A PERA REVEALING THE DIFFUSE UNIVERSE

NASA ASTROPHYSICS ADVISORY COMMITTEE

Prof. Carlos J. Vargas Principal Investigator October 15, 2021

What is the CGM?

ARIZONA

RUB

Cold Extraplanar Gas

ARIZONA

• M82

 Combined Hα (T~10⁴ K), IR, optical

Cold Neutral Gas

Warm Ionized Gas

IOWA

- Also M82
- CO (1-0) contours + HI (colorscale)

Cold Neutral Gas

RUB

VERA C. RUBIN OBSERVATOR

• Extraplanar!

Molecular Gas

IOWA

NASA

Cold Molecular Gas

- Also M82
- Chandra X-ray (T>10⁶)

Image Credit: Jiang-Tao Li

Molecular Gas

Cold Neutral Gas

Warm Ionized Gas

Hot Gas

But, is the CGM warm-hot?

???

The Simulated CGM

Tumlinson et al. (2017)

Absorption Line Findings

- Large OVI columns to ~150 kpc
- Diffuse / occupies bulk of halo
 - NOT shock front or boundary layer
- >10% of entire galactic feedback energy goes into support
- Contains more mass than stars!
- Caveats: Assumptions on filling factor; no morphological info
- We do not have 'eyes' on the dominant matter component of galaxies

ERA C. RUBI

Hubble probes the invisible halo of a galaxy

The light of a distant quasar shines through the invisible gaseous halo of a foreground galaxy. Elements in the halo absorb certain frequencies of light. They become detectable, and can be used to measure the halo's mass.

We need to map warm-hot (coronal) gas...

So, why haven't we?

"While the hot gas observed with Copernicus is very similar to the extended corona suggested nearly twenty years ago, the origin and spatial distribution of the observed coronal gas is not at all certain."— Lyman Spitzer, 1976

It's in the FUV, faint, and filamentary

- Strongest line OVI @ $\lambda\lambda$ 1032, 1038 Å, rest-frame
 - Need to go to space!
- Surface brightness $< 1 \times 10^{-18}$ erg s⁻¹ cm⁻² arcsec⁻² (near z=0)
- Filaments \rightarrow luck?

UV optics/detectors are historically inefficient at these wavelengths...

ERA C. RUBI

It's hard to get to space...

[arcmin]

Until Now!

High-reflectance UV Coatings M. Quijada, NASA GSFC

IOWA

VERA C. RUBIN

RUB

MCP Detectors Ossy Siegmund Sensor Sciences, LLC Falcon 9 SmallSat Rideshare

The Aspera Team

University of Arizona	
Management	
Carlos J. Vargas (PI) Erika Hamden (DPI)	Tom McMahon (PM) Haeun Chung (PS)
Simran Agarwal Hop Bailey Peter Behroozi Trenton Brendel Heejoo Choi Tom Connors Jason Corliss Fernando Coronado David Dolana Ewan S. Douglas Kerry Gonzales John Guzman Dave Hamara	Walt Harris Karl Harshman Aafaque R. Khan Daewook Kim Jessica S. Li Corwynn Sauve Hannah Tanquary Daniel Truong Michael Ward Ellie M. Wolcott Naomi Yescas Dennis Zaritsky

I

AURA/Vera C. Rubin Observatory	
Lauren Corlies	VERA C. RUBIN OBSERVATORY
Ruhr University Bochum	
Ralf-Jürgen Dettmar	DUR
Ascending Node Technologies, LLC	
Carl Hergenrother John Kidd Sanford Selznick	
University of Iowa	
Keri Hoadley	IOWA
Columbia University	Columbia University
David Schiminovich	
Sensor Sciences, LLC	
Oswald Siegmund	
UTIAS SFL	
Simon Grocott	

The Aspera Team

Simon Grocott

with strong support from experienced scientists and engineers

Determining the Expected SBR and Morphology

Corlies & Schiminovich 2016

15

Arizona

MWA

And Then Haeun Chung Came Along...

Revisiting FUSE OVI Emission in Galaxy Halos

Haeun Chung⁽¹⁾, Carlos J. Vargas⁽¹⁾, and Erika Hamden⁽¹⁾

University of Arizona, Steward Observatory, 933 N. Cherry Ave., Tucson, AZ 85721, USA; haeunchung@arizona.edu Received 2021 March 5; revised 2021 May 21; accepted 2021 May 23; published 2021 July 20

ERA C. RUBIN

Archival FUSE data

- 4 new detections!
 - First detection in NGC 891 a high extinction target
- Improved estimate of expected OVI SBR via analogous measurements!

Implications for future OVI Detections

Chung, Vargas, & Hamden 2021

FRA

- Aspera is specifically designed to detect and map OVI
- Aspera's sensitivity lead is due to low contribution from background noise and large 'grasp' (étendue)
- Big science can be done in a small platform!

Targets

Selection Criteria:

- i > 78°
- R_{opt} sampleable
- cz sampleable
- Hubble type later than Sa (star forming)
- No starburst or AGN
 - Simplifies interpretation
- No close companions
 - Avoids confusion
- Visible in LEO
- Extinction < 1 mag @ OVI
 - NGC 891 extinction = 0.98 mag, and it was detected with FUSE
 - 10 of 18 targets have extinction < 0.35 mag
- Lots of existing ancillary data at other wavelengths for many of these!

Name	RA (J2000)	Dec (J2000)	Priority Group	Optical Diameter (')	D (Mpc)	cz (km/s)
NGC 4631	12h42'8"	32°32'29"	1	17.0	7.4	606
NGC 3003	9h48'36"	33°25'17"	1	6.0	19.6	1478
NGC 891*	2h22'22"	42°20'47"	1	12.2	9.2	529
NGC 5746	14h44'56''	1°57'18"	1	7.8	31.5	1724
NGC 1353	3h32'3''	-21°10'51''	1	5.2	25.6	1547
NGC 253*	00h47'33''	-25°17'18''	1	40	3.4	243
NGC 3692	11h28'24"	9°24'27"	2	3.6	42.4	1726
NGC 3044	9h53'41"	1°34'37"	2	5.0	21.4	1289
NGC 5775	14h53'58''	3°32'40"	2	4.4	17.4	1681
NGC 4666	12h45'9"	-1°32'17"	2	7.2	14.7	1529
NGC 625*	01h35'05''	-41°26'10''	2	11.7	3.9	396
NGC 7064*	21h29'03''	-52°46'03''	2	4.9	11.5	797
NGC 1406*	03h39'23''	-31°19'17''	2	5.5	17.4	1074
NGC 1448*	03h44'31''	-44°38'41''	2	9.2	18.3	1167
NGC 660*	1h43'02"	13°38'42"	2	7.2	12.3	850
IC 5052*	20h52'05''	-69°12m06s	2	8.7	5.5	584
M82	9h55'53"	69°40'46"	2	13.0	4.2	203
NGC 7582*	23h18'24''	-42°22'14"	2	16.5	21.0	1575

Target Selection

Priority 1 Targets

Optical Support Optical Channels Structure 4 x Grating Instrument Boresight Grating Slit **Optical Baffling** MCP MCP Electronics MCP Detector Footprint Slit OAP. ⊷+150 mm C&DH, LVPS and HVPS OAP 356 mm 340 mm

VERA C. RUBIN

Aspera Payload

- EFFICIENT AND REDUNDANT, WITH HERITAGE
- 4x Identical Rowland Circle-like optics
 - Design inspired by FUSE
- 103-104 nm FUV spectrograph
 - Spec R: ~2000, Spatial R: 45 arcsec
 - FoV: 60 arcmin x 30 arcsec (per ch.)
- Sensitivity: 4.3E-19 erg/s/cm²/arcsec²
- TRL \geq 6 Technologies
 - Mirror, Grating, Coating, & Detector
- Payload mass, power: 24 kg, 27 W

Micro-Channel Plate Detector

• FUV SENSITIVE TRL 9 DETECTOR

VERA C. RUBI

- Supplied by Sensor Sciences, LLC (Dr. Oswald Siegmund)
- Cross delay line (XLD) Microchannel plate
- FUV sensitive CsI photocathode (QE>40%)
- Spatial resolution < 35 micron
- Previously flown multiple times, high TRL technology

- Provided by the University of Toronto Institute for Aerospace Studies (UTIAS) Space Flight Laboratory (SFL)
- ESPA-class DEFIANT platform
 - Spacecraft mass: ~35 kg
 - Payload mass: ~24 kg
 - Payload volume: 36 cm x 36 cm x 56 cm

Orbit & CONOPS

- Mission duration: 9-month (1 month checkout + 8 month science ops)
- Orbit: Sun-Synchronous Dawn-Dusk (Altitude: 600-900 km LEO)

DAY IN THE LIFE

ARIZONA

ASPERA PAYLOAD SYSTEM: EFFICIENT AND REDUNDANT, WITH HERITAGE

- Dominant baryonic component of galaxies is still unmapped.
- Aspera : UV SmallSat mission for imaging warm-hot coronal gas in nearby galaxy halos
 - Selected for funding in 2020 NASA Astrophysics Pioneers AO
 - Via O VI (1032 Å) emission spectroscopy with step-and-stare concept observation
 - Inspired by FUSE, four identical 6.2 cm x 3.7 cm telescopes in a single payload
 - High-throughput, wide-field, and shot-noise limited system enables detection and mapping of faint diffuse gas
- Projected launch ~mid-2025 for 9-month mission

