

ESA's Gravitational Observatory Advisory Team (GOAT)

Robin Stebbins, GSFC Presentation to the Astrophysics Subcommittee Telecon, 21 July 2015

Topics

- Basics
 - Terms of Reference (Charge)
 - Membership
 - Term and Meetings
- Activities
 - Alternate technical approaches
 - Technology development
 - Schedule
 - Scientific performance
- Products
 - Internal documents
 - Intermediate report (15 June 2015)
- Future activities

The Basics: Terms of Reference, Membership, Meetings

Terms of Reference

"To evaluate and recommend on possible scientific and technical approaches for a gravitational wave observatory envisaged for a planned launch date in 2034."

- The objectives of the committee are:
 - To identify promising technologies for the detection of gravitational waves from space and their use as 'astrophysical messengers' in the context of L3;
 - To recommend on the technological activities and milestones needed to develop and eventually choose between the most promising technologies;
 - To identify possible scientific and technological milestones that should be achieved (either by ESA or independently) and the relevant decisions linked to these milestones;
 - To engage with the gravitational wave scientific community to ensure that the most recent information and promising approach are considered.

Membership

- Michael Perryman (University College Dublin), Chair
- Pierre Binetruy (AstroParticule et Cosmologie, Paris)
- Philippe Bouyer (Laboratoire Photonique, Numérique et Nanosciences (LP2N)
- Michael Cruise (University of Birmingham)
- Reinhard Genzel (Max Planck Institüte für Extraterrestrische Physik, Munich)
- Mark Kasevich (Stanford University)
- William Klipstein (Jet Propulsion Laboratory)
- Guido Müller (University of Florida)
- Benard Schutz (Albert Einstein Institute, Golm and University of Cardiff)
- Stefano Vitale (Universitá degli Studi di Trento)
- Observers
 - Masaki Ando (JAXA)
 - Robin Stebbins (NASA)
- ESA support
 - Luigi Cacciapuoti
 - Fabio Favata
 - Martin Gehler
 - Oliver Jennrich
 - Frédéric Safa

Meetings and Term

- Meetings to date
 - Kick-off telecon 26 September 2014
 - GOAT #1 14-15 October 2014, ESA Headquarters, Paris
 - GOAT #2 8-9 December 2014, ESA Headquarters, Paris
 - GOAT #3 25-26 March 2015, ESA Headquarters, Paris
 - GOAT #4 1-2 June 2015, ESA Headquarters, Paris
- Scheduled future meetings
 - GOAT #5 16-17 September 2015, ESTEC, Noordwijk NL
 - GOAT #6 15-16 December 2015, ESA Headquarters, Paris
- Term
 - Mid 2016 with report on LISA Pathfinder

GOAT Activities

Initial Range of Activities

- Technical feasibility: are there fundamental issues
- Science goals: configuration trade-off
- Data analysis: Are there risks/problems?
- System view
- Technology: Laser vs atom interferometry, immature items
- Partners
- Cost: recurring costs, descope options
- Schedule: establish a consolidated timeline

- Science objectives
 - Compiled an expanded statement of target science
- Detection technologies
 - Compiled a long list from the literature
 - Only 2 detection technologies address the science recommended by the Senior Selection Committee
 - Laser interferometry responds to the science goals set out in the 2013 report of the Senior Science Committee, and is sufficiently well advanced to offer a realistic prospect of implementation according to the 2034 launch schedule.
 - Committee is still seeking a full mission proposal based on atom interferometry.

Reported Activities (2/4)

- Scientific performance trade-off: assess the science that can be performed with a particular architecture.
 - 24 mission configurations
 - 2 or 3 measurement arms
 - 2 or 5 years of science observations
 - LISA or 10X worse/LISA Pathfinder low frequency acceleration noise
 - 1, 2 or 5 million kilometer arm lengths
 - Performed by European researchers, with some input from US colleagues
- Data analysis
 - No fundamental or conceptual issues with the data analysis. Recommend renewed effort, in part, because of impact on mission design

Reported Activities (3/4)

- Technology development
 - Compiled all required technology developments
 - Technology challenges are significant, but should not be overstated. LPF will retire many of the space-specific risks.
 - Recommend four high priority technology development activities for immediate start
- Cost
 - European cost studies suggest a budget of 1.0-1.2 B€, only weakly dependent on system architecture.
- Schedule (next chart)

ID	Task	20	016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
		Q1 Q	2 Q3 Q4	Q1 Q2 Q3 Q4	4 Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3	Q4 Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q	4 0.1 0.2 0.3 0	4 Q1 Q2 Q3 Q	4 Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4							
1	GOAT recommendations	♦																			
2	First LISA Pathfinder in-orbit results																				
3	Call for L3 mission			ן																	
4	High priority technology developments	4				Ţ															
5	ITT process (rolling over 1/month)			I																	
6	High priority TDA (for EM, 3 yr)																				
7	High priority TDA (for EM, 2 yr)																				
8	Medium priority TDA (for EM)																				
9	Lower priority/late developments																				
10	Payload pre-developments				Á					Ţ	,										
11	AO for payload consortium																				
12	Engineering model									Ţ	1										
13	EM definition					L															
14	EM development						L														
15	EM integration and test								L												
16	Space system development			4																	Ţ
17	Phase A ITT			_																	
18	Phase A																				
19	Technical assistance																				
20	Phase B1									(5										
21	Mission adoption review									l	♦										unch
22	Margin																			Id	
23	SPC adoption & IPC approval									SPC	~	•									
24	ITT and contractor selection									Adoptio	n /		5								¥
25	Phse B2/C/D (8.5 years)											l	-								
26	Launch																				L ♦

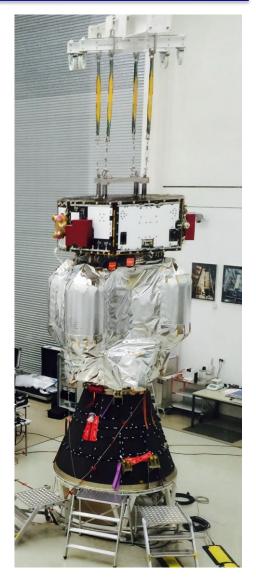
GOAT Products

NASA

- Internal documents
 - Scientific trade-off report
 - Technology development spreadsheet
 - List of detection technologies
 - Propulsion technologies summary
- Intermediate GOAT report
 - Public document, released 15 June 2015
 - Distributed to ESA advisory structure and the Science Programme Committee
 - Major findings summarized in previous 4 charts
 - Used to notify European national agencies that "expressions of interest" in the mission will be sought by ESA Headquarters at the "end of the summer."

Future GOAT Activities

- Complete assessment of scientific performance as a function of mission configuration
- Formulating some considerations on configuration choices to balance cost and scientific performance
- Advancing the definition and scope of the Payload Engineering Model
- Assessing the technical and scientific risks of LPF
- Summarizing the technologies validated by LPF
- Detailing any fundamental risks associated with gravitational wave detection
- Reviewing the prospects and status of atom interferometry
- Responding to specific requests on costing from ESA Executive or its advisory committees



- Launch date
 - Official launch contract puts launch between 15 November and 14 December 2015
 - Target day to be determined in mid-August. November 26th is favored.
- Spacecraft/payload/propulsion module/launch adaptor integration complete.
- On schedule to pack for shipping to launch site (Kourou) on August 18th
- Expect to store for 6 weeks
- Operations should start at the end of January 2016.

Status of LISA Pathfinder (2/2)

Summary

GOAT has made significant progress on several topics.

- Laser interferometry is the only detection technology shown to be viable, but the search isn't over.
- Science trade-offs have been investigated.
- Technology recommendations enable ESA and the member states to start investments as early as the end of the year.
- No fundamental technical obstacles found, in either technology or data analysis.
- A preliminary schedule has been developed, but remains under study.
- The concept of an engineering payload model remains problematic.