

Jet Propulsion Laboratory California Institute of Technology

AFTA Coronagraph Technology Recommendation Process

Feng Zhao, AFTA Coronagraph Instrument Manager Gary Blackwood, Exoplanet Exploration Program Manager Jet Propulsion Laboratory, California Institute of Technology

BOARD ON PHYSICS AND ASTRONOMY Irvine CA

November 19, 2013

Copyright 2013 California Institute of Technology. Government sponsorship acknowledged

Exoplanet Missions

Hubble

Ground-based Observatories Astronomy and Astrophysics in the New Milernium

Spitzer

Kepler

national Report Council

2001 Decadal Survey

TESS

New Worlds, New Horizons

Book-share

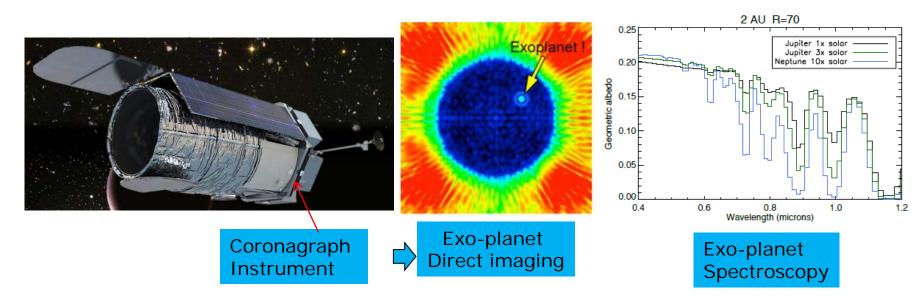
New Worlds Telescope

JWST

AFTA

ExoPlanet Exploration Program

Why: In response to NASA Administrator's guidance, and Astrophysics Director's Implementation plan, AFTA must produce a compelling and viable mission concept including coronagraph *within guideline budget and schedule* for potential new mission start in FY17


What:

 Choose primary and backup coronagraph technology to focus design and technology investments

AFTA = Astrophysics-Focused Telescope Asset

AFTA Coronagraph Instrument

ExEP

	400 000		
Bandpass	430 – 980nm	Measured sequentially in five ~10% bands	AFTA Coronagraph Instrument will:
Inner working angle	100 – 250 mas	3λ/D, driven by challenging pupil	Characterize the spectra of over a dozen radial velocity planets.
Outer working angle	0.75 – 1.8 arcsec	By 48X48 DM	Discover and characterize up to a dozen more ice and gas giants.
Detection Limit	Contrast = 10 ⁻⁹	Cold Jupiters, not exo- earths. Deeper contrast looks unlikely due to pupil shape and extreme stability requirements	 Provide crucial information on the physics of planetary atmospheres and clues to planet formation.
Spectral Resolution	70	With IFS, R~70 across 600 – 980 nm	 Respond to decadal survey to mature coronagraph technologies, leading to first images of a nearby Earth.
IFS Spatial Sampling	17mas	This is Nyqust for $\lambda \sim 430$ nm	Images of a nearby Earth.

- January 6 2013: ExoPAG#7 endorses coronagraph for AFTA
- May 30: NASA Administrator gives permission for AFTA pre-formulation activities including a coronagraph
- June 20: AFTA Coronagraph Working Group (ACWG) Charter signed by NASA Headquarters, identifying Members.
- July 23-25: AFTA Coronagraph Workshop (ACW)#1 held at Princeton University
- September 9,10: AFTA Science Definition Team (SDT) meeting
- September 25-27: ACW#2 held at JPL
 - Preliminary science requirements and evaluation criteria established
- October 21-22: ACW2.5 Telecon
- November 20-22: ACW3 at JPL

Approach to Recommendation

- **Objective:** Recommend a <u>primary</u> and <u>backup</u> coronagraph architecture to focus design and technology development leading to potential new mission start in F17
- Recommendation by ExEPO and ASO based on inputs from
 - **SDT:** Sets the science requirements
 - ACWG: Delivers technical FOMs and technology plans
 > Aim for the positive: a consensus product
 > SDT delivers science FOMs
 - TAC: Analysis of technical FOM, TRL readiness plans, and risks
- ExEPO and ASO recommendation to APD Director based on:
 - Technical and Programmatic
 - Musts (Requirements), Wants (Goals), and Risks
 - Distinguish description from evaluation
- APD Director will make the decision

ACWG = representatives of ExEPO, ASO, SDT, Community

TAC:

Alan Boss (Carnegie Mellon) Joe Pitman (EXSCI) Steve Ridgway (NOAO) Lisa Poyneer (LLNL) Ben Oppenheimer (AMNH)

How do we define a

FOM = Figure of Merit

ExEP

ACWG Membership

• These represent Program, Study Office, SDT, and Community:

[Signatures when ready]	Charter
Joan Centrelia Program Scientist AFTA Study Astrophysics Division Science Mission Directorate NASA Headaurters	Jure 20, 2013
Lie S. JaPiana Lie LaPiana Program Executive AFTA Study Astrophysics Division	JUNE 20,2013
Science Mission Directorate NASA Headquarters Douglas Hudgitas Program Scientist Exoplante Exoploration Program	June 20, 2013
Astrophysics Division Science Mission Directorate NASA Headquarters	June 21,2013
Anthony Carrol Program Executive Exoplanet Exploration Program Astrophysics Division Science Mission Directorate NASA Headquarters	
	5

Steering Group:

Gary Blackwood (NASA JPL) Kevin Grady (NASA GSFC) Feng Zhao (NASA JPL) Peter Lawson (NASA JPL) Scott Gaudi (OSU) Neil Gehrels (NASA GSFC) Dave Spergel (Princeton U) Tom Greene (NASA ARC) Chas Beichman (NExScI) Jeff Kruk (NASA GSFC) Karl Stapelfeldt (NASA GSFC) Wes Traub (NASA JPL) Bruce MacIntosh (LLNL)

Members:

Jeremy Kasdin (Princeton U) Mark Marley (NASA ARC) Marc Clampin (NASA GSFC) Olivier Guyon (UofA) Gene Serabyn (NASA JPL) Stuart Shaklan (NASA JPL) Remi Soummer (STScI) John Trauger (NASA JPL) Marshall Perrin (STScI) Rick Lyon (NASA GSFC) Dave Content (NASA GSFC) Mark Melton (NASA GSFC) Cliff Jackson (NASA GSFC) John Ruffa (NASA GSFC) Jennifer Dooley (NASA JPL) Mike Shao (NASA JPL)

Additional consultants participate at request of Steering Group

Recommendation Criteria: Defining a Successful Outcome

ExoPlanet Exploration Program

MUSTS (Requirements): Go/No_Go

- 1. Science: Does the proposed architecture meet the <u>baseline</u> science drivers?
- 2. Interfaces: For the <u>baseline</u> science, does the architecture meet telescope and spacecraft requirements of the observatory as specified by the AFTA project (DCIL¹)
- 3. Technology Readiness Level (TRL) Gates: For <u>baseline</u> science, is there a credible plan to be at TRL5 at the start of FY17 and at TRL6 at the start of FY19 within available resources?
- 4. Is the option ready in time for this selection process?

WANTS (Goals): Relative to each other, for those that pass the Musts:

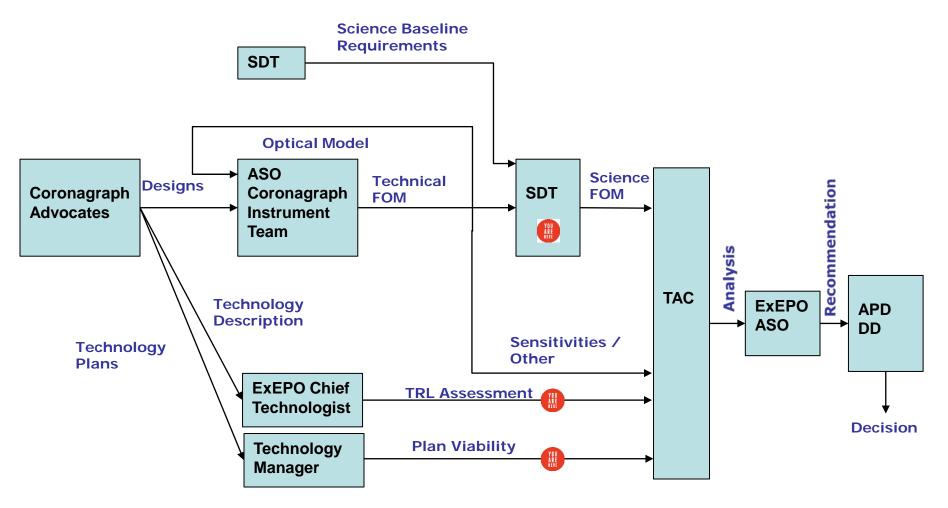
- 1. Science: Relative strength of science beyond the baseline
- Technical: Relative technical criteria
 See details
- 3. Programmatic: Relative cost of plan to meet TRL Gates

RISKS and OPPORTUNITIES

- See details

Base	aseline Science (Musts: M1)						
1	General						
а	Operate from 430 to 980 in >10% bandpasses						
b	Operate separately or simultaneously in 2 polarization channels						
2	Characterization of previously-known Doppler planets: Spectroscopically characterize from 650 to 950nm at SNR=10, R=70 per resolution element from 600-850 at least 6 previously-known Doppler planets in 3 months of mission time						
3	Search depth for gas giant (super-neptune) planets: Total search depth of 40 for objects from r1=4 RE to r2=13 RE and						
3	0.1 <a<5 2="" 200="" 550="" a="" and="" at="" months<="" nm="" observing="" of="" one="" over="" per="" star="" stars="" survey="" td="" time="" to="" total="" up="" visit="" with=""></a<5>						
4	Search depth for ice giant (sub-neptune) planets: Total search depth of 4 for objects of r<4RE over a survey of 200 stars						
-	observing at 550 nm with four visits per star and a total survey time of up to 2 months						
6	Exozodiacal disk detection: Detect a disk of 10x our solar system's zodiacal level at SNR=5 per resolution element at 1 AU at						
–	450 nm at 8 pc						
Scier	nce beyond the Baseline: Wants (W1a) (Relative Weight indicated)						
1							
а	(M) Cover at least 15% bandpass						
b	n/a						
2	(M)						
3	(M)						
	(H) Total search depth for objects of r<2RE is a important 'extra' science capability for selection, with a desirable value being						
4	>4						
6	(M)						
Thre	hreshold Science (Risk R4)						
5T	Exozodiacal disk detection: Detect a disk of 100x our solar system's zodiacal level at SNR=5 per resolution element at 2 AU						
51	separation around a star 8 pc away at 450 and 800 nm						
ЗТ	Search depth for gas giant (super-neptune) planets: Total search depth of 10 for objects from r1=4 RE to r2=13 RE and 0.1 <a<5 2="" 200="" 550="" a="" and="" at="" months<="" nm="" observing="" of="" one="" over="" per="" star="" stars="" survey="" td="" time="" to="" total="" up="" visit="" with=""></a<5>						

Evaluation Criteria: Mask Architecture

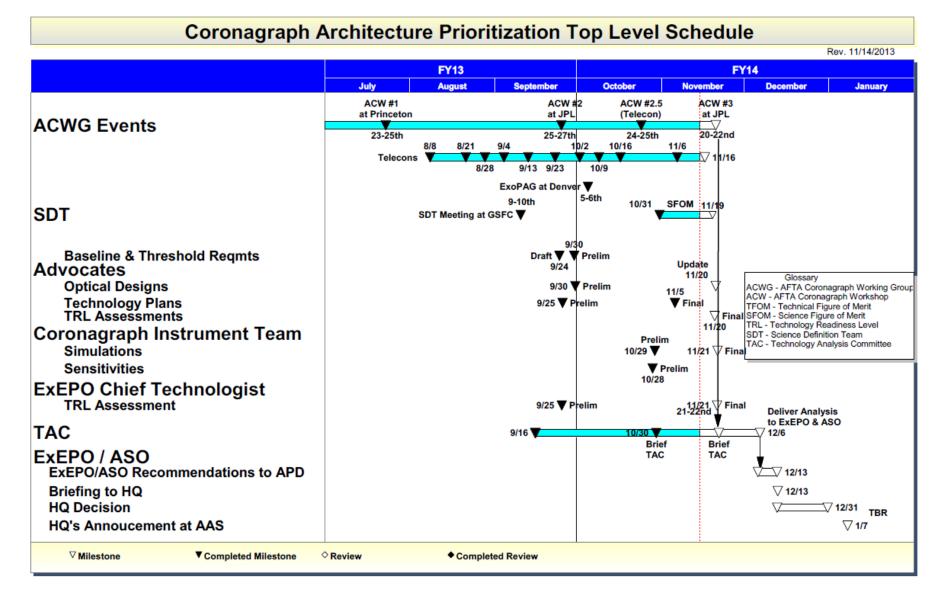


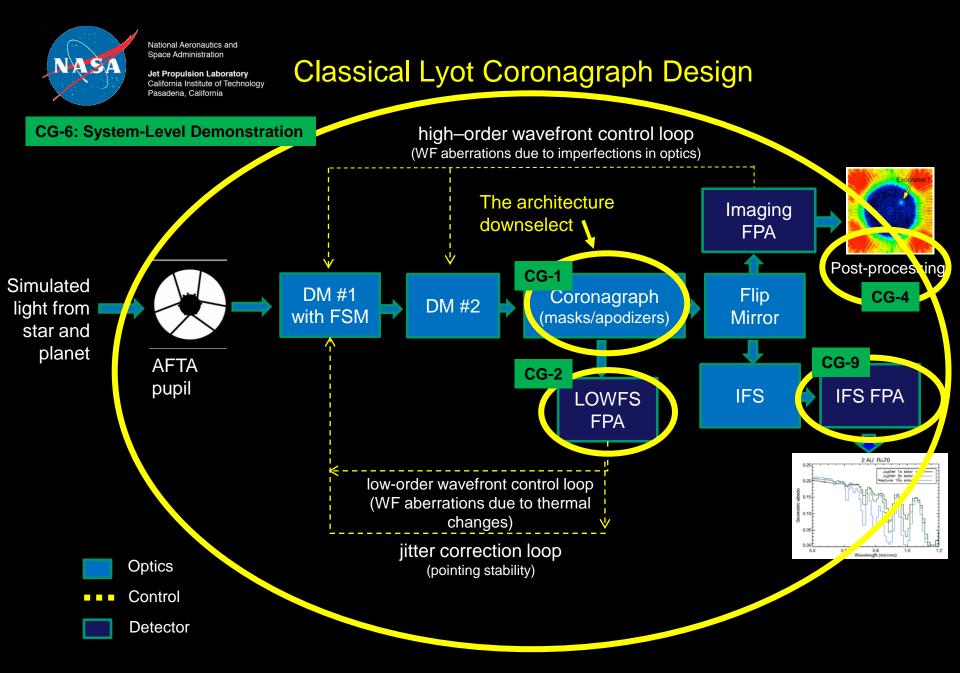
Musts M M M M M Wants W W	Name M1 M2 M3 M4 M5 W1 a b W2 a	Science Relative Science yield beyond the baseline Technical Relative demands on observatory (DCIL)	Weights 40 30	Option : Shaped Pu	_	Option 2 PIAACMC ? X		unkno no, or	r expec	Vector				Opti VNC - P	
M M M Wants W	M2 M3 M4 M5 W1 a b W2 a	Science: Meet baseline requirements? Interfaces: Meets the DCIL**? TRL Gates: For baseline science is there a credible plan to meet TRL5 at start of FY17 and TRL6 at start of FY19 within available resources? Ready for 11/21 TAC briefing Architecture applicable to future earth-characterization missions Science Relative Science yield beyond the baseline Technical Relative demands on observatory (DCIL)	40			×	"Ве	yes, o unkno no, or	r expec	ted sho		er			
M M Wants W	M2 M3 M4 M5 W1 a b W2 a	Interfaces: Meets the DCIL**? TRL Gates: For baseline science is there a credible plan to meet TRL5 at start of FY17 and TRL6 at start of FY19 within available resources? Ready for 11/21 TAC briefing Architecture applicable to future earth- characterization missions <u>Science</u> Relative Science yield beyond the baseline <u>Technical</u> Relative demands on observatory (DCIL)	40			×	"Ве	unkno no, or	expec	ted sho		er			
M M Wants W	W3 W4 M5 W1 a b W2 a	Interfaces: Meets the DCIL**? TRL Gates: For baseline science is there a credible plan to meet TRL5 at start of FY17 and TRL6 at start of FY19 within available resources? Ready for 11/21 TAC briefing Architecture applicable to future earth- characterization missions <u>Science</u> Relative Science yield beyond the baseline <u>Technical</u> Relative demands on observatory (DCIL)	40			×	"Ве	unkno no, or	expec	ted sho		er			
M Wants W	W1 a b W2 a	credible plan to meet TRL5 at start of FY17 and TRL6 at start of FY19 within available resources? Ready for 11/21 TAC briefing Architecture applicable to future earth- characterization missions <u>Science</u> Relative Science yield beyond the baseline <u>Technical</u> Relative demands on observatory (DCIL)	40			×	"Ве	unkno no, or	expec	ted sho		er			
M Wants W	W1 a b W2 a	TRL6 at start of FY19 within available resources? Ready for 11/21 TAC briefing Architecture applicable to future earth- characterization missions Science Relative Science yield beyond the baseline <u>Technical</u> Relative demands on observatory (DCIL)	40			×	"Ве	unkno no, or	expec	ted sho		er			
M Wants W	W1 a b W2 a	resources? Ready for 11/21 TAC briefing Architecture applicable to future earth- characterization missions Science Relative Science yield beyond the baseline Technical Relative demands on observatory (DCIL)	40			×	"Ве	no, or	expec		wstopp	er	_		
Wants Wants	W1 a b W2 a	Ready for 11/21 TAC briefing Architecture applicable to future earth- characterization missions Science Relative Science yield beyond the baseline Technical Relative demands on observatory (DCIL)	40			Identify	"Ве				wstopp				
Wants Wants	W1 a b W2 a	Architecture applicable to future earth- characterization missions Science Relative Science yield beyond the baseline Technical Relative demands on observatory (DCIL)	40			Identify	"Ве		- 44						
Wants W	W1 a b W2 a	characterization missions Science Relative Science yield beyond the baseline Technical Relative demands on observatory (DCIL)	40			Identify	"Ве		- 11						
Wants W	W1 a b W2 a	Science Relative Science yield beyond the baseline Technical Relative demands on observatory (DCIL)	40			Identify	"Ве		- 44						
W	a b W2 a	Science Relative Science yield beyond the baseline Technical Relative demands on observatory (DCIL)	40			Identify	"Ве		- 41						
W	a b W2 a	Science Relative Science yield beyond the baseline Technical Relative demands on observatory (DCIL)	40			Identify	"Ве								
	a b W2 a	Relative Science yield beyond the baseline Technical Relative demands on observatory (DCIL)				Identify	"Ве	المعر الغمر		1.1					
W	W2 a	Technical Relative demands on observatory (DCIL)	30			ruentity			othere	are					
W	а	Relative demands on observatory (DCIL)	30			-Wash		est anu	others	are.					
	-					-Small D	:			- 1					
										- 1					
		Relative sensitivities of post-processing to				-Signific				- 1					
	b	low order aberrations				-Very La	rge	Differe	nce	-					
	с	Relative TRL (level, qty) for HW, algorithms													
	d	Relative complexity of design													
	e	Relative difficulty in alignment, calibaration, or	os												
W	W3	Programmatic	30												
	а	Relative Cost of plans to meet TRL gates													
		Wt sum =>	100%	Score 1		Score 2		Sco	re 3	Sco	ore 4	Sco	re 5	Sco	re
Risks				С		C L		С	L	С	L	С	L	С	
Ri	Risk 1	Technical risk in meeting TRL5 gate							N	н					_
Ri	Risk 2	Schedule or Cost risk in meeting TRL5 Gate						н							
Ri	Risk 3	Schedule or Cost risk in meeting TRL6 Gate				celhood		м							
Ri	Risk 4	Risk of not meeting at least threshold science				Ukeli		L							
Di	Risk 5	Risk of manufacturing tolerances not meeting BL							Conseq	uence	- 10				
NI NI	NISK J	science						L	N	н					
Di	Risk 6	Risk that wrong architecture is chosen due to				poo		н							
N	NISK U	assumption that all jitter >2Hz is only tip/tilt				licelih		M							
Pi	Risk 7	Risk that wrong architecture is chosen due to any							Ben	efit					
N	MBK 7	assumption made for practicality/simplicity													
Opportur		Science gain for 2x smaller jitter than DCIL		В		B L		В	L	В	L	В	L	В	

Product of ACWG: Comparative Analysis

ExEP

ExoPlanet Exploration Program

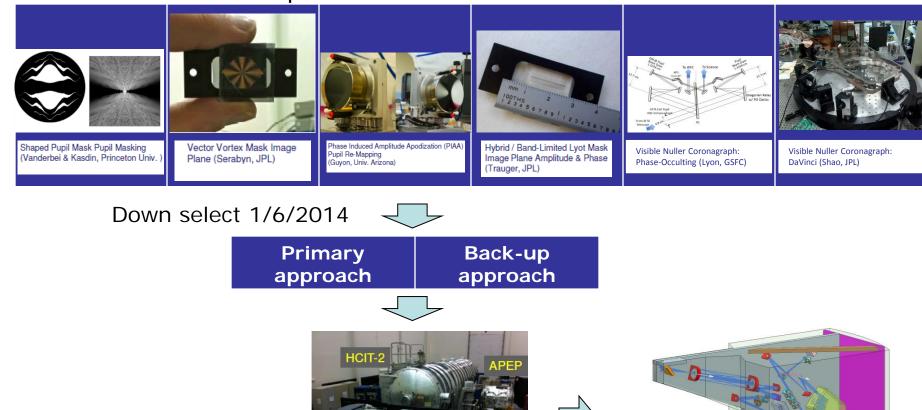



You Are Here

FOM = Figure of Merit ASO = AFTA Study Office ExEPO = Exoplanet Exploration Program Office

Down-select detailed schedule

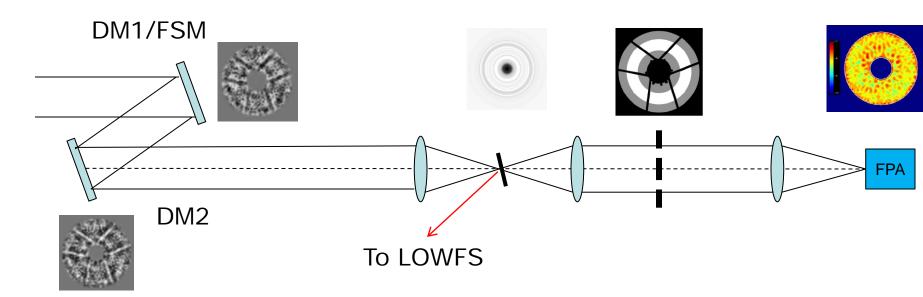
ExEP



Star light suppression -- Technical Approach

ExoPlanet Exploration Program

Six different concepts



TRL-5 @ start of Phase A (10/2016)

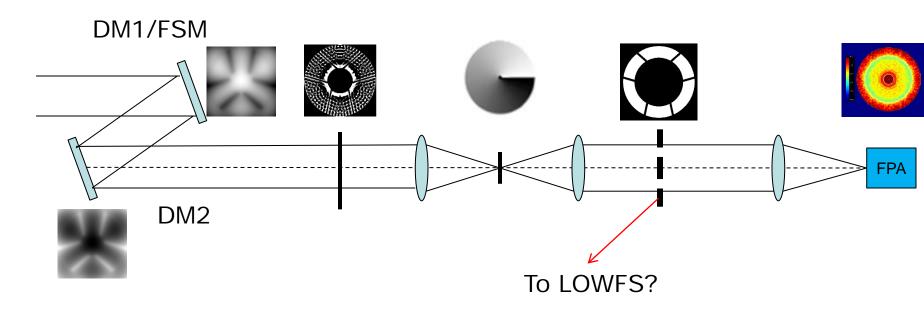
TRL-6 @ PDR (10/2018)

Hybrid Lyot


ExEP

DM1, DM2	Pupil mapping	Apodizer mask	Occulting mask	Lyot stop	Inverse pupil mapping
Mild ACAD on both DMs			Complex transmission, on filter wheel	Transmission, grey, fixed	

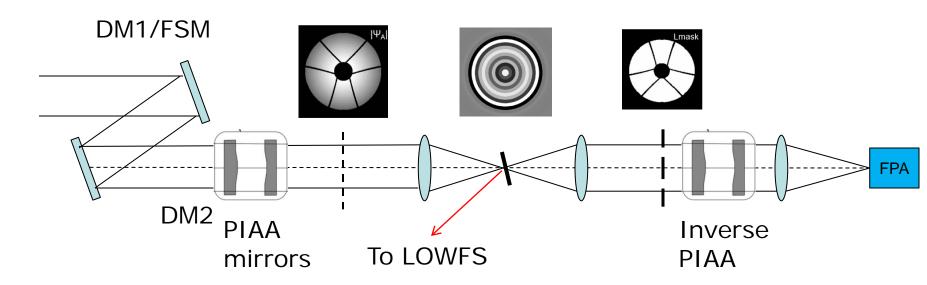
Shaped Pupil


ExEP

DM1, DM2	Pupil mapping	Apodizer mask	Focal plane mask	Lyot stop	Inverse pupil mapping
Mild ACAD on both DMs		Binary reflection on filter wheels	Binary transmission, on filter wheel		

Vector Vortex

ExEP

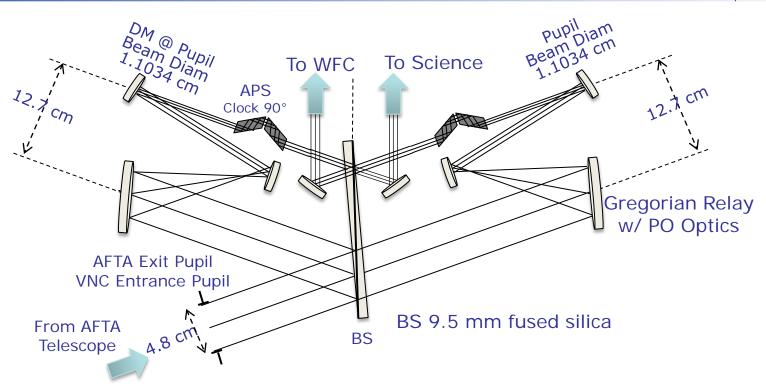


DM1, DM2	Pupil mapping	Apodizer mask	Focal plane mask	Lyot stop	Inverse pupil mapping
Strong ACAD on both DMs		Binary transmission, on filter wheel	Vortex transmission, on filter wheel	Transmission, binary, fixed	

PIAA - CMC

ExEP

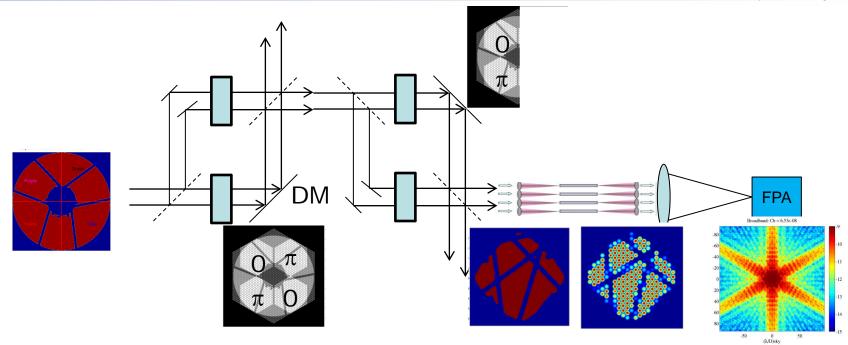
ExoPlanet Exploration Program



Final design deadline extended to 11/4/2013

DM1, DM2	Pupil mapping	Apodizer mask	Occulting mask	Lyot stop	Inverse pupil mapping
Medium ACAD on both DMs	PIAA mirrors	Gray scale, filer wheels?	Phase transmission, on filter wheel	Transmission, binary, fixed?	Inverse PIAA mirrors

AFTA: Phase-Occulted VNC Nulling Schematic



Interferometer	WFC
1 stage nulling interferometer	Two DMs for both phase and amp
Full aperture (radial shear)	Lyot stop?
Achromatic phase shifters*	
Delay line to adjust OPD	

VNC-DaVinci

Interferometer	WFC
2 stage nulling interferometers	One DM (4 quadrants) for both phase and amplitude control
Diluted aperture (4X)	Lyot stop mask (binary, transmission, fixed)
Achromatic phase shifters	Fiber bundle spatial filters
Delay line to adjust OPD	

Exoplanet Missions

Hubble

Ground-based

Observatories

New Worlds Telescope

AFTA

JWST

Summary:

Spitzer

Kepler

 Exoplanet Direct Imaging Science is Compelling

TESS

- AFTA is Next Important Step
- Current Trade will focus design and technology investments

This work was carried out at the Jet Propulsion Laboratory, California

Institute of Technology, under a contract with the National Aeronautics and Space Administration.

© 2013. All rights reserved.