

CASE Briefing to the Astrophysics Advisory Committee

June 24 2020

Mark Swain – Principal Investigator

© 2020. California Institute of Technology. Government sponsorship acknowledged.

Page 1

Agenda

- ARIEL mission overview
- CASE overview
- Baseline science
- Community value
- Science progress that makes CASE even more relevant

Ariel Mission Overview

- ESA M4 mission
- Launch 2028
- L2 orbit
- 3.5 year prime mission
- Telescope 1 m effective diameter
- 0.5-7.8 µm wavelength coverage
- Surveys exoplanet atmospheres
- Observers ~1000 planets
- Payload consortium consists of 17 ESA member states + US contribution
- <u>https://arielmission.space</u>

Ariel Science Overview

- Key Questions
 - What are planets made of?
 - How do planets form?
 - How do planets evolve?
- Tiered Survey
 - Tier 1: Reconnaissance Survey
 - Tier 2: Deep Survey
 - Tier 3: Benchmark Survey
 - Tier 4: Phase curve Survey
- Targets defined by the ARIEL Payload Consortium Science Team members
- ESA/NASA data rights agreement is in process

Figures from ARIEL Yellow Book https://sci.esa.int/documents/34375/36249/1567260310680-ESA_SCI-2017-2_ARIEL.pdf

CASE Overview

- Contributes detectors and cold front end electronics, including packaging, thermal management, and cryoflex cables, for ARIEL Fine Guidance System.
- Processes FGS data to create science data products.
- Provides US participation in ARIEL mission survey design and scientific discoveries.

- Connects astrophysics and planetary fields
- Reveals how JWST exoplanet observations fit into the larger exoplanet family
- Addresses NASA Science Plan (2014) objective: "Discover and study planets around other stars, and explore whether they could harbor life"

CASE and ARIEL will revolutionize the study of exoplanet atmospheres

CASE

Measurements to Knowledge

CASE Science Objectives

- Determine the occurrence rate of aerosols (clouds and hazes)
- Measure the geometric albedo of exoplanet atmosphere to constrain aerosol composition
- CASE wavelength coverage optimized for the science objectives -

Forecasted Performance

- Aerosol slop precision requirement 310 % margin
- Albedo precision requirement 400 % margin

CASE Endorsement

National Academy of Science

Consensus Study Report: Exoplanet Science Strategy

- "The U.S. exoplanet community would benefit from participation in ARIEL."
- "U.S. scientists would benefit from the CASE mission by participating in the planning, execution, and exploitation of the ARIEL survey."

High Science Value

em

dilib

Planet

CASE team simulation finds **ARIEL** Tier 1 survey provides excellent constraints on planet formation by constraining the mass-metallicity relation.

Zellem et al. 2019

Recent Results Highlight Importance of Aerosols

Micro-physics model predicts exoplanet haze formation at extreme altitude

Simulated hot-Jupiter atmosphere 1473 K H & CO + UV makes aerosol material in lab

2750

Wavenumber (cm⁻¹)

3000

3250

3500

Page 12

2500

1750

2000

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology

New Science Opportunities

CASE Science Community Engagement

- Three major community engagement areas
 - Input on defining the observing priorities JWST results will likely have a significant impact
 - Precursor observations (examples include ephemeris maintenance, improved planet and stellar parameters, system characterization)
 - Access to CASE/ARIEL data products
- CASE project will provide science data products to the community through NExScI
 - Aerosol and albedo data products
 - NExScI will also mirror ARIEL science archive data products
- CASE science team community engagement
 - Community meetings planned to start later this year
 - Opportunity for US community to provide input on ARIEL observing priorities through the CASE Science Team
 - Opportunity to participate in CASE modeled on the TESS community science team

CASE Science Team

Team Member	Role	
Mark Swain (JPL) ¹	Principal Investigator	Key Mission Development and Operations Co-ls Science Team Co-ls Science Team Co-ls Science Team Co-ls
Robert Green (JPL) ¹	Instrument Scientist	
Gautam Vasisht (JPL) ¹	Deputy Instrument Scientist	
Gael Roudier (JPL) ¹	Data Subsystem Lead	
Edward Wright (UCLA) ¹	Statistical processing expertise	
Jacob Bean (U. Chicago) ¹	Science Team Lead, calibration	
David Ciardi (IPAC) ^{1,2}	Archiving Lead	
Nicolas Cowan (McGill) ³	Climate and phase curve science	
Jonathan Fortney (UCSC) ¹	Theory Lead	
Caitlin Griffith (UoA LPL) ¹	Comparison with solar system	
Eliza Kempton (U. of Maryland) ¹	Cloud models	
David Latham (Harvard/SOA) ¹	TESS target coordination	
Michael Line (ASU) ¹	Spectral retrieval	
Suvrath Mahadevan (Penn State) ¹	Exoplanet masses	
Jorge Melendez (U. São Paulo) ³	Stellar characterization	
Julianne Moses (SSI) ¹	Atmospheric chemistry	
Vivien Parmentier (University of Oxford) ³	Modeling condensable aerosols	
Adam Showman (UoA LPL) ¹	Atmospheric dynamics	
Andrew Howard (Caltech)	Exoplanet demographics	
Laura Kreidberg (Harvard/SAO) ³	Transit spectroscopy calibration	
Evgenya Scholnik (ASU) ³	Stellar UV flux and star spots	
Kevin Stevenson (STScI) ³	HST/JWST coordination	
Yuk Yung (Caltech) ³	Atmospheric chemistry	

