole Horizons – Group 3



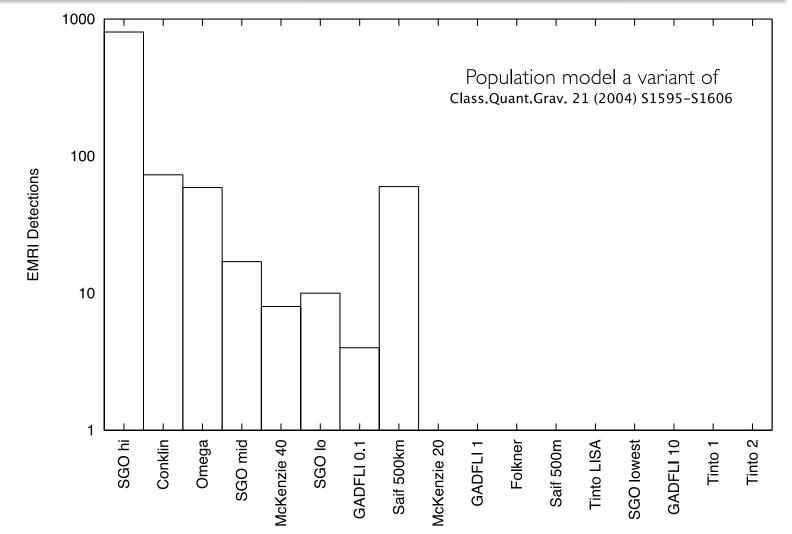
Fiducial system: mass ratio 3:1, spin 0.5/0.5, inspiral-merger-ringdown, SNR 10 threshold

21

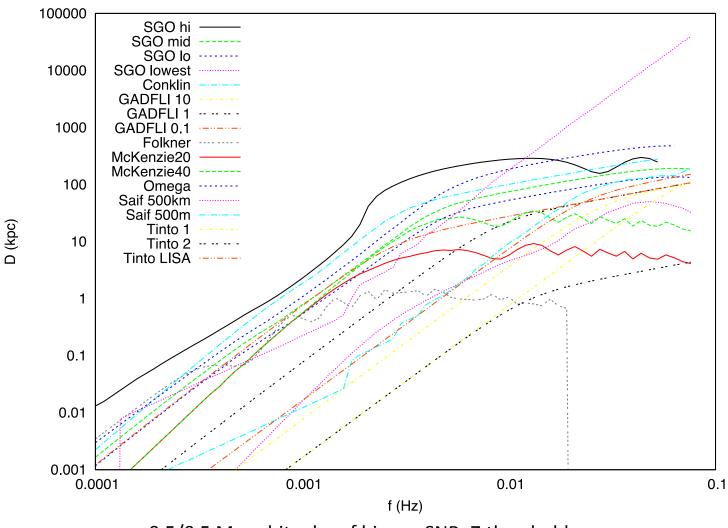

Detection Rates (/yr)

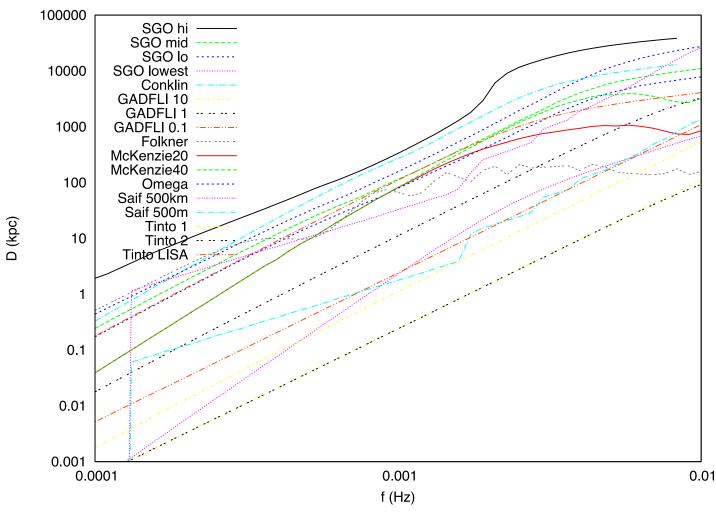

Detection Rates (/yr)

EMRI Horizons



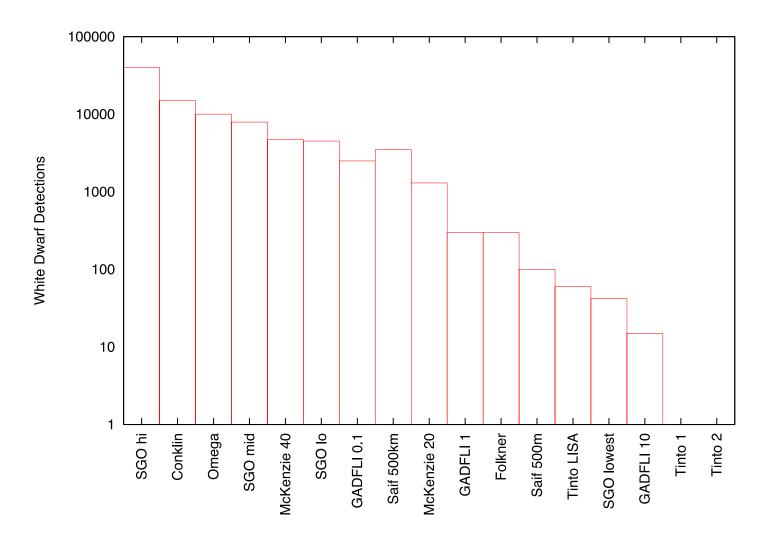
 M_{\odot} compact object, eccentricity 0.5 at 2 yrs to plunge, spin 0.5 central BH, SNR=15


EMRI Detections


WD-WD Horizons

0.5/0.5 M_{\odot} white dwarf binary, SNR=7 threshold

BH-BH Horizons



10/10 ${\rm M}_{\odot}$ stellar black hole binary, SNR=7 threshold

27

WD-WD Detections

Planned Team-X Studies

- LISA-like: SGO Mid (March 5-8)
 - Cost basis for common subsystems
 - Single agency costing, low cost launch vehicles
- No-drag free: LAGRANGE (March 20-22)
 - Eliminates the most science equipment possible
 - Significant uncertainties about showstoppers!
- Low-cost instrument: OMEGA (March 27-29)
 - Could grow by factor of 2-3, and still be interesting
- Low-cost mission concept: OMEGA (April 3-5)
 - Tests a different cost basis

Summary

- The community has been canvassed for alternative mission concepts through an RFI and a workshop.
- RFI responses include:
 - Previously offered concepts (scaled down LISA, vee instead of a triangle, geocentric rather than heliocentric, atom interferometry, six spacecraft, etc.)
 - Two novel no-drag-free concepts
- Responses have been examined and technical issues are being studied.
- A preliminary science analysis has been conducted to identify what science each concept might produce
- Three concepts have been selected for Team-X study