Cosmic Origins Program Analysis Group: Update, Status Report

Dominic Benford, COPAG Chief Scientist Michael Garcia, COPAG Executive Secretary Christopher Martin, former COPAG Chair COPAG Executive Committee

Outline

- I. COPAG composition and recent activities
- 2. All-encompassing Science Goal?
- 3. Update on Sept 2012 & Jan 2013 workshops
- 4. Open issues and way forward

COPAG xecutive Committee

NASA

COPAG Chair TBA

Ken Sembach **StScl** 11/10-11/13

Julianne Dalcanton UWash 10/11-10/14

Paul Goldsmith JPL 11/10-11/13

Chuck Lillie 11/10-11/13

Susan Neff Ex Officio

Jon Gardner **GSFC** 11/10-11/13

2

Lynne Hillenbrand Caltech 10/11-10/14

James Lowenthal Smith College 3/12-3/15

Paul Scowen ASU 12/11-12/14

David Leisawitz **GSFC** 10/11-10/14

Mike Garcia

Executive Committee 0

- A Cosmic Origins "Dear Colleague" letter will be issued during the summer to replace some of the original COPAG EC members.
- In consultation with the COPAG Chair, the AP Division Director, and the approval by the ApS Chair, new appointments will be issued for the EC before November 2013.

- Most of the current Executive Committee(EC) is interested, active and pushing issues
- Regular (usually) EC telecons to discuss issues
- Very animated and interesting Community meetings at STScI and at AAS
- Technology prioritization; great and very detailed input to Program Office
- Efforts in attempting to unify science drivers: Cosmogony (more on this later...)
- UV/Visible RFI#1 33 great responses

4

2012 Tasks/SAGs

- SAG1: Science Goals, Objectives, Requirements for Cosmic Origins missions. Where are science thresholds and how do they link with mission class / aperture size?
- SAG2: Determine technology focus areas for a monolithic 4m Aperture UV/Optical/NIR mission with Internal Coronograph for Exoplanet Imaging
- SAG3: Determine technology focus areas for a segmented 8 m Aperture UV/Optical/NIR mission with External Occulter for Exoplanet Imaging
- SAG4: Determine technology focus areas for future Far IR Instruments
- SAG5: What is the scientific case for a set of linked probes and corresponding technology requirements?

Cosmogony

Following the flow of matter from the Cosmic Web to Planets

ScienceThener Geodback Cosmogony

xies

لاں

Following the flow of ray Baryons from the Cosmic Web to Planets

CGM

IGM

Updates from Sept 2012 & Jan 2013 Workshops

UV RFIs 1 and possible 2 Technology priorities and SAT program Mid-decadal process Path to Astro2020

onal Aeronautics and Space Administration

UV/Visible Science Request For Information (Community Input)

UV/Visible Science Objectives Request for Information

NASA

The National Aeronautics and Space Administration (NASA), through the Astrophysics Division and its Cosmic Origins (COR) Program, are soliciting information through this Request for Information (RFI) pertaining to potential ultraviolet (UV) and visible astrophysics science investigations. Specifically, NASA seeks information that can be used to develop a cohesive set of science goals that motivate and support the development of the next generation of UV/Visible space astrophysics missions. Information may include broad science goals, justifications for investigations that support COR science goals (see, e.g., http://cor.gsfc.nasa.gov/), specific measurements or proxy observing plans for well-defined astrophysical experiments, or any aspect of scientific inquiry in the UV/Visible that supports the above COR goals.

Visit http://cor.gsfc.nasa.gov/RFI2012/

Responses August 2012 (34 compliant) Workshop September 2012 (50+ attend)

Provided representative, not comprehensive, view of important COR UV/Vis science.

222 individual reason dental

Imaging Mission Classes

Diam	UV RFI Imaging Science Topic	Band	Resol	FOV
1-2 m	Stellar Physics with UVO Spectropolarimetry	117-870nm	<0.01"	2″
	The Magellanic Clouds Survey	200-1000nm	<0.1"	10'x10'
	Conditions for Life in the Local Universe	100-300nm	<0.1"	?
	The Role of Dwarf Galaxies in Reionization	100-630nm	1″	10′
	Project Lyman: 11 Gyrs of Metagalactic Ionizing Background Evolution	95-400nm	0.25″	0.5 sq. deg
	Solar System Science Objectives w/ UVO Space Observatory	UV-IR	0.05″	<50"
	CASTOR: a widefield UVO Survey Telescope	150-550nm	0.15″	0.67 sq. deg.
	Galaxy Assembly and SMBH/AGN Growth	200-1000nm	<0.04"	15′x15′
0.4	Understanding Global Galactic Star Formation	250-950nm	0.02″	>15'x15'
2.4 M	Near-Field Cosmology and Galactic Evolution Using Globular Clusters in Nearby Galaxies	200-550nm	0.05″	20'x20'
	Extragalactic Lyman-alpha Experiments in the Nearby Universe	122-350nm	0.05″	0.1 sq. deg.
4 m	Exoplanet Science of Nearby Stars on a UVO Astrophysics Mission	500-800nm	Diff. Limit	1″
8 m	The History of Star Formation in Galaxies	300-900nm	Diff. Limit	3'x3'
	The Crucial Role of High Spatial Resolution, High Sensitivity UV Observations to Galaxy Evolution Studies	110-600nm	0.007"	30'x30'
	Seeking Behind the Anthropic Principle	90-320nm	0.01″	3'
	AGN & their role in Galaxy Formation & Evolution	120-300nm	<0.0001"	4mas

National Aeronautics Space Administration Spectroscopic Mission (Cosmic Cosmic Cigins Program

Program

11

Diam	UV RFI Spectroscopic Science Topic	Band	R	MOS
1-2 m	Science from IGM/CGM Emission Mapping	100-400nm	1000-5000	Y
	Project Lyman: 11 Gyrs of Metagal. Ionizing Background Evolution	95-400nm	Few 1000s	Y
	Extragalactic Lyman alpha in nearby universe	122-350nm	100-5000	
	UV spectroscopic time-domain studies of AGN	110-300nm	>600	
	A UVOIR spectroscopic sky survey to understand galaxy evolution	200-1700nm	400-1000	Y
	CASTOR: a widefield UVO Survey Telescope	150-550nm	100-700	
	The origin of elements heavier than Iron	190-305nm	60,000	Y
	Magellenic Clouds Survey	200-1000nm	30,000	
	Near-Field Cosmology and Galactic Evolution Using Globular Clusters in Nearby Galaxies	200-550nm	3000	Y
2.4 m	Galaxy Assembly and SMBH/AGN-growth	200-1000nm	Few 100s	
	From proto-planetary disks to extrasolar planets: understanding the life cycle of circumstellar gas with UV spectroscopy	92-180nm 120-400nm	150,000 3000	Y
	Solar system science objectives with next UVO space observatory	UV-IR	2500	
	How do molecules and dust form in massive interactive winds	300-700nm	10,000	Y
	Conditions for life in the local universe	100-300nm	100,000	
4 m	The Baryon census in a Multiphase IGM	<100nm+	100,000	
	Unique astrophysics in the Lyman UV	92-200nm	50,000	Y
	Massive stars: Key to solving the cosmic puzzle	92-900nm	6000	
8 m	QSO absorption lines in Far UV: gold mine for galaxy evolution	100nm+	~COS	
	Seeking the Anthropic Principle	90-320nm	1000	
	Active Galactic Nuclei and their role in Galaxy Formation & Evolution	120-300nm	500	

NA SA

JV Imaging Sciencec @

1 81 8111 1111	Liautou	THUT LINGUIGH	Dest Dally for Duck.
Waveband:			
≥92nm	18	0	
≥115nm	11	5	1
≥ 250nm	4	13	
Resolution:			
≥1 mas	13	3	
≥ 10 mas	12	4	1
≥ 50 mas	8	8	
Aperture:			
1-2m	7	10	
2.4m	11	6	✓
4m	12	5	
8m+	16	1	
FoV:			
1 arcmin	5	12	
10 arcmin	11	6	1
30 arcmin	15	2	

NA SA

UV Spectroscopic Science

Parameter	Enabled	Not Enabled	Best Bang for Buck?
Waveband:			
≥ 92nm	22	2	1
≥115nm	13	11	
≥ 250nm	2	22	
Spectral Resolution:			
R=1000	9	15	
R=10,000	16	8	
R=40,000	18	6	1
Aperture:			
1-2m	6	18	
2.4m	12	12	
4m	16	8	1
8m+	20	4	
MOS:	8	N/A	

A 2.4m UV/Visible telescope with 10 arc-min FOV and MOS is highly competive: HST?

Updates from Sept 2012 & Jan 2013 Workshops

UV RFIs 1 and possible 2 Technology priorities and SAT program Mid-decadal process Path to Astro2020

- Contains status of CORfunded technology developments
- Provides new technology needs prioritization.
- Available online! http://cor.gsfc.nasa.gov

COR Technology Needs Prioritization

High QE, large format UV detectors Photon counting UV large-format detectors High Reflectivity UV coatings Ultralow-noise Far-IR direct detectors	Priority 1. Contains technology needs that the TMB has determined to be of the highest interest to the Cosmic Origins program and recommends that they should be invested in first, when funding is available		
Very large format, low noise Optical/IR detector arrays Large, low-cost, light-weight precision mirrors for Ultra-Stable Large Aperture UV/Optical Telescopes Large format, low noise Far-IR direct detectors Photon counting Optical/IR detector arrays Heterodyne Far-IR receiver arrays	Priority 2: Contains technology needs that the TMB feels are worthy of pursuit and would be invested in, if funding allows		
High efficiency cryocoolers High efficiency UV multi-object spectrometers Large, cryogenic far-IR telescopes High Performance Sub-Kelvin Coolers Deployable light-weight precision mirrors for future Very Large Aperture UV/Optical Telescopes Interferometry for far-IR telescopes	Priority 3: Contains technologiy needs that are deemed to be supportive of COR objectives but, for various reasons, do not warrant investment at the present, although they could be invested in, if significant additional funding is available		

16

COR Top Priorities

- High-QE, large-format UV detectors QE (>70%), large-format (>2k × 2k) detectors for operation at 100–400 nm or broader .
- Photon-counting, large-format UV detectors For spectroscopy, high QE (>50%), very low-noise (<10⁻⁷ ct/pixel/s), large-format (>2k × 2k) photon-counting detectors for operation at 100–400 nm or broader.
- UV coatings —high reflectivity, high uniformity, and wide bandpasses, operating from visible to wavelengths below 100 nm .
- Ultra-low-noise far-IR direct detectors For spectroscopy at wavelengths between ~30 μ m and ~300 μ m; NEP $\approx 3 \times 10^{-21} W/\sqrt{Hz}$ arrayable in a close-packed configuration in at least one direction

- COPAG agrees that in general CO Program Office technology priorities reflect community consensus
- COPAG will continue to refine technology priorities based on
 - ✓ Prior technology development results
 - Revised science, mission concepts, and associated needs (input from community email list)
 - ✓ New technology developments
 - Example: UVOIR spectrometer multiplexing technology
 - Digital Micromirror Devices (TRL3)
 - Microshutter arrays (TRL7)
- COPAG will continue to monitor NASA Cosmic Origins program to ensure that community priorities continue to be reflected

Updates from Sept 2012 & Jan 2013 Workshops

UV RFIs 1 and possible 2 Technology priorities and SAT program Mid-decadal process Path to Astro2020

mplementation Plance @

National Aeronautics and Space Administration

Astrophysics Implementation Plan

Astrophysics Division Science Mission Directorate NASA Headquarters

- *"Astrophysics Implementation Plan* has been prepared by the Astrophysics Division of NASA's Science Mission Directorate... to respond to the decadal survey recommendations within the current budgetary constraints."
- For COR, only present missionrelated effort is to conduct mission trade studies envisioned to inform technology investment decisions during latter half of decade

December 2012

Concept Activity in this Decade

Strategic Mission Concepts	Derived from Recommendation	Status of Studies	Candidate Plan(s) for Future Mission	
WFIRST: Large Strategic Mission (DRM1)	Large 1st : WFIRST	Completed in 2012	Large mission for mid- decade	
WFIRST: Probe-size Strategic Mission (DRM2)	Large 1st : WFIRST	Completed in 2012	Probe for mid-decade	
Use of 2.4m telescope assets to advance science of WFIRST	se of 2.4m telescope sets to advance scienceLarge 1st : WFIRST (Medium 1: New Worlds Technology)Started in 2012		Large mission for mid- decade	
Gravitational Wave missions to advance science of LISA	Large 3rd : LISA Technology	Completed in 2012	Large mission for next decade; international partnership	
X-ray missions to advance the science of IXO Large 4th : IXO Technology		Completed in 2012; under consideration for study in 2014	Probe for mid-decade; Large mission for next; international partnership	
Exoplanet probes to advance the science of a planet characterization and imaging mission	Medium 1st : New Worlds Technology	Planned for 2013; SDT opportunity just announced	Probe for mid-decade; large mission for next decade	
Cosmic Microwave Background Polarization Probe	Medium 2nd : Inflation Probe Technology	Study under consideration for study in 2015	Probe or large mission for next decade	
Science + technology drivers for a UV/Visible missionSmall: (Definition of) a future UV- optical space capability		Started in 2012	Probe or large mission for next decade	

Updates from Sept 2012 & Jan 2013 Workshops

UV RFIs 1 and possible 2 Technology priorities and SAT program Mid-decadal process Path to Astro2020

Path to Astro2020 C

- No COR mission (except WFIRST) in mid-decadal process
- Possible Community Directions:
 - Option 1: Community proposes many competing approaches to Astro2020, grass roots, DS decides
 - Option 2: Community converges on 1 concept
 - Option 3: Community converges on a small set of options (e.g., Probes, 4 m mono, 8 m segmented)
- What is the process for the community to "self-organize" to make the decision & converge on best option?
- Possible first steps:
 - Workshop to address Community Decision to make it or agree on process to make it
 - Form new SAG: Cosmic Origins Community Strategy to Prepare for Astro2020

- New COPAG Chair important for the overall dynamics of the group
- **Replacing EC Members** at the end of 2013 (established in November 2010).
- **Planning community workshops** (technology, mission concepts) for Summer 2013
- **Direction/Terms of Reference for SAGs** (clear product, clear end game)
- **Consolidate future missions concepts** in UV/Visible and Far-IR science areas for next decade
- **Compelling Technology Development Plan** (TDP) for the rest of this decade; community input
- **Prepare for Decadal UV/Visible follow-on to HST,** re: Astro2010

Backup

Updates from Sept 2012 & Jan 2013 Workshops

Science Goals for Cosmic Origins

Science Goals

- **Goal 1:** Characterize the growth of large-scale baryonic structures in the intergalactic medium
- **Goal 2:** Observe and explain the assembly of galaxies over cosmic time
- **Goal 3:** Trace and understand the flows of baryons between galaxies and the intergalactic medium
- **Goal 4:** Trace and understand the cycles of matter and energy within galaxies
- **Goal 5:** Measure and explain the history of star formation in galaxies over time
- **Goal 6:** Determine how the conditions for habitability arise during planetary system formation

Updates from Sept 2012 & Jan 2013 Workshops

New Science of Cosmic Dawn

Cosmic Dawn

- HI 21 cm *z*~10-40+ to probe pre-galaxy era!
- Low frequency radio band, moon-shadow
- May form form new SAG to explore

Updates from Sept 2012 & Jan 2013 Workshops

Science-Driven Technology Flowdown

Program

Example: National Aeronautics and easurement -> UV Detector

Requirements

UV Detector Property	UV High Resolution/High Contrast Imaging	UV Wide Field Imaging	UV High Resolution Spectroscopy	UV Multi-Object Spectroscopy	UV Integral Field Spectroscopy	Current Performance
QE	Moderate	Moderate	High- Very High	High	High- Very High	Low-Very Low
Format: Number of Pixels	Very High	Very High	High-Very High	High-Very High	High-Very High	High
Photon- counting	ХХ	Х	ХХХ	ХХ	ХХХ	YES
Equivalent background	Low	Moderate	Very Low	Low-Very Low	Very Low	Moderate
Dynamic Range	High	High	Moderate	Moderate	Moderate	Moderate
Radiation Tolerance	Moderate	Moderate	Moderate	Moderate	Moderate	High
Time Resolution	Low	Low	Low	Low	Low	High
Out of Band Rejection	High	High	Moderate	Moderate	Moderate	High