
Science and Applications Traceability Matrix

Public Release Candidate E 16 September 2019

Note to Reviewers: Please use this on-line form to provide your

comments: https://goo.gl/forms/RbSbNez4lNjjEjun2

ACCP SATM Navigation Map

Overarching ACCP Goal	A+CCP	٨	CCP	2017 DS Most Important Very Important	Goals	
				W-1a W-2a C-2a C-2g	G1 Cloud Feedbacks Reduce the uncertainty in low- and high-cloud climate feedbacks by advancing our ability to predict the properties of low and high clouds.	
Understand the processing of				W-1a W-2a W-4a C-2g H-1b C-5c	G2 Storm Dynamics Improve our physical understanding and model representations of cloud, precipitation and dynamical processes within deep convective storms.	
water and aerosol through the atmosphere and develop the societal applications enabled from this understanding.				H-1b W-1a S-4a W-3a	G3 Cold Cloud and Precipitation Improve understanding of cold (supercooled liquid, ice, and mixed phase) cloud processes and associated precipitation and their coupling to the surface at mid to high latitudes and to the cryosphere.	
				W-1a W-5a C-5a	G4 Aerosol Processes Reduce uncertainty in key processes that link aerosols to weather, climate and air quality related impacts.	
		-		C-2a C-2h C-5c	G5 <u>Aerosol Impacts on Radiation</u> Reduce the uncertainty in Direct (D) and Indirect (I) aerosol-related radiative forcing of the climate system.	

Goal only fully realizable via combined mission.

A or CCP makes meaningful contribution to goal

cloud physical and radiative properties to large-scale and low environmental factors including thermodynamic and dynam properties. 1) To what extent can the properties of low clouds be determined by environmental properties. Enhanced: Adds to Minimum cloud microphysical properties and enhanced bulk cloud properties.	A+CCP	900	Goal	Example Science Questions	Objectives
low- and high-cloud climate feedbacks by advancing our ability to predict the properties of low and high clouds relate to (i) deep convection and (ii) large-scale environmental factors? 2) How do the properties and formation of high clouds relate to (i) deep convection and (ii) large-scale environmental factors? 1) Relate the vertical structure, horizontal extent, ice wate path, and radiative properties of convectively generated clouds to convective vertical structure, horizontal extent, ice wate path, and radiative properties of large scale high clouds environmental factors.			Reduce the uncertainty in low- and high-cloud climate feedbacks by advancing our ability to predict the properties of low and high	properties of low clouds be determined by environmental factors? 2) How do the properties and formation of high clouds relate to (i) deep convection and (ii) large-scale	Minimum: Determine the sensitivity of boundary layer bulk cloud physical and radiative properties to large-scale and local environmental factors including thermodynamic and dynamic properties. Enhanced: Adds to Minimum cloud microphysical properties and enhanced bulk cloud properties. O2 High Clouds Minimum: 1) Relate the vertical structure, horizontal extent, ice water path, and radiative properties of convectively generated high clouds to convective vertical transport 2) Relate the vertical structure, horizontal extent, ice water path, and radiative properties of large scale high clouds to environmental factors. Enhanced: Adds to Minimum microphysical properties of ice

A+CCP	⋖	CCP	Goal	Example Science Question	Objectives
			G2 Storm Dynamics Improve our physical understanding and model representations of cloud, precipitation and dynamical processes within deep convective storms	 How does convective mass flux relate to the vertical distribution and microphysical properties of clouds and precipitation in deep convection? How do different convective storm systems contribute to vertical transports of heat, water, and other constituents within the atmosphere and how do these transports relate to storm environment and lifecycle? 	Minimum: Relate vertical motion within deep convective storms to their a) cloud and precipitation structures, b) microphysical properties, c) local environment thermodynamic and kinematic factors such as temperature, humidity, and large-scale vertical motion, and d) ambient aerosol loading. Enhanced: Improve measurements of convective storm vertical motion and storm characteristics in (a) and (b) of the Minimum objective. Further relate items in the Minimum objective to latent heating profiles, storm life cycle, ambient aerosol profiles, and surface properties.

A+CCP	⋖	dDD	Goal	Example Science Questions	Objectives
			G3 Cold Cloud and Precipitation Improve understanding of cold (supercooled liquid, ice, and mixed phase) cloud processes and associated precipitation and their coupling to the surface at mid to high latitudes and to the cryosphere.	 What is the distribution and phase of surface precipitation (rain, mixed phase, frozen and snowfall) and how does it influence the surface water and energy balance? What are the processes that govern phase partitioning and precipitation formation in cold clouds? What are the processes that govern the vertical structure of microphysics of cold-cloud precipitation from cloud top to near-surface? 	Minimum: Detect and quantify vertical profiles of ice and liquid condensate (including precipitation), and relate these to cloud physical properties (including mixed-phase precipitation and snowfall), meteorological forcing and regime, orography, and surface properties. Enhanced: Enhancement of Minimum with an additional focus on: 1) cloud physical processes related to the density and microphysical characterization of snowfall and frozen precipitation in the column and near surface; 2) characterization of atmospheric contributions to the surface water mass and energy balance at higher latitudes.

A+CCP	⋖	CCP	Goal	Example Science Questions	Objectives
			G4 Aerosol Processes Reduce uncertainty in key processes that link aerosols to weather, climate and air quality related impacts.	 What are the major anthropogenic and natural sources of aerosol and how do they vary spatially and temporally? What are the factors that relate aerosol microphysical and optical properties to surface PM concentrations? To what extent does long-range transport of smoke, dust, and other particulates impact regional near-surface air quality? 	Minimum: Quantify optical and microphysical aerosol properties in the PBL and free troposphere to improve process understanding, estimates of aerosol emissions, speciation, and predictions of near-surface particulate concentrations. Enhanced: Characterize variations in vertical profiles of optical and microphysical properties over space and time in terms of 3D transport, spatially resolved emission sources and residual production and loss terms. O6 Aerosol Processing, Removal and Redistribution Minimum: Characterize the processing and removal of aerosols by clouds and light precipitation (<2 mm/hr). Enhanced: Characterize the processing, removal and redistribution of aerosols by clouds and heavy precipitation (> 2 mm/hr).
					७ 🙃 ७

1) How do changes in anthropogenic aerosols affect Earth's radiation budget and offset the warming due to greenhouse gases? Reduce the uncertainty in Direct (D) and Indirect (I) aerosol-related radiative forcing of the climate system. 2) What is the role of absorbing aerosols in the Earth's radiation budget and thermodynamics? 3) Under what conditions do aerosol indirect tradiative forcing. 1) How do changes in anthropogenic aerosols (DRE) to W/m2 at TOA and the anthropogenic fraction, 2) regional To what surface DRE, and 3) Quantify the impacts of absorbing aerosols on aerosol on atmospheric stability. Enhanced: Quantify the impact of absorbing aerosols on vertically resolved aerosol radiative heating rates and DRE commensurate with the uncertainties in global mean at TO surface. O8 Aerosol Indirect Effect Minimum: Provide measurements to constrain process lev understanding of aerosol-warm cloud interactions to improcession and surface DRE, and 3) Quantify the impacts of absorbing aerosols on vertically resolved aerosol radiative heating rates and DRE commensurate with the uncertainties in global mean at TO surface. O8 Aerosol Indirect Effect Minimum: Provide measurements to constrain process lev understanding of aerosol-warm cloud interactions to improcess levels and thermodynamics?	A+CCP A	CCP	Goal	Example Science Questions	Objectives
or coverage of shallow understanding of interactions of aerosol with cold and mixed			Radiation Reduce the uncertainty in Direct (D) and Indirect (I) aerosol-related radiative forcing of the climate	anthropogenic aerosols affect Earth's radiation budget and offset the warming due to greenhouse gases? 2) What is the role of absorbing aerosols in the Earth's radiation budget and thermodynamics? 3) Under what conditions do aerosols impact the albedo or coverage of shallow	Minimum: Reduce uncertainties in estimates of: 1) global mean clear and all-sky shortwave direct radiative effects (DRE) to ±1.2 W/m2 at TOA and the anthropogenic fraction, 2) regional TOA and surface DRE, and 3) Quantify the impacts of absorbing aerosol on atmospheric stability. Enhanced: Quantify the impact of absorbing aerosols on vertically resolved aerosol radiative heating rates and DRE commensurate with the uncertainties in global mean at TOA and surface. O8 Aerosol Indirect Effect Minimum: Provide measurements to constrain process level understanding of aerosol-warm cloud interactions to improve estimates of aerosol indirect radiative forcing. Enhanced: Provide measurements to constrain process level understanding of interactions of aerosol with cold and mixed-phase clouds to improve estimates of aerosol indirect radiative

ACCP Science Objectives 2

A+C CP	A	ССР	Objectives
			O1 Low Clouds Minimum: Determine the sensitivity of boundary layer bulk cloud physical and radiative properties to large-scale and local environmental factors including thermodynamic and dynamic properties. Enhanced: Adds to Minimum cloud microphysical properties and enhanced bulk cloud properties.

Approach

General Approach

- a) Complement and where possible expand on existing climate data records.
 Examine inter-annual cloud property changes associated with cloud-controlling factors (e.g. Klein et al., 2017.)
- b) Quantify low cloud-controlling processes via multi-variate analysis (e.g. Ming and Suzuki, 2018; etc)
- c) With a) & b) combine with models to test and understand process couplings

Role of Models – primary tool to integrate observations, test understanding & examine impacts on feedbacks

Role of Sub-orbital – cal/val variable retrievals, validate process interpretation, enhance process understanding with enhanced property measurement.

New and Improved

- a) Significant improvements of key cloud variables (LWP, cloud microphysics) including profiling, droplet concentrations, precipitation quantification
- b) Significantly improved global analysis, model moist physics, and contextual PoR capabilities.

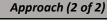
		ССР	одо	POR	Hailian Coons	Geophysical Variables		Qualifiers
٦	4	Ö	00	Ы	Utility Score	Minimum Enhanced		Qualifiers
	٧	٧	S	(√)	4.8	Cloud liquid water path		
	٧	٧	S	(√)	4.7	Cloud optical depth		
	٧	٧	S	(√)	4.7	Cloud droplet effective	Cloud droplet effective radius	
	٧	٧	S	(√)	4.2	Cloud top phase		
	٧	٧		(√)	4.7	Hydrometeor vertical fe	eature mask	Cloud top ht
	٧	٧	S	(√)	4.0	Areal cloud fraction		
		٧		(√)	3.3	Precipitation phase profile		
		٧		(√)	4.0	Precipitation rate profile		<2 mm/hr, Near surface
	٧			(√)	2.7	Planetary Boundary Layer Height		
				٧	N/A	Environmental temperature profile		
				٧	N/A	Environmental humidity profile		
				٧	N/A	Environmental horizont	al wind profile	
				٧	N/A	Environmental vertical	wind profile	
		٧		(√)	4.3	Cloud albedo		Derived
		٧			4.5	Cloud droplet concentration		Layer
	٧	٧			3.8	Hydrometeor vertical feature mask		Cloud base ht
		٧		(√)	4.0	Total liquid water path		
	٧	٧			3.0	Volumetric cloud fraction	on	
				٧	N/A	Diurnally resolved cloud	d cover	
			S	(√)	N/A	Surface turbulent fluxes	(land and ocean)	

A+CCP	А	ССР	Objectives
	***		O2 High Clouds
	888	888	Minimum:
			1) Relate the vertical structure, horizontal extent, ice
	888		water path, and radiative properties of convectively
			generated high clouds to convective vertical
		888	transport
	***	833	 Relate the vertical structure, horizontal extent, ice water path, and radiative properties of <i>large scale</i>
			high clouds environmental factors.
	888		ingii ciodas ciivii oiiiicitai factors.
			Enhanced: Adds to Threshold microphysical properties of

Approach (1 of 2)

General Approach

ice clouds.


- a) Complement and where possible expand on existing climate data records. Examine inter-annual cloud property changes associated with cloudcontrolling factors.
- b) Quantification of high cloud-controlling processes, including convective transport, radiative heating, precipitation, via multi-variate analysis
- c) With a) and b) combine with models to test and understand process couplings

Role of Models – primary tool to integrate observations, test understanding & examine impacts on feedbacks (e.g. between convection and high clouds)

Role of Sub-orbital – cal/val variable retrievals, validate process interpretation, advance process understanding with enhanced property measurement.

4	ССР	ОДО	POR	Utility Score	Geophysical Var	Ouglifiers	
_	Ö	10)d	Othicy Score	Minimum Enhanced		Qualifiers
	٧		(√)	4.9	Ice Water Path		
	٧		(√)	3.9	Ice Water Content Profile		
٧	٧	S	(√)	4.9	Cloud optical depth		
٧	٧			5.0	Hydrometeor vertical feat		
٧			(√)	4.3	Cloud geometric-top temp		
٧			٧	N/A	Cloud areal extent		
			٧	N/A	Diurnally resolved cloud co		
			٧	N/A	Diurnally resolved cloud to		
	٧			4.4	In-cloud Vertical Air Veloc	Single level, upper tropo.	
	٧			3.4	Precipitation phase profile	Melt.Lyr also	
			٧	N/A	Cloud lifecycle categories		
			٧	N/A	Environmental temperatu		
			٧	N/A	Environmental humidity p		
			٧	N/A	Environmental horizontal	wind profile	_
٧	٧		(√)	4.7	Cloud radiative effects		LW, SW

New and Improved

- a) First time ability to make quantitative links to convective transport (vertical motion), convective precipitation
- b) Significant improvements of key cloud variables
- c) Significantly improved global analysis, model moist physics, and contextual PoR capabilities.

A+CCP	А	ССР	Objectives
			 Minimum: Relate the vertical structure, horizontal extent, ice water path, and radiative properties of convectively generated high clouds to convective vertical transport Relate the vertical structure, horizontal extent, ice water path, and radiative properties of large scale high clouds environmental factors. Enhanced: Adds to Threshold microphysical properties of ice clouds.

_	dOO	00	POR	Litility Coore	Geophysical Var	Qualifians	
1	၂ၓ	10)d	Utility Score	Minimum	Qualifiers	
	٧		(√)	4.0	Precipitation rate profile		
٧	٧			3.7	Ice crystal number concen	Layer	
٧	٧	S		3.8	Ice crystal particle size		
	٧		٧	N/A	Convective cloud cover		
٧	٧			4.7	Radiative heating profile		
	٧			4.2	In-cloud Vertical Air Veloc	ty Profile	

A+CC P	А	ССР	Objectives	A	CCP	000	POR	Utility Score	Geophysical Va	Enhanced	· Qualifiers
			O3 Convective Storm Systems Minimum: Relate vertical motion within deep convective storms to their a) cloud and precipitation structures, b) microphysical properties, c) local		V			5.0	In-Cloud Vertical Air \	Velocity Profile	measure above melting layer at a minimum; Velocity minimum >2 m/s
	<i>\</i> '		environment thermodynamic and kinematic factors	V	٧		(√)	5.0	Hydrometeor vertica	I feature mask	Cloud top height
	<i>\</i> '		such as temperature, humidity, and large-scale vertical	V	V	\Box	(√)	4.5	Cloud geometric-top	temperature	
	<i>\</i> '		motion, and d) ambient aerosol loading.	ll√	V	\sqcap	(√)	3.5	Cloud top phase		
	 		Enhanced: Improve measurements of convective		\vdash	\vdash	٧	N/A	Diurnally resolved clo	oud cover	PoR Primary; Context
	 	storm vertical motion and storm characteristics in (a) and (b) of the Minimum objective. Further relate items		\vdash	\vdash	٧	N/A	Diurnally resolved clo		PoR Primary; Context	
	 		in the Minimum objective to latent heating profiles,		V	\vdash	(√)	5.0	Precipitation rate pro	ofile	,.
	 		storm life cycle, ambient aerosol profiles, and surface		V	\sqcap	(v)	4.0	Precipitation phase p	Liquid/mixed/frozen	
	 		properties.		V	\sqcap	(√)	4.3	Ice water path		
			Approach		٧		٧	N/A	Convective classificat	tion	Org./intensity/depth; PoR for org. context
		-	- Establish global convective structure climatologies that cterize deep convective processes through measurement of		٧		(√)	4.5	Precipitation Discrim (stratiform/convective)		
conv	vective s	scale v	rertical motion, cloud, precipitation, and surrounding column s. Leverage temporal/spatial coverage of GEO and LEO PoR				٧	N/A	Environmental tempe	erature profile	Used for stability parameters as well
with	n ground	d-base	d observations and global/regional analysis systems.				٧	N/A	Environmental humid	dity profile	Used for stability parameters as well
			el physical representation of convective cloud processes.				٧	N/A	Environmental horizo	ontal wind profile	Used for shear calculation
			al - In situ and improved space-time sampling of convective				٧	N/A	Environmental vertic	al wind profile	
			ally for strong to severe storms, and perturbations in the vironment. Cal/val for satellite measurements and retrieval	٧	\Box	S	(√)	4.0	Aerosol Optical Dept	h (Column and PBL)	
algo New corr envi	orithms. v and Im related p ironmen	nprove process nt aero	ed - a) global convective scale vertical motion profiles and s metrics, and b) measurements of hydrometeor structure and psol properties, PoR measurements and capabilities, and global solution/physics.			•					(v)

A+CC P	4	ССР	Objectives	٨	CCP	ООО	POR	Utility Score	Geophysical Var	riables (1 of 2)	Qualifiers
			O3 Convective Storm Systems		٧		(√)	4.0	Latent heating profile	2	Vertical velocity constrained
			Minimum: Relate vertical motion within deep convective storms to their a) cloud and	٧	٧		(√)	4.0	Total Liquid Water Pa	ath	Ice + liquid (full column)
			precipitation structures, b) microphysical properties, c) local environment thermodynamic		٧		٧	N/A	Cloud lifecycle catego	ories	PoR or observing system temporal/area context
			and kinematic factors such as temperature, humidity, and large-scale vertical motion, and d) ambient aerosol loading.		٧		(√)	4.0	Precipitation particle	size profile	PSD char. diameter; multi- radar/radiometer frequency
			Enhanced: Improve measurements of convective		٧		(√)	4.0	Precipitation Rate, 20	D @ surface	Swath-mapped precipitation rate
			storm vertical motion and storm characteristics in		٧			4.3	Convective core size		Need swath view
			(a) and (b) of the Minimum objective. Further	٧				3.8	Aerosol extinction pr	ofile	
			relate items in the Minimum objective to latent heating profiles, storm life cycle, ambient aerosol	٧				2.8	Aerosol effective rad	ius profile	
			profiles, and surface properties.	٧				3.0	Aerosol non-Spherica	al AOD Fraction	Profile & column
				٧				3.3	Aerosol Absorption P	Profile	
							٧	N/A	Surface elevation		Topography
						S, D	٧	N/A	Surface type		Land, water, coastline
						S, D	٧	N/A	Surface classification		Land surface cover class
					(√)		٧	N/A	Surface turbulent flu	xes	Latent, sensible heat flux
							٧	N/A	Lightning		Location, physical properties
											U

A+CC P	٨	ССР	Objectives	⋖	CCP	ООО	POR	Utility Score	Geophysical Var	iables (1 of 2)	Qualifiers
¥		0			5	10	PC	Othicy Score	Minimum	Enhanced	Qualifiers
		888	O4 Cold Cloud and Precipitation Processes Minimum: Detect and quantify vertical profiles of ice and	٧	٧			4.3	Hydrometeor Vertical F	eature Mask	
			liquid condensate (including precipitation), and relate these to	٧				4.0	Cloud geometric-top te	Cloud geometric-top temperature	
			cloud physical properties (including mixed-phase precipitation		٧			4.8	Ice water path		
			and snowfall), meteorological forcing and regime, orography, and surface properties.		٧		(√)	5.0	Precipitation rate profil	Near surface (<500 m)	
			Enhanced: Enhancement of Minimum with an additional focus on: 1) cloud physical processes related to the density and microphysical characterization of snowfall and frozen		٧		(V)	5.0	Precipitation phase pro	file	
				٧	٧		(√)	4.5	Total liquid water path	Total liquid water path	
				٧	٧	S		4.3	Cloud phase profile		
			precipitation in the column and near surface; 2)				٧	N/A	Environmental horizont	From reanalysis	
			characterization of atmospheric contributions to the surface water mass and energy balance at higher latitudes.				٧	N/A	Environmental tempera	ture profile	From reanalysis
		888	water mass and energy balance at higher fatitudes.				٧	N/A	Environmental humidit	y profile	From reanalysis
	Approach (1 of 2)						٧	N/A	Surface elevation		Topography
Gen	General Approach						٧	N/A	Surface type		Land, water, coastline

S, D

	,
	_

General Approach

- a) Multi-frequency, multi-sensor approach for improving snowfall rate and potential microphysical properties (Grecu and Olson 2008, Grecu et al. 2018, Leinonen et al.
- 2018) b) Characterization of vertical structures, profiles of snowfall rate and microphysical
- properties related statistically to forcing/regime, orography, sfc fluxes c) PDFs of snowfall/cold cloud processes regionally, as a function of cloud depth (Kulie et al 2016); 2D histograms and contributions of snow rates in PDF to total
- snowfall, contributions as a function of GVs such as echo-top height, passive microwave TBs; climatologies of mixed-phase clouds

Role of Models – primary tool to integrate observations, test understanding & examine representation of cold cloud processes in models.

Role of Sub-orbital – cal/val variable retrievals, validate process interpretation, advance process understanding with in-situ & remotely sensed microphysical data.

N/A Surface turbulent fluxes (v) Latent, sensible Approach (2 of 2)

Surface classification

- New and Improved
- a) Improved range of precipitation measurements (from very light to heavy rain/snow rates) b) Multi-sensor retrievals for constraints on both liquid and ice microphysical properties (e.g.,
 - precipitation rates, particle size, density of ice)

N/A

c) Possible information on vertical motion in regions of heavier snowfall rates

Land surface cover

class

A+CCP	4	CP	Objectives	⋖	CCP	00	POR	Utility Score	Geophysical Va	riables (1 of 2)	Qualifiers
A+(,	ပ ပ	Objectives		ၓ	ō	<u> </u>	Othicy Score	Minimum	Enhanced	Qualifiers
			O4 Cold Cloud and Precipitation Processes		٧			4.5	Precipitation particle s	All phases	
			Minimum: Detect and quantify vertical profiles of ice	٧				3.8	Particle shape (aspect		
			and liquid condensate (including precipitation), and		٧			4.5	Precipitation (ice) parti		
			relate these to cloud physical properties (including mixed-phase precipitation and snowfall), meteorological					4.8	Precipitation rate,	2D@surface	
			forcing and regime, orography, and surface properties. Enhanced: Enhancement of Minimum with an additional focus on: 1) cloud physical processes related to the density and microphysical characterization of snowfall		٧			4.0	Snowfall Vertical (Dopp	Snowfall Vertical (Doppler) Velocity Profile	
					٧			3.5	In-Cloud Vertical Air Ve	elocity Profile	> 2 m/s
					٧			3.8	Areal cloud fraction		
				٧				3.8	Blowing surface snow of	detection	
			and frozen precipitation in the column and near surface;2) characterization of atmospheric contributions to the	٧	٧	S	(√)	3.3	Cloud optical depth		
			surface water mass and energy balance at higher				٧	N/A	Water vapor advection		From reanalysis
			latitudes.	٧	٧		٧	N/A	Cloud radiative effects		LW, SW
				٧	٧		٧	N/A	Surface radiation budg	et	LW, SW

A+CCP	А	ССР	Objectives								
			O5 Aerosol Attribution and Air Quality								
	Minimum: Quantify optical and microphysical aerosol properties in the PBL and free troposphere to improve process understanding, estimates of speciation, aerosol emissions and predictions of near-surface particulate concentrations.										
			Enhanced: Characterize changes in vertical profiles of optical and microphysical properties over space and time								
			in terms of 3D transport, spatially resolved emission sources and residual production and loss terms.								
Sources and residual production and loss terms.											
Approach (1 of 2)											
General Approach √											
a) Use ACCP measurements to estimate aerosol speciation using the following											

- approaches: 1) Optimal estimation algorithm using as prior aerosol state from an
- assimilation system that incorporates the aerosol PoR 2) Empirical aerosol typing based on clustering of aerosol optical properties b) Inverse calculations used to assess impact on emissions, and through revised
- emissions impact on forecasts of near-surface particulate concentrations c) Model sensitivity studies, validated by ACCP data, used to gain insight into
- process parameterizations.

examine impacts and feedbacks.

d) Complement and where possible expand on existing climate data records.

Examine inter-annual variability of aerosol emissions, optical properties and impact on global AQ. Role of Models – primary tool to integrate observations, test understanding &

900 SQ. Minimum **Enhanced** 4.2 Aerosol Extinction (Total & Non-Spherical) (V) 5.0 **Aerosol Optical Depth** 4.4 Aerosol Absorption Optical Depth 4.4 Aerosol Fine Mode Optical Depth (v) 3.6 Aerosol Real Index of Refraction 4.8 Aerosol Non-Spherical AOD Fraction 4.2 Aerosol Extinction to Backscatter Ratio 4.8 Aerosol-Cloud Feature Mask (v) N/A Planetary Boundary Layer Height

Approach (2 of 2)

Role of Sub-orbital – cal/val variable retrievals, validate process interpretation, advance process understanding with enhanced property measurement. Linking of optical to chemical aerosol properties.

and forecasts.

N/A

N/A

Utility Score

and extinction, fine mode fraction over land, etc.)

Environmental Temperature Environmental Humidity

b) Improved global emissions and near surface aerosol characterization, with benefits for AQ analysis

Geophysical Variables (1 of 2)

New and Improved

a) Significant improvements of key aerosol variables (vertically/spectrally resolved aerosol absorption

Qualifiers

VIS & NIR

Column, PBL UV & VIS

Column, PBL

Column, PBL

Column, PBL Column, PBL

VIS & NIR

Profile

Profile

Column, PBL

Profile UV to SWIR

A+CCP	A	dDD	Objectives
			O5 Aerosol Attribution and Air Quality
			Minimum: Quantify optical and microphysical aerosol properties in the PBL and free troposphere to improve process understanding, estimates of speciation, aerosol emissions and predictions of near-surface particulate concentrations.
			Enhanced: Characterize changes in vertical profiles of optical and microphysical properties over space and time in terms of 3D transport, spatially resolved emission sources and residual production and loss terms.

	4	CCP	000	POR	Utility Score	Geophysical Va	riables (2 of 2)	Qualifiers					
ı	1	Ö	10	Ы	Othicy Score	Minimum	Enhanced	Quaimers					
ł	٧			(√)	4.8	Aerosol PM2.5 Concentration	Surface						
	٧				4.6	Aerosol Effective Radius	verosol Effective Radius						
	٧				4.6	Aerosol Absorption	Aerosol Absorption						
	٧				5.0	Aerosol Fine Mode Extinction	on	Profile					
				٧	N/A	Environmental Horizontal V	Vind	Profile					
		·		٧	N/A	Environmental Vertical Wir	Profile						
				٧	N/A	Precursor Gas Concentration							

A+CCP	٧	ссь	Objectives
			O6 <u>Aerosol Processing, Removal and Redistribution</u>
			Minimum: Characterize the processing and removal of aerosols by clouds and light precipitation (<2 mm/hr).
			Enhanced: Characterize the processing, removal and redistribution of aerosols by clouds and heavy precipitation (> 2 mm/hr).

Approach - 1 of 2

General Approach

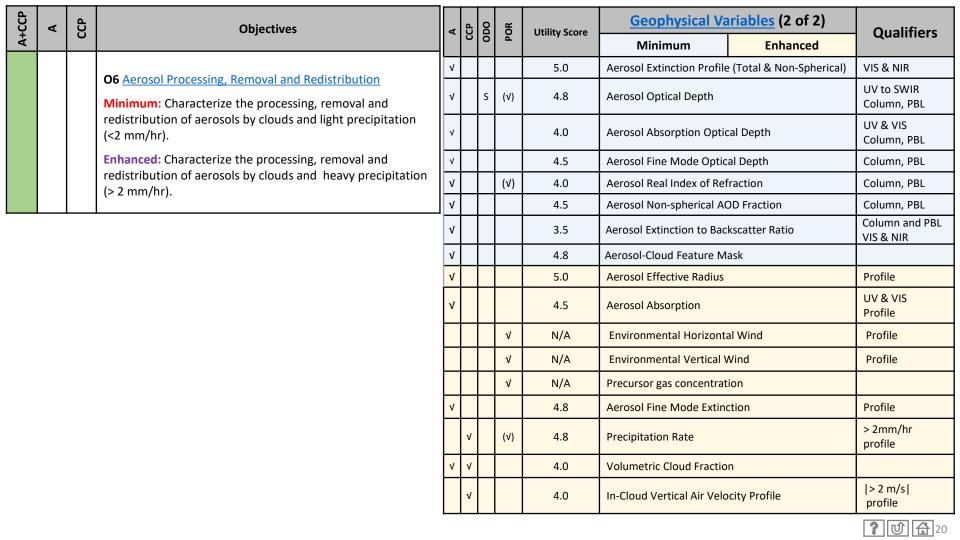
- a) Use ACCP observations to estimate aerosol amount, size and optical properties using following approaches:
- 1) Optimal estimation algorithm using as prior aerosol state from an
- assimilation system that incorporates the aerosol PoR 2) Self-contained aerosol retrievals obtained with ACCP active and passive
- measurements and PoR if co-located. b) Approach for Processing and Removal rely on geostationary passive aerosol data to characterize aerosol removal processes before and after clouds/precipitation events.
- c) Changes in aerosol properties (size, absorption, etc.) will be used to characterize processing. Reduction in aerosol amount will be used to
- characterize removal, alongside concurrent cloud and precipitation properties. d) Complement and where possible expand on existing climate data records.

Examine inter-annual variability of aerosol processing and removal. Role of Models – primary tool to integrate observations, test understanding & examine impacts and feedbacks.

	A	9	ОДО	POR	Utility Score	Geophysical V	/ariables (1 of 2)	Qualifiers						
	1	8	10	PC	Othinty Score	Minimum	Enhanced	Quaimers						
1		٧		(v)	4.5	Total Liquid Water Path								
al	٧	٧	S	(√)	4.0	Cloud Optical Depth	oud Optical Depth							
	٧	٧	S	(v)	5.0	Cloud Droplet Effective R	ud Droplet Effective Radius							
d		٧		(√)	4.5	Precipitation rate	ecipitation rate							
		٧		(√)	4.0	Precipitation Phase	recipitation Phase							
		٧		(∀)	4.8	Precipitation Rate		Profile, Near- surface included						
				٧	N/A	Environmental Temperat	ure	Profile						
				٧	N/A	Environmental Humidity		Profile						
				٧	N/A	Environmental Horizonta	Environmental Horizontal Wind							
				٧	N/A	Environmental Vertical W	/ind	Profile						
	٧			(v)	N/A	Planetary Boundary Laye	lanetary Boundary Layer Height							

Approach -2 of 2

Role of Sub-orbital - cal/val variable retrievals, validate process interpretation, enhance process understanding with enhanced property measurement. Unless space component include multiple ACCP satellites on a train, a comprehensive campaign is necessary to address aerosol redistribution.


- New and Improved a) Significant improvements of key aerosol variables (vertically resolved aerosol absorption and
- extinction, fine mode fraction over land, etc.) b) By means of the concurrent A and CCP measurements we will achieve significantly improved global analysis, model representation of key aerosol processes, and contextual PoR capabilities.

<u>م</u>		Д		4	ای	000	POR	Utility Score	<u>Geophysica</u>	l Variables	Qualifiers
A+CCP	۷	ССР	Objectives		S	ŏ	PC	Othicy Score	Minimum	Enhanced	Quailliers
				V				3.8	Aerosol Extinction Profile (Total & Non-Spherical)	VIS & NIR, Profile
			O7 Aerosol Direct Effects and Absorption Minimum: Reduce uncertainties in estimates of: 1)	٧		S	(√)	5.0	Aerosol Optical Depth		VIS to NIR Column, PBL
			global mean clear and all-sky shortwave direct radiative effects (DRE) to ±1.2 W/m2 at TOA, surface	٧			(√)	5.0	Aerosol Absorption Optica	l Depth	UV-VIS Column, PBL
	888		and regional DRE, and the anthropogenic fraction, 2) Quantify the impacts of absorbing aerosol on atmospheric stability.	٧			(√)	4.5	Aerosol Fine Mode Optical	Depth	Column, PBL
	888			٧			(v)	4.0	Aerosol Real Index of Refra	action	Column, PBL
	888			٧				4.3	Aerosol Asymmetry Param	eter	Colum, PBL
	***		Enhanced: Quantify the impact of absorbing aerosols	٧				4.8	Aerosol Non-Spherical AOI	Column, PBL	
	888		on vertically resolved aerosol radiative heating rates and the aerosol radiative effect commensurate with the uncertainties in global mean DRE at TOA and surface.	٧				3.5	Aerosol Extinction to Back	scatter Ratio (Column)	VIS, NIR
	333			٧		T		5.0	Aerosol-Cloud Feature Ma	sk	Profile
	888						٧	N/A	Environmental Temperatu	re	Profile
			surface.				٧	N/A	Environmental Humidity		Profile
			Approach			T	٧	N/A	Surface Albedo		
			Арргойст	٧	٧			3.3	Cloud Optical Depth		
Gen	eral a	pproa	ch	٧	٧	T	(√)	2.5	Cloud Droplet Effective Ra	dius	
			A SW aerosol direct radiative effect from observed aerosol	х	٧			4.8	Areal Cloud Fraction		
b) E	stima	te antl	operties (<i>e.g.,</i> Oikawa et al 2018; Thorsen et al 2019) propogenic fraction of DRE using aerosol speciation s in O5 and O6.	٧	٧		٧	N/A	Radiative fluxes (derived)		LW, SW Surface, TOA
			ospheric heating due to aerosol absorption.	٧				5.0	Aerosol Effective Radius		Profile
d) C	harac	terize	changes in atmospheric stability due to aerosol absorption	٧				5.0	Aerosol Absorption		UV-VIS Profile
			used to estimate impacts of aerosol absorption on thing and aerosol-cloud radiative interactions.	٧				4.5	Aerosol Fine Mode Extinct	ion	Profile
Role	of Su	ıb-orbi	tal – validation of satellite retrievals, aerosol optical models.								

New and Improved - Significant improvements in key aerosol variables

(extinction profiles, absorption, size), especially over land.

A+CCP	А	CCP	Objectives	4	CCP	ООО	POR	Utility Score	Geophysical Va	ariables (1 of 2)	Qualifiers	
Ä									Minimum	Enhanced		
			08 Aerosol Indirect Effect	٧		S	(√)	4.6	Aerosol Optical Depth		UV to NIR Column, PBL	
			Minimum: Provide high quality measurements to constrain process level understanding of aerosol-	٧				4.4	Aerosol Fine Mode Optica	Aerosol Fine Mode Optical Depth		
			warm cloud interactions as a means to improve estimates of aerosol indirect radiative forcings.	٧				4.6	Aerosol Extinction (Total	& Non-Spherical)	VIS & NIR Profile	
				٧				5.0	Aerosol-Cloud Feature M	ask		
		Enhanced: Provide high quality measurements to constrain process level understanding of					(√)	5.0	Cloud Liquid Water Path			
	interactions of aerosol with <i>cold and mixed-phase clouds</i> as a means to improve estimates of aerosol						(√)	4.8	Cloud Optical Depth			
		indirect radiative forcing.					(√)	5.0	Cloud Droplet Effective R	adius		
				٧	٧			4.8	Cloud Droplet Concentrat	tion	Layer	
			Approach	٧				4.2	Cloud Top Phase			
			ach - Measure a suite of cloud and aerosol variables to	٧			٧	N/A	Areal Cloud Fraction			
			tes of aerosol indirect radiative forcing via process-level The observational strategy focuses on joint statistics	٧				5.0	Cloud Albedo			
clou	d, aer	osol,	physical processes and higher level relationships between precipitation, and radiation and comparisons with model		٧		(√)	4.2	Precipitation Rate		<2 mm/hr; profile, Near surface desired	
			nen et al 2016; Mulmenstad and Feingold 2018) — LES simulations will be used to test and understand	٧			٧	N/A	Planetary Boundary Layer	height	Lidar and reanalysis	
	-		gs (Feingold et al. 2016)				٧	N/A	Environmental Horizonta	ıl Wind	Profile	
			vital - More extensive validation of key satellite retrievals is erm surface observations combined with modeling will				٧	N/A	Environmental Vertical V	Vind	Profile	
enha	ance p	proces	ss understanding (Sena et al 2016)					N/A	Environmental Humidity		Profile	
			oved - Significant improvements of key aerosol and cloud sol amount and size, cloud LWP and microphysics including					N/A	Environmental Temperat	ure	Profile	
prof	iling,	dropl	et concentrations, precipitation quantification)								2 m介 △ 22	

A+CCP	4	CCP	Objectives
			O8 Aerosol Indirect Effect Minimum: Provide high quality measurements to constrain process level understanding of aerosol-warm cloud interactions as a means to improve estimates of aerosol indirect radiative forcings.
			Enhanced: Provide high quality measurements to constrain process level understanding of interactions of aerosol with <i>cold and mixed-phase clouds</i> as a means to improve estimates of aerosol indirect radiative forcing.

A	CCP	ODO	POR	Utility Score	Geophysical Va	riables (2 of 2)	Qualifiers
	٥	Ю)d	othicy score	Minimum	Enhanced	Qualifiers
٧				4.8	Aerosol Number Concen	tration	Profile
٧				4.3	Aerosol Effective Radius		Profile
٧	٧			4.8	Cloud Droplet Concentra	ition	Layer
٧				4.3	Cloud Top Extinction		
٧				4.7	Cloud Top Droplet Size		
٧				5.0	Cloud Top Droplet Conce	entration	
٧	٧			4.7	Hydrometeor vertical fea	ature mask	Cloud base height
	٧			4.0	In-Cloud Vertical Air Veld	ocity	> 1 m/s , Profile
	٧		(√)	4.0	Precipitation Phase		Profile, Near surface included/desired
			٧	N/A	Diurnally Resolved Cloud	l Cover	
			٧	N/A	Surface Turbulent Fluxes	;	Sensible, Latent Land and Ocean
٧	٧			4.3	Ice Crystal Number Cond	entration	
٧	٧			4.7	Ice Crystal Particle Size		
				4.7	Cloud Top Droplet Effect	ive Radius	
			_	4.7	Ice Water Path		

	Cons	olidated			Desired	Capab	ility			Francisco of Observables	Enabled		
Ge		cal Variables	Science Objectives	Pango	Uncortainty		Scale	es .		Examples of Observables Notes	Apps		
	(1	of 17)	0.2 ,55055	Range	Uncertainty	XY	Z	Т	Swath		Дррз		
Minim	num	Enhanced		IMPORTANT	: Desired Ca	pabilitie	s and Ol	oser	vables a	e preliminary. Click <u>here</u> for additional information.			
AABS.z	Aerosol	Absorption (Profile)	03,05,06, 07	SSA: 0.6- 1.0	SSA: ±0.03		100 m	М	Nadir	UV-VIS	2, 6		
AAOD.	Aerosol Absorption Optical Depth		05, 06, 07	SSA: 0.6-	SSA: ±0.04	5 km				UV-VIS	2.4		
AAOD.¢	(Column	n and PBL)	05, 06, 07	1.0	SSA: ±0.02	1 km	-	'		UV-VIS	2, 4		
ASYM	Aerosol	Asymmetry Parameter	<u>07</u>	0.5-1.0	±0.02			1					
ACFM.z	Agrasal Claud Faatura Mask		<u>05,06,07</u> , <u>08</u>		1%		100 m		Nadir	Lidar An aerosol detection accuracy of 90% is desired with a 1% false positive rate (l.e. aerosol layers contaminated with clouds)	2, 5, 6		

	Consolidated		0.1		Desired	Capabi	lity			Francisco of Observables	Frablad
Ge	• •	cal Variables	Science Objectives	Range	Uncertainty		Scale	:S		Examples of Observables <i>Notes</i>	Enabled Apps
	(2 of 17)			Nalige	Oncertainty	XY	Z	Т	Swath		, (pp3
Minim	num	Enhanced		IMPORTANT	: Desired Cap	pabilitie	s and Ok	ser	vables ar	re preliminary. Click <u>here</u> for additional informatio	n.
AEFR.z	Aerosol	Effective Radius (Profile)	O3, O5, O6, O7, O8	0.1-0.5	±20% for extinction > 0.05 km ⁻¹	5 km	100 m	М	Nadir	Total attenuated backscatter profiles at UV, mid-visible and near IR; Attenuated molecular backscatter at UV and mid-visible wavelength; Volume depolarization ratio UV, VIS, NIR	1, 2, 6, 7, 13, 14
			O5, O6, O7, O8			5 km				Backscatter profiles at VIS	1, 3, 4, 5,
AEXT.z		Extinction (Profile, Non-Spherical)	03	0.02–5 km ⁻¹	Max of (0.02 km ⁻¹ , 20%-40%)	1 km	30 m	I	Nadir	O3 match to O6, depth of trop., vicinity of convection; At least two wavelengths in order to retrieve AOT, Angstrom exponent, SSA, fine mode AOD, etc. for just the the PBL portion of column.	7, (12, 13 for inf erence of PM from AOD)
AE2BR.	Aerosol	Extinction to Backscatter	O5, O6, O7	10-120 sr	±25%	5 km					
ALZDK.	Ratio (C	olumn and PBL)	03, 00, 07	10-120 31	±2370	1 km					

	Consolidated Geophysical Variables				Desired	Capabi	ility			Everyonics of Observables	Fuchled
Ge	• •		Science Objectives	Pango	Uncortainty		Scale	es		Examples of Observables Notes	Enabled Apps
	(3	of 17)	02,000.00	Range	Uncertainty	XY	Z	Т	Swath		7662
Minim	ıum	Enhanced		IMPORTANT	: Desired Ca	pabilitie	s and Ol	oser	vables a	re preliminary. Click <u>here</u> for additional information	n.
AEXTF.z	Aerosol Profile	Fine Mode Extinction	O5, O6, O7	0.01–5 km ⁻¹	Max of (0.02 km ⁻¹ , 20%)	1 km				Total attenuated backscatter profiles at UV, mid-visible and near IR; Attenuated molecular backscatter at UV and mid-visible wavelength, Volume depolarization ratio UV, VIS, NIR	2, 6 (13, 14 for inferenc e of PM from AOD)
AODF.ℓ	F. Aerosol Fine Mode Optical Depth (Column and PBL)		O5, O6, O7,	0.03-4	±0.02±0.0	5 km				O7: column only	5, 6, 12, 13, 14
AODI .¢	(Column	n and PBL)	08	0.03-4	5*AOT	1 km	-			O7. Column omy	5, 0, 12, 15, 14
ANSPH.		l Non-spherical AOD	05, 06, 07	0-1	±10%	5 km		[, '			5, 6
ANSI II.	Fraction	n (Column and PBL)	03	U-1	±1070	1 km					5, 0
ANSPH.z	Aerosol Non-spherical AOD		03	Extinction: 0.01–5 km ⁻	Extinction: Max of (0.02 km ⁻¹ , 20%-40%)		200 m		Nadir	Two wavelengths mainly because this gives information about the size range of non-spherical particles such as smoke or dust)	5, 6

	Consolidated Geophysical Variables	solidated			Desired	l Capal	oility			Francisco of Observables	Frablad
Geo	_		Science Objectives	Range	Uncertainty		Scal	les		Examples of Observables Notes	Enabled Apps
	(4	of 17)		Natige	Officertainty	XY	Z	Т	Swath	, which	71663
Minim	um	Enhanced		IMPORTAN	IT: Desired Ca	apabiliti	es and C	Obse	vables are	e preliminary. Click <u>here</u> for additional information	١.
ANC.z		sol Number entration Profile	O8	10-1000 cm ⁻³	50%	1 km					2, 3, 5
						2 km			100 km	Multi-angle radiance (UV,VIS), multi-angle DOLP -	
AOD.€	Aerosol Optical Depth (Column and PBL)	O3, O5, O6, O7, O8	0.03 - 4	±0.02±0.05*A OT	1 km		I	300 km	Multispectral radiance UV (aerosol absorption) & VIS (AOD, fine mode aerosol over water) - SWIR (surface properties and cirrus screening) Swath refers to column; Nadir for PBL O7: column only O8: PBL only	1, 3, 4, 5, 7 (12, 13, 14 for inferenc e of PM from AOD)	
APM25	Aeros (surfa	col PM2.5 Concentration ce)	O5	20-150 μg/m³	+/-20-25%						12, 13, 14
ARIR.		sol Real Index of ction (Column and PBL)	O5, O6,O7	1.33–1.7	±0.025	5 km 1 km		ı			

	Consolidated		ence Desired Capability					Fugurables of Observables	- Cualidad	
Geo	ophysical Variables	Science Objectives	Range	Uncertainty		Scale	!S		Examples of Observables <i>Notes</i>	Enabled Apps
	(5 of 17)		Kange Oncertaint		XY	Z	Т	Swath	740163	ДРР
Minim	um Enhanced		IMPORTANT	: Desired Cap	abilities	and Obs	serva	bles are	preliminary. Click $\underline{\text{here}}$ for additional informatio	n.
ACF	Areal Cloud fraction	O1, O4, O7, O8						wide	PoR: ABI, AHI, etc.; VIIRS	
BSS	Blowing surface snow detection	O4				30 m		Nadir	Backscatter lidar	5
CA	Cloud albedo	O1, O8	0.1-0.8		1 km				This property would be derived from Level 2 microphysical products such as liqiud water path/content, effective particle size, etc. The uncertainty in the albedo would be the aggregate uncertainty in the microphysical properties. Merge Radar and Lidar derived cloud boundaries to derive cloud vertical profiles. A Vis/NIR imager is needed for cloud and aerosol optical depth	4
CAE	Cloud areal extent	O2			2 km	-	-	wide	PoR: ABI, AHI, etc. Defines area of upper-level cloud, not cloud fraction	1, 2, 4
CDER	Cloud droplet effective radius	O1, O6, O7, O8	5-20 microns	20%	2km	N/A			PoR: ABI, AHI, etc.; VIIRS Bi- and mulitspectral techniques are sensitive to cloud effective radius. Lidar ratio technique in fully attenuating clouds has the potential to effectively constrain cloud top cloud effective radius. Focused in- situ validation is needed to establish uncertainty.	

	Consolidated			Desired	Capabi	ility			Francisco of Observables	Fuchled
Geo	physical Variables	Science Objectives	Range	Uncertainty		Scale	s		Examples of Observables Notes	Enabled Apps
	(6 of 17)	,	Kange	Officertainty	XY	Z	Т	Swath		7.660
Minim	um Enhanced	ı	MPORTANT:	Desired Cap	abilities	and Obs	serva	ables are	e preliminary. Click <u>here</u> for additional information	า.
CC	Convective classification	O3	≥ 3-classes	N/A	5 km	N/A	I, ∆T, R	wide	VIS/IR Geostationary PoR + Radar profile Identify by org. (MCS, isolated conv, multi-cell etc.) and/or sub classes of intensity (weak, moderate, intense), depth (shallow, moderate, deep) etc.	
CCC	Convective cloud cover	O2							PoR: ABI, AHI, etc., VIIRS	
ccs	Convective core size	O3	10-400km²	10 km ²	≤ 3 km	N/A	I, ∆T, R	≥20 km	Radar reflectivity, Doppler, microwave TB Threshold(s), peakedness criteria; Doppler, dZ/dt	5
		08	10-500	100%	2km	N/A			No single measurement constrains CDC. Requires	
CDC	Cloud droplet concentration (cm-3)	O1, O8	10-500	100%	2km	N/A			synergy among observables that constrain various aspects of the droplet size distribuiton. ie. Lidar, reflectance, polarimetry, radar, etc. Current estimate for uncertainty is ~80% for pixel-scale retreivals using vis/NIR reflectance, only if stringent conditions are met (unobstructed, overcast, optically thick, favorable viewing geometry). Uncertainty unknown but larger in more challenging conditions Other studies indicate a factor of > 2 uncertainty regardless of remote sensing method.	2, 3, 4, 5
										? 🛈 🔓 29

	Consolidated	Catalana		Desired	Capab	ility			Examples of Observables	Enabled
Geo	physical Variables	Science Objectives	Range	Uncertainty		Scale	es		Notes	Apps
	(7 of 17)		Kunge	Officertainty	XY	Z	Т	Swath	11000	
Minim	um Enhanced	1	MPORTANT:	Desired Capa	abilities	and Ob	serv	ables ar	e preliminary. Click <u>here</u> for additional information	າ.
		02							VIS/IR Geostationary PoR	
CLC	Cloud lifecycle categories	О3	≥ 3 phases	N/A	5 km	N/A		wide	E.g, Cu, mature, decaying; alternatively, MCS approach such as Roca et al., 2017 and refs therein	
CLWP	Cloud liquid water path (kg m- 2)	O1, O8	0.01-0.5	• 0.02 < 0.1 • 50% > 0.1	2 km	N/A		Cont ext Only	Vis, NIR Reflectance Radar, Passive Microwave Submm Synergy of Reflectance, active and passive microwave, passive microwave and submm Retrieval more difficult over land, submm has less sensitivity to surface than passive microwave	2, 3, 5, 7
		O1, O2, O6, O7, O8	>0.1	50%<10 20%>10	>1 km	N/A		No	Vis/NIR Reflectance, Lidar, Radar	
COD	Cloud optical depth	O4	>10	100%	2km	N/A		20 km	Observables used depend strongly on objective. For O4, COD may be strongly modulated by frozen hydrometeors and require some combination of radar, passive microwave, and reflectance.	1, 3, 4, 5, 7
CP.z	Cloud phase profile	04	Liquid, ice, mixed	10-25% FAR	2km	<250 m		Nadir	Polar. Back. Lidar; Radar dBZ profile	2, 5, 7
CDE	Cloud radiative effects	02							Surface TOA	4 5
CRE	(LW&SW)	O4							Surface, TOA	4, 5
								_		? 🖭 🔓 30

	Consolidated Geophysical Variables		C .:	Desired Capability						Francisco of Observables	Frablad			
Ge			Science Objectives	Range	Uncertainty		Scal	es		Examples of Observables Notes	Enabled Apps			
	(8)	of 17)	,	Kange	Officertainty	XY	Z	T	Swath	110000	7.1000			
Minim	num	Enhanced		IMPORTANT	T: Desired Ca	pabilitie	s and O	oserva	bles are	are preliminary. Click <u>here</u> for additional information.				
CTDC	Cloud to	op droplet concentration	08	10-500 cm- 1	100%	2 km				No single measurement constrains CTDC. Requires synergy among observables that constrain various aspects of the droplet size distribuiton. ie. Lidar, reflectance, polarimetry, radar, etc.	5			
CTDS	Cloud to	op droplet size	08	5-20 microns	30%	2km				Lidar Vis/NIR Reflectance Lidar ratio derived from integrated depol and integrated attenuate backscatter can constrain cloud top effective radius. Accuracy depends on accuracy of derived lidar ratio.	5			
СТЕ	Cloud to	op extinction	O8	1-50 km-1	100%	2km				Lidar Vis/NIR Reflectance This quantity can be related to the rate at which the lidar signal decays near cloud top. Accuracy depends cloud top structure and accuracy of attenuated backscatter signfal near cloud top.	1, 3, 4, 5, 7			

	Consolidated Geophysical Variables	olidated	Calana		Desired	d Capa	bility			Everyples of Observables	Enabled
Ge			Science Objectives	Range	Uncertainty		Sca	les		Examples of Observables Notes	Apps
	(9 (of 17)	,	Natige	Officertainty	XY	Z	Т	Swath	notes —	7,665
Minin	num	Enhanced		IMPORTANT	: Desired Cap	oabilitie	s and Ob	serva	bles are p	oreliminary. Click <u>here</u> for additional informati	on.
СТР	Cloud to	n nhase	01, 03, 08	Liquid,		3 km (O3)	~1 OD	I	FP	Polarimetry, lidar depolarization, radar depolarization ratio, SWNIR reflectance	3, 5
CIF	CTP Cloud top phase		01,03,00	solid, mixed		1 km (O3)	~100	I,∆T,R	≥20 km	Expect fine resolution from lidar or imager	3, 3
	CIT Cloud geometric-top temperature							ı	FP	Thermal IR	
СТТ	Cloud ge (Kelvins)		O2, O3, O4	>170	0.5	1 km	N/A	I,∆T,R	≥20 km	Thermal IR needed. POR may not provide sufficient resolution for this objective.	1, 3, 5, 7
			O2, O3	0.05-1.00	5%	2 km	N/A	I	wide	Geostationry PoR (IR)	
DRCC	DRCC Diurnally resolved cloud cover		O1, O8							Context only	
										Geostationary PoR (IR)	
DRCH	Diurnally height	resolved cloud top	O2, O3	1-20 km	1000m	2	NA	I	wide	PoR IR estimates boost uncertainty	
EHW.z		nental horizontal wind	O1, O2, O3, O4, O6, O8	-80 - 80 m/s	<2 m/s	< 0.5°	<50 hPa	I		Reanalysis	
	profile		O5, O6					I,R		,	
			01, 02, 03,	0. 1000/	504	0.50	5015	Ι			
EH.Z	EH.z Environmental humidity profile		O4, O5, O6, O7, O8	0 - 100%	<5%	< 0.5°	<50 hPa	I,R		Reanalysis, limb sounder	
											? ⋓ 🔠 32

	Consolidated	6.1		Desired	Capab	ility			Everyles of Observables	Enabled
Ged	ophysical Variables	Science Objectives	Range	Uncertainty		Scal	es		Examples of Observables Notes	Apps
	(10 of 17)		Natige	Officertainty	XY	Z	Т	Swath	7,000	7.000
Minim	um Enhanced		IMPORTANT	T: Desired Ca	pabilitie	s and O	bserv	ables ar	e preliminary. Click <u>here</u> for additional informatio	n.
ET.z	Environmental temperature profile	O1, O2, O3, O4, O5, O6, O7, O8	-85°C - 40°C	<1ºC	< 0.5°	<50 hPa	I I,R		Reanalysis	
EVW.z	Environmental vertical wind profile	O1, O3, O6, O8	0 - 50 cm/s	2 cm/s	< 0.5°	<50 hPa	I		Reanalysis	
	profile	05, 06	0 - 50 cm/s	2 cm/s	< 0.5°	<50 hPa	I,R			
HVFM	Hydrometeor vertical	O1, O2, O3, O4	Cloud top: 0.5-20km	Cloud top (CT): 100m	CT: 1 km			15 km	Lidar, A-Band, w-band Radar in non-precipitating conditions (liquid clouds), Radar for ice-layers, A-Band Spectroscopy, stereo imager Lidar (necessary to define cloud top height) can be	1, 5, 7
H V F IVI	feature mask	O1, O8	Cloud base: >250m	Cloud base (CB): 250m	CB: 2 km			>20 km	combined with A-band spectroscopy to define cloud base height in ideal condtions (homogenous, moderate optical depth) Radar accuracy affected by sensitivity threshold	1, 5, 7
ICNC	Ice crystal number concentration (per liter)	O2, O8	0.1-1000	100%	2km			cont ext	Lidar Scattered sunlight Radar Nothing directly constrains this moment of the DSD (0'th). Vis/NIR and Lidar are sensitive to 2nd moment. Additional indepdent information is necessary (I.e. radar)	3, 5
										? 🛈 🔓 33

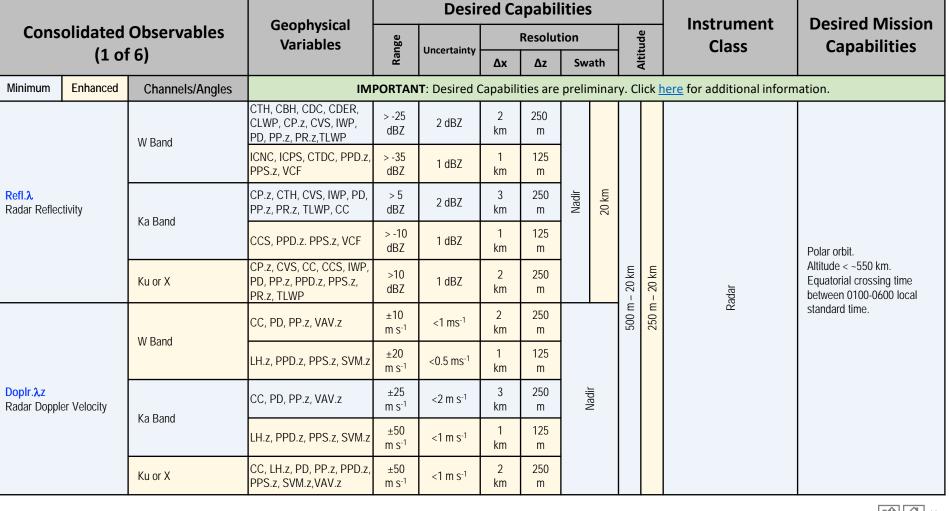
Consolidated Geophysical Variables (11 of 17)			Desired Capability						Francisco of Observables	Finals lad
		Science Objectives	Range	Uncertainty -	Scales				Examples of Observables Notes	Enabled Apps
					XY	Z	Т	Swath	Notes	ДРРЗ
Minimum Enhanced			IMPORTANT	: Desired Cap	oabilities	s and Ok	re preliminary. Click <u>here</u> for additional informatio	n.		
ICPS	Ice crystal particle size	O2, O8	O2: 10- 60 O10: 100-1000 (microns)	O2: 50% O10: 100%	2km					1, 3, 5
IWC.z	IWC.z Ice water content profile									
IWP	Ice water path (kg m-2)	O2, O3, O4, O8	O2: 0.01-0.75 kg/m ² O3: 0.5-10 O4: 0.05-0.2	O2, O3, O4: 100%	O2, O3: 3 km O4:	N/A	I	FP	Radar-only would provide estimate of IWP for values in excess of 0.25 kg m-2. Radar-Lidar algorithms would provide best results in single phase (ice) layers; passive microwave > 85 GHz;	1, 3, 5, 7
IWP	ice water patif (kg iii-2)				2 km		I, ΔT, R	≥20	submm has high sensitivity to ice Uncertainty would be significantly reduced with some estimate of ice bulk density.	1, 3, 3, 7
					1 km (O3)			km		
IVAV.z		O2, O3	2-25 m/s(O3)	2 m/s (O3)	3 km (O3)	250m	Ι	FP	Doppler shifted radial velocity, time differenced reflectivity (ΔZ~2 dBZ, 90sec, dZ/dh @120 s); Altitudes >	
	In-cloud Vertical Air velocity profile	O2, O3, O4, O6, O8	2-50m/s (O3)	2 m/s (O3)	1 km (O3)	250m	I,∆T ,R (O3)	≥20 km (O3)	5 km (~melting level in tropics) O3: Δx resolution of 3 km marginal for convection; capture mean level at/or above maximum mass flux. Enhanced will enable any subset, or all, of improved resolution, limited scanning, sequential sampling, or diurnal sampling).	1, 2, 5, 7
									•	

Consolidated Geophysical Variables (12 of 17)		6		Desired Capability					Everyles of Observables	Fuchled	
		Science Objectives	Range	Uncertainty	Scales				Examples of Observables Notes	Enabled Apps	
					XY	Z	Т	Swath	, wetes	ДР	
Minim	Minimum Enhanced IMPORTANT: Desired Capabilities and Observables are preliminary. Click here for additional information.										n.
1115	.H.z Latent heating profile		O3 -{	-50-100 K/hr	30%	≤3 km	250 m	Ι, ΔΤ, R	FP or	Radar reflectivity profile, C/S type, Doppler velocity, time differenced reflectivity (ΔZ~2 dBZ, 90sec)	1, 3, 5, 7
LH.Z									swath ≥20 km	Range represents Instantaneous convective observation; add velocity constraint; Highly derived from combination of sources	
Light	Lightnin	a	O3	0-60 fl/min	70% DE, 5%	< 10	NA	Ι, ΔΤ,	wide	PoR; E.g., group/flash rates and location, flash area, length, optical energy, multiplicity, polarity	
	9			2 33	FAR, ±5 km	km		R		Geo, LEO, airborne, ground-based; uncertainties defined by existing PoR measurement requirements	

Consolidated Geophysical Variables (13 of 17)				Desired Capability					Everyales of Observables	Frablad		
		Science Objectives	Range	Uncertainty -	Scales				Examples of Observables Notes	Enabled Apps		
					XY	Z	Т	Swath		Дррз		
Minimum Enhanced		IMPORTANT: Desired Capabilities and Observables are preliminary. Click <u>here</u> for additional information.										
PS	Particle shape (aspect ratio, roughness)		O4							Multi-angle polarimeter		
PBLH	PBLH Planetary boundary layer height		O1, O5, O6, O8							Backscatter lidar	2, 4, 5, 13, 14	
PD	Precipitation discrimination					3 km		ı	FP	Radar reflectivity profile		
		(stratiform/convective)	O3	0-100%	10 %	1 km	NA	I, ∆T, R	≥20 km	3 types- C, S, Other. Better with multiple radar frequencies (E) and vertically- resolved Doppler vertical motion	1, 5	
PPD.z		pitation (ice) particle ty profile	O4							Dual-frequency radar, passive microwave radiometer	5	
PPS.z	Precip profile	oitation particle size	O3, O4	0.4-4.0 mm*	0.5 mm	≤ 3 km	250 m	I, ΔT, R	Nadir or swath ≥20 km	Radar reflectivity, attenuation, dual-frequency ratio (DFR), combined TB and reflectivity/DFR. Bulk median mass diameter D_m * typically liquid equivalent D_m is < 3 mm.	5	
PP.z	Precipitation phase profile	01, 02, 03,	Liquid, Solid, Mixed		3 km (O3)	250 m	I	FP	Z profile, bright band, Doppler velocity profile, LDR; e.g., Ka > ~-15 dB), differential reflectivity ΔZ~2dBZ, dual-freq. ratio, polarimetric VIS backscatter Separation of stratiform liquid and frozen most straight forward. Enhanced would include approach for convective clouds, mixed phase, and the associated profile. Melting layer ID is implicit.	1, 5, 7		
					1 km (O3)	125 m	I, ΔT, R	≥20 km				
											? ♥ 🔂 36	

	Consolidated Geophysical Varia				Desired	Capabi	ility				Franklad.
Geo	• •		Science Objectives	Dange	l lucoutoiutu.		Scale	es		Examples of Observables Notes	Enabled Apps
	(14	of 17)		Range	Uncertainty	хү	Z	Т	Swath		Apps
Minim	ıum	Enhanced		IMPORTANT	: Desired Ca	pabilitie	s and Ol	bser	vables a	re preliminary. Click <u>here</u> for additional information	on.
			O1, O3, O4, O6	O3:2 - 50 mm/hr O4:.01-10 mm/hr O5: 0.1 - 2mm/hr	O3, O5 <100% O4: 200%	3 km	250 m	I	FP	Radar reflectivity; µwave radiances, submm radiances	
PR.z Preci		itation rate profile	O2, O3, O4, O6	O3: 2-100 mm/hr		1 km	125 m	I, ΔT, R	≥20 km	Lower freq radar needed in enhanced for intense rains; Includes near surface precipitation estimate.	1, 5, 7
PR2D	Precip @surfa	itation rate, 2D ace	O2, O3, O4	(O3): 0.5-50 mm/hr (O4): 0.01-10 mm/hr	O3: < 50% @1 mm/hr; < 25% @>10 mm/hr O4: 200%	≤ 25 km	N/A	I, ΔT, R	>500 km	Scanning passive µwave, >85 GHz, Submm Contributes to horizontal mapping of precip.; Applications desires footprint of 10 km or less.	1, 5, 7, 8, 9, 10, 11
PGC	Precur	sor gas concentration	O5, O6								5, 12, 13, 14
RadF		ive fluxes (surface and derived)	07								
	-		_								

	Consolidated Geophysical Variables	6 :		Desired (Capabi	lity			Everyples of Observables	Frablad	
Ge			Science Objectives	Range	Uncertainty -		Scale	s		Examples of Observables Notes	Enabled Apps
	(15 o	of 17)		Nange	Officertainty	XY	Z	Т	Swath	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7.665
Minim	num	Enhanced		IMPORTANT	: Desired Cap	oabilities	and Ob	serv	ables ar	re preliminary. Click <u>here</u> for additional information	n.
RadH.z			O2	-3.0 K day- 1 to 1 K day-1 for longwave and 0 K day-1 to 2 K day-1 for shortwave	Longwave: 0.9 Kday-1 for bounday layer clouds, 0.25 K day-1 for upper tropospher ic clouds. Shortwave : 0.35 Kday-1 for both clouds.					This GV would be calculated from level 2 microphysical retrievals and the uncertainty would be tied to the uncertianty of the microphysical retrievals, the radiative parameterizations (I.e. conversion of microphysics to radiative properties) and the accuracy of the PORderived thermodynamic profiles. The range is for instantaneous heating rate computed with 137 layers in the atmosphere averaged over a month and over 1 degree zone The uncertainty is for zonal monthly mean hating rate	4
SVDV.z	VDV.z Snowfall vertical (Doppler) velocity profile		O4	0.5-4 m/s	.5 m/s	2km	250 m	I	Nadir	Doppler radar, W or Ka band	1, 2, 5, 7
SA Surface albedo		O7								12, 13, 14 (for inference of PM from AOD)	
,											



	Consolidated			Desired (Capab	ility			Francisco of Observables	Frablad
Geo	physical Variables	Science Objectives	Danas	II a a a sta i a ta a		Scale	es.		Examples of Observables Notes	Enabled Apps
	(16 of 17)	C 2,0001100	Range	Uncertainty	XY	Z	Т	Swath	Wotes	Дррз
Minimu	um Enhanced		IMPORTANT:	Desired Cap	abilities	and Obs	serva	ables are	e preliminary. Click <u>here</u> for additional information	
001	Configuration	O4	10 -1		0.25.0	NIA.		-1-11	E.g., GLDAS2 Land surface (MODIS)	
SCL	Surface classification	O3	> 10 classes		<0.25 °	NA	М	global	Land cover (water, vegetation, desert, snow etc.)	
251		O4	- 0.5 - 9 km			100			PoR topography database (E.g., SRTM)	
SEL	Surface elevation	O3	- 0.5 - 9 km	< 100 m	< 1 km <100 m NA		global	Identify orography		
SRB	Surface radiation budget	O4							This GV would be calculated from level 2 microphysical retrievals and the uncertainty would be tied to the uncertianty of the microphysical retrievals, the radiative parameterizations (I.e. conversion of microphysics to radiative properties) and the accuracy of the PORderived thermodynamic profiles. Includes surface albedo, emissivity; cloud/precipitation radiative properties	
		1 (1//	0 - 1500 W/m ² (Latent)						1-6 hour PoR analyses (e.g.,MERRA-X, ERA-X, GLDAS, SeaFlux-HR etc.)	
STF	Surface turbulent fluxes	O1, O3	-300-1500 W/m ² (Sensible)	Ocean: < 20% Land: < 30%	< 25 km	NA	I, R	global	LH/S heat fluxes- ranges include documented extremes over Land/ocean. New NASA-funded activities (Seaflux-HR) may help.	

	Consolidated	Coincid		Desired	Capab	ility			Everyples of Observables	Frablad
Geo	physical Variables	Science Objectives	Donne	I la containte.		Scale	es		Examples of Observables Notes	Enabled Apps
	(17 of 17)		Range	Uncertainty	XY	Z	Т	Swath	Notes	Apps
Minim	um Enhanced		IMPORTANT	: Desired Ca	pabilitie	s and O	bser	vables a	re preliminary. Click <u>here</u> for additional informatio	n.
CTD	Curface have	O4	Ocean, land,		1 km	NA			Numerous PoR high resolution land/water masks	
SIP	STP Surface type		O3 coast				INA	global	Land/water surface boundaries	
		04							Vis, NIR Reflectance	
TLWP	Total liquid water path	01, 03	0.02 - 60 kg/m²	50%	1 km	NA	I, ΔT, R	swath	 Radar, Passive Microwave Submm Synergy of Reflectance, active and passive microwave Synergy of passive microwave and submm See Cloud LWP above; Extends IWP to liquid part of the column (full column precip+cloud), combination of microwave and submm reduces uncertainty 	1, 2, 3, 5, 7
VCF	/olumetric cloud fraction O1, O4			Scanning radar, W or Ka band	4, 5, 7					
WVA	Water vapor advection	O4							Reanalysis	
						·				

			Construint		Desi	red Ca	pabil	ities	;		Instrument	Desired Mission
Cons		Observables	Geophysical Variables	Range	Uncertainty		Resoluti	ion		Altitude	Instrument Class	Desired Mission Capabilities
	(2 of	(6)		Rar	Uncertainty	Δχ	Δz	Swa	ath	Altit	C. 000	Capasiiiiic
Minimum	Enhanced	Channels/Angles	IM	PORTAN	T: Desired (Capabili	ties are	prelir	ninar	y. Click <u>h</u>	nere for additional inform	lation.
		W Band	IWP	100- 280 K	1.5 K	2 km	-					
		W Daliu	IVVF	50- 280 K	0.5 K	1 km	-	Nadir	20 km		Radar	
Tb.λ		Ka Band	IWP, TLWP	100- 280 K	1.5 K	3 k m	-	Na	20		Ra	
Brightness Te	emperature	Ka banu	IVVP, ILVVP	50- 280 K	0.5 K	1 km	-					
		> 85 GHz, submm	TLWP, IWP, PR2D	80- 300 K	1–2 K	< 25 km	-	> 10 kn			Passive microwave radiometer	~166, 183, 325 GHz preferred for snowfall
		<85 GHz	TLWP, PR2D	100- 300 K	1–2 K	< 25 km	-	> 100 km			Passive microwave radiometer	
Depol.λz		W Band	CP.z, PD, PP.z, PPD.z	-35 – 0 dB	3 2 dB		105			250 m		2nd transmit, or, just second
Linear Depol Ratio	oolarizarion		CP.z, PD, PP.z, PPD.z -30 - 0 dB		3 2 dB	1 km	125 m	201	km	20 km	Radar	receive channel for orthogonal polarization (slant 45 or linear basis)

			Cambusian		Des	sired (Capak	oilities		Instrument	Desired Mission
Consolid	dated Obse	rvables	Geophysical Variables	Range	Uncerta	ı	Resolut	ion	Altitude	Instrument Class	Capabilities
	(3 of 6)			Rar	inty	Δх	Δz	Swath	Altit	G 1033	Capabillico
Minimum	Enhanced	Channels/ Angles	IMPORTAN	NT: Des	ired Cap	abilities	s are pro	eliminary.	Click <u>her</u>	e for additional inform	ation.
TAtbsCo.\(\lambda\)z Molecular+Particula polarized Backscati (Superseded by HS Ray\(\text{Atbs.}\lambda\)z, Mie\(\text{MieAtbs.}\text{Co.}\(\lambda\)z me	ter Profiles SRL enhanced tbsCo.λz and	VIS NIR	AOD. e, AODF. e, AAOD. e, AEXT. z, AABS. z, AEXTF. z, AE. I, AE. z, ACFM. z, ANC. e, AE2BR, AE2BR. e, AEFR. I, AEFR. z, ARIR. e, AIIR. e, ANSPH, ANSPH. z, APM2. 5, AVE, BSS, CA, CBH, COD, CTDC, CTDS,			100 m	30 m	100 m	-2 to 42 km	Backscatter Lidar	Polar Orbit (O1, O4, O7, O9);
MieAtbsCo.λz measurements when available)			CTE,CTH,ICNC,IWP,PANC,PBLH								Note: ∆x & swath meant to imply continuous along-track coverage;
TAtbsX.\(\lambda\)z Molecular+Particulate Attenuated Cross-polarized Backscatter Profiles (Superseded by HSRL enhanced RayAtbs.\(\lambda\)z, MieAtbsCo.\(\lambda\)z and MieAtbsCo.\(\lambda\)z measurements when available)		VIS NIR	Same as for TAtbsCo.λz							Backscatter Lidar	Swath means receiver footprint diameter View angle: 0.3 to 5 degrees
Rad.λ Radiances		VIS NIR				100 m		100 m		Lidar	from lidar background monitor
Naulances		UV									

			Coorbusisel		Des	sired (Capak	oilities		Instrument	Desired Mission	
Consolid	dated Obse	rvables	Geophysical Variables	Range	Uncerta	Resolu		ion	Altitude	Class	Capabilities	
	(4 of 6)			Raı	inty	Δх	Δz	Swath	Altin	5.050	Cupalina Co	
Minimum Enhanced Channels Angles			IMPORTAN	IT : Des	ired Cap	abilitie	s are pre	eliminary.	Click <u>her</u>	e for additional inform	ation.	
RayAtbs.\(\lambda\)z Attenuated Rayleigh Backscatter Profiles		UV VIS	AOD. AODF. AAOD. AEXT.z, AABS.z, AEXTF.z, AE. AE.z, ACFM.z, ANC.I, AE2BR, AE2BR. AEFR. AEFR.z, ARIR. AIIR. ANSPH, ANSPH.z, APM2.5, AVE, BSS, CA, CBH, COD, CTDC, CTDS, CTE, CTH, ICNC, IWP, PANC, PBLH			100 m	10 -30 m	100 m	-2 to 42 km	HSRL Lidar	Polar Orbit (O1, O4, O7, O9); Note: ∆x & swath meant to imply continuous along-track coverage; Swath means receiver footprint	
MieAtbsCo.λz Attenuated Mie Co-polarized Backscatter		UV VIS	Same as for RayAtbs.λz			100 m	10 – 30 m	100 m	-2 to 42 km	HSRL Lidar	diameter; View angle: 0.3 to 5 degrees	
/ Attenuated Min Cross polarized		UV VIS	Same as for RayAtbs.λz			100 m	10 - 30 m	100 m	-2 to 42 km	HSRL Lidar		

			Geophysical		Desire	d Ca	pab	ilities		Instrument	Desired Mission
Consc		Observables	Variables	Range	Uncertainty		Resolut	ion	Altitude	Class	Capabilities
	(5 of	0)		Rar	Uncertainty	Δх	Δz	Swath	Altit		·
Minimum	Enhanced	Channels/Angles	IMP	ORTANT	: Desired C	apabiliti	es are p	reliminary	. Click <u>h</u>	ere for additional informa	ation.
Rad.λ Radiances (Maps to MO	DDIS/VIIRS)	UV: 400-470nm VIS: 635-680nm SWIR: 1.6-2.2μm # Channels: 5	Land and Ocean: AOD. & APM25, COD, CF Ocean only: AODF. & AE. &		5%	500 m	-	100 km		Multispectral Radiometer	
Rad.\(\lambda\) Radiances (Maps to AVIRIS/PACE)		UV-SWIR: 400nm-2.2µm 10 nm resolution	AOD.¢, AODF.¢, AE.¢ APM25, AVE, COD, CF		7%	500 m		100 km		Imaging Spectrometer	
Rad.λα Multi-angle R (Maps to MIS		UV: 400-470 nm VIS: 550-870 nm # Channels: 4 # Angles: 5	AOD.¢, AODF.¢, AAOD.¢, AE.¢, ASYM, ANSPH, AVE, APM25, CF, CTH			500 m	1	100 km	-	Multi-angle Radiometer	
DOLP.λα*(I Multi-angle D Linear Polari	Degree of	UV: 350-470 nm VIS: 530-870 nm # Channels: 5 # Angles: 5	AOD.¢, AODF.¢, AAOD.¢, AE.¢, ASYM, ANSPH, ANC.¢, ARIR.¢, AIIR.¢, AVE, APM25, COD,CTDC,CTDS, CTH		Max(3% Rad, 0.005 DOLP	500 m	1	100 km		Multi-angle Polarimeter	
(DOLP.λα)*(Rad.λα) Polarized radiances (Maps to APS/HARP, SPEX)		Hyperspectral range (400-700 nm) or hyper-angular channel (40+ angles, ~1 deg. between - 60, +60 deg. at 670 or 865 nm).	AOD.¢, AODF.¢, AAOD.¢, AE.¢, ASYM, ANSPH, ANC.¢, ARIR.¢, AIIR.¢, AVE, APM25, COD,CTDC,CTDS, CTH		Max(3% Rad, 0.005 DOLP)		-	100 km		Multi-angle Polarimeter	Moderate bandwidth (10-30 nm) channel centered close to wavelength or within given range

			Geophysical		Desire	ed Ca	ipab	ilities		Instrument	Desired Mission
Conso		Observables	Variables	Range	Total	ı	Resolut	ion	Altitude	Class	Capabilities
	(6 of	6)		Rar	Uncertainty	Δх	Δz	Swath	Altit		•
Minimum	Enhanced	Channels/Angles	IM	PORTAN	NT: Desired (Capabili	ties are	preliminar	y. Click <u>k</u>	nere for additional inform	nation.
Rad.\(\lambda\) Radiances (Maps to MOD	DIS+OMI)	UV : 355 nm	AOD.e, AAOD.e. AODF.e. AE.e., APM25, COD, CF			250 m		300 km		Multispectral Radiometer	Moderate bandwidth (10-30 nm) channel centered close to wavelength or within given range
Rad.λ Radiances (Maps to PACE+SWIR)		350nm-2200 nm (5 nm resolution) imaging spectrometer	AOD.¢, AODF.¢, AE.¢, ARIR.¢, AIIR.¢, APM25, AVE, COD, CF		7%	500 m		300 km	-	Imaging Spectrometer	
Rad.λα Multi-angle Ra (Maps to MISR		SWIR: ~1680, ~1880, ~2260 nm # Angles: 5.	AOD. e, AODF. e, AAOD. e, AE. e, ASYM, ANSPH, ANC. e, ARIR. e, AIIR. e, AVE, APM25, COD, CTH		5%	250 m		300 km		Multi-angle Radiometer	Moderate bandwidth (10-30 nm) channel centered close to wavelength or within given range
(DOLP.λα)*(Rad.λα) Multi-angle Degree of Linear Polarization (Maps to MAIA)		SWIR: ~1680, ~1880, ~2260 nm. # Angles: 5.	AOD. e, AODF. e, AAOD. e, AE. e, ASYM, ANSPH, ANC. e, ARIR. e, AIIR. e, AVE, APM25, COD, CTDC, CTDS, CTH		5%	250 m		300 km		Multi-angle Polarimeter	Moderate bandwidth (10-30 nm) channel centered close to wavelength or within given range

Desired Canabilities

A+CCP	4	CCP	Apps	Potential Enabled Applications: 1-6	Partners	Geophysical Properties	Relevant Objective(s)
			1	Severe Storm Forecasting and Modeling: Observations of aerosols, cloud properties, and precipitation are used by the weather modeling and forecasting communities to predict hurricane and mid-latitude cyclone development, intensity, and track and associated precipitation type and amount.	NOAA, FAA, NCAR, EPA and State Agencies	Aerosol, cloud, and precipitation properties	01, 02, 03, 04, 06, 07, 08
			2	Aerosol & Precipitation Interaction in Modeling & Forecasting: Observations of aerosols and clouds enable the air quality modeling and forecasting communities to improve modeling/forecasting the impact of aerosols on precipitation including aerosol transport, scavenging, deposition, and chemical transformation.	NWS, NOAA, CTM, EPA, state AQ agencies, other modeling communities	Vertical velocity, aerosol, cloud, and precipitation properties	<u>01, 03, 06</u>
			3	Climate Modeling: Observations of clouds, aerosols, and precipitation enable the climate modeling community to improve model initialization and simulations which inform international reports and policy makers decisions.	NWS, NOAA, CTM, EPA, state AQ agencies, other modeling communities, IPCC, UN, WMO	Vertical velocity, aerosol, cloud, and precipitation properties	<u>03</u> , <u>06</u>
			4	Energy Planning: Cloud and aerosol optical depths are used to estimate radiative fluxes for applications, such as estimating available photosynthetically active radiation (PAR) for air quality modeling, attenuated solar insolation for solar power companies, and agricultural forecasting. Solar power companies use estimates of size-resolved aerosol concentrations and precipitation to model dry and wet deposition on the panels, respectively.	NWS, NOAA, CTM, EPA, state AQ agencies, other modeling communities	Aerosol Optical Depth, Aerosol Extinction Profiles, Aerosol Speciation, cloud properties	01, 02, 06, 07, 08
			5	Geospatial Information & Analytics: Big data for planetary resource surveillance: Data fusion techniques through geospatial analytics and "big data" management rely on aerosol, cloud and precipitation properties to provide continuous, detailed, multidimensional, and global monitoring as an invaluable tool for planetary resource surveillance such as food security, disaster relief planning, and aerosol health exposure.	Air quality modelers (EPA, NOAA, state agencies), solar energy companies, agricultural communities	Aerosol Optical Depth, Aerosol Extinction Profiles, Aerosol Speciation, cloud properties	<u>01-010</u>
			6	Aviation Industry and Safety: Observations of aerosol and cloud properties enable the aviation industry to predict and monitor hazards, such as visibility, icing, volcanic eruptions, and the impact to flights planning and aircraft engines.	NOAA, FAA, DoD, DoE, Volcanic Ash Advisory Centers, Airlines, private industry (e.g., General Electric, Pratt and Whitney, Rolls Royce, Northrop Grumman)	Cloud phase, height, depth, radius, and amount, Aerosol Optical Depth, Aerosol Extinction Profiles, Aerosol Speciation	01, 02, 03, 04, 05, 08

A+CCP	4	CCP	Apps	Potential Enabled Applications: 7-9	Partners	Geophysical Properties	Relevant Objective(s)
			7	Wildfire, Pre-fire Operations and Management: Observations of aerosols, cloud properties, and precipitation enable improvement in NWP output for fire weather modeling and forecasting to predict the potential for wildland and prescription fire growth and severity (Go / No Go burn decisions). Estimates of total water volume and long-term surface precipitation observations are critical for vegetation and fire resource managers to assess drought conditions, the potential for dry and available forest fuels, and the potential for grassland fuel availability (increased precipitation).	Federal [NOAA, NWS Incident Meteorologist, USDA Forest Service (USFS), DOD, USGS, National Park Service, Bureau of Land Management] and state agencies; other fire and resource management communities	Precipitation and Cloud properties, Aerosol and Cloud Layer properties	01, 02, 03, 04, 05,06
			8	Wildfire, Activefire Operations and Management: Observations of aerosols, cloud properties and precipitation enable wildland fire and air quality management to detect and model smoke plume height, transport, and vertical cloud and aerosol distribution to improve air quality forecasts and estimate exposure to wildfire PM and co-emitted trace gas pollutants. Fire weather prediction and forecasting continues to be critical for assessing the potential for extreme fire behavior.	Federal (EPA, NOAA, USFS, DOD, USAF (military)] and state AQ and fire management agencies (CARB, CAL FIRE), other AQ modeling and fire management communities	Precipitation and Cloud properties, Aerosol and Cloud Layer properties, Extinction Profiles, AOD, and Speciation	01, 02, 03, 04, 05,06
			9	Wildfire, Post-fire Operations and Management: Estimates of total water volume, clouds, and long-term surface precipitation observations are critical for water, land, and urban resource managers to estimate the potential for post-fire flooding, and to anticipate debris flows to warn affected communities.	Federal [USGS, USFS BAER, NOAA, USAF (military)], regional (EPA) and state agencies (CA National Guard), other modeling communities	Precipitation and Cloud properties, Aerosol and Cloud Layer properties	<u>01</u> , <u>02</u> , <u>03</u> , <u>04</u>

A+CCP	4	CCP	Apps	Potential Enabled Applications: 10-14	Partners	Geophysical Properties	Relevant Objective(s)
			10	Improved Numerical Weather Prediction: Cloud and precipitation properties enable the weather prediction communities to enhance parameterizations of clouds to improve NWP output for weather forecasting.	NWP Centers (NOAA, NRL, ECMWF, JMA, NCAR), USDA, AFWA, IBM, Private Companies	Cloud height, depth, radius, phase, precipitation rate and phase	01, 02, 03, 04, 05
			11	Hydrologic Modeling: Estimates of total water volume and long-term surface precipitation observations are critical for water resource managers, agricultural communities, and energy companies for estimating streamflow, flooding and inundation impacts, and assessing drought conditions.	FEWS NET, World Bank, FAO, USDA, Water Resource/Management community	Surface precipitation (Level 2-4)	<u>03</u> , <u>04</u>
			12	Agricultural Modeling and Monitoring: Surface precipitation observations enable the agricultural communities to model, forecast, and track watershed conditions that impact crop estimation, yields, irrigation, and supply.	USDA, ClimateCorp., PrecisionAG, agricultural communities and planners	Surface precipitation (Level 3/4)	<u>03</u> , <u>04</u>
			13	Health and Ecological Forecasting & Monitoring: Surface precipitation observations are used by a range of public and private communities, international and domestic governmental organizations and NGOs as inputs into hydrologic models, vector and water borne disease modeling, animal migration tracking, insurance models, and disasters applications.	CDC, NOAA, Red Cross, reinsurance, World Bank and agricultural communities, public and private companies (e.g., Johnson & Johnson, Agvesto, MiCRO)	Surface precipitation (Level 3-4)	<u>03, 04</u>
			14	Disaster Monitoring, Modeling and Assessment: Observations of precipitation and long-term precipitation records are used by emergency response communities for modeling/estimating flooding and landslide hazards, developing parametric risk models for (re)insurance, and identifying high risk areas for hydrometeorological extremes.	FEMA, NOAA, Red Cross, FAO, US Army, reinsurance, NGOs	Surface precipitation (Level 2-4)	<u>03</u> , <u>04</u>

A+CCP	4	CCP	Apps	Potential Enabled Applications: 15-17	Partners	Geophysical Properties	Relevant Objective(s)
			15	Human Health Studies & Health Risk Estimation: Observations of aerosol are used to infer spatio-temporal variations & trends of speciated surface-level PM (PM ₁ , PM _{2.5} , PM ₁₀), which are used for health studies, such as to associate the effects of exposure to PM with specific health outcomes, and to calculate health risks and longevity.	reinsurance industry, health providers, nonprofits and environmental justice groups, public/private companies	Sophisticated Users: Level 2/3: Aerosol Optical Depth, AAOD/SSA, Aerosol Extinction Profiles, Non-spherical aerosol fraction/extinction profile, fine- mode aerosol fraction/extinction profile, PBL height, Angstrom exponent, PBL aerosol number concentration, aerosol vertical extent, index of refraction, aerosol effective radius. Broaden User Base: Surface PM/speciated PM inferred from AOD (L4).	<u>05, 07,08</u>
			16	AQ Rule & Regulation Making: Observations of aerosol are used to infer spatio-temporal variations & trends of speciated surface-level PM (PM ₁ , PM _{2.5} , PM ₁₀), which used to support AQ rule-making, define exceptional events, etc. Aerosol observations are also used to support modeling of interhemispheric transport.	EPA, state AQ agencies	Sophisticated Users: Aerosol Optical Depth (Level 2,3), Aerosol Extinction Profiles (Level 2) & surface PM inferred from AOD (L4). Broaden User Base: Surface PM inferred from AOD (L4).	05,06,07,08
			17	Operational AQ forecasting: Aerosol observations are used for operational AQ forecasting (e.g., forecast initialization), tracking dust plumes, and issuing AQ alerts.	Federal (NOAA) and state AQ agencies	Aerosol Optical Depth, Aerosol Extinction Profiles, & Aerosol Speciation	<u>05,06,07,08</u>
							心

Mission	A	Orbit	Operatin	g Period	R	elevant Instruments	Natas
Family	Agency	ō	Designed	Likely	Name	Channels	Notes
Geostationary Operational			2016-2038 GOES-R (≤2025)	_	Advanced Baseline	0.47**, 0.64*, 0.87**. 1.38, 1.61**, 2.25, 3.9, 6.2, 6.9, 7.3, 8.6, 9.6, 10.3, 11.2, 12.3, 13.3 (µm)	GOES-E = 75°W and GOES-W = 135°W Two views of North / South American Sectors
Environmental Satellite – R Series	NOAA NASA	GEO	GOES-I (=2029) GOES-S (<2029) GOES-T (>2020) GOES-U (>2026)	2016-2038	Imager (ABI)	Spatial(nadir): * = 0.5 km, ** = 1.0 km, others = 2 km	Temporal: FD=10 min; CONUS=5 min; MESO=30 sec
(GOES-R/S/T/U)					Global Lightning Mapper (GLM)	777.4 nm	Lightning Mapper
<u>Meteosat</u> – Third	EUMETSAT		2021-2041	_	Flexible Combined	0.44**, 0.51**, 0.64*, 0.87**, 0.91**, 1.38**, 1.61**, 2.25*, 3.8**, 6.3, 7.3, 8.7, 9.66, 10.5, 12.3, 13.3 (μm)	0°E Multipurpose VIS/IR radiometer,
Generation (MTG-I1,I2,I3,I4)	ESA	GEO	Launch 2021,	2021-2041	Imager (FCI)	Spatial(nadir): * = 0.5 km, ** = 1.0 km, others = 2 km	Temporal: FD=10 min, Europe=2.5 min
			2025, 2029, 2032		Lightning Imager (LI)	777.4 nm	Lightning imager
Himawari	JMA	GEO	2014-2031 (H8 ≤ 2022)	2014-2031	Advanced Himawari Imager	0.47**, 0.51**, 0.64*, 0.86**, 1.61, 2.25, 3.9, 6.2, 6.9, 7.3, 8.6, 9.6, 10.4, 11.2, 12.4, 13.3 (μm)	H8/9 = 141°E (H9 replaces H8) Multipurpose imaging VIS/IR radiometer;
(8,9)			(H9 ≥ 2022)		<u>AHI</u>	Spatial(nadir): * = 0.5 km, ** = 1.0 km, others = 2 km	Temporal: FD=10 min, Japan =2.5 min; MESO=30 sec
GEO-KOMPSAT (2A)	KARI KMA ITT	GEO	2018-2028	2018-?	Advanced Meteorological Imager (AMI)	0.47**, 0.51**, 0.64*, 0.87**, 1.38, 1.61, 3.8, 6.2, 6.95, 7.34, 8.59, 9.625, 10.4, 11.2, 12.4, 13.3 (µm) Spatial(nadir): * = 0.5 km, ** = 1.0 km, others = 2 km	K2A = 122°E Multipurpose imaging VIS/IR radiometer (ABI, AHI heritage)

Temporal: FD=15 min; NH = 5 min; MESO = 30 sec

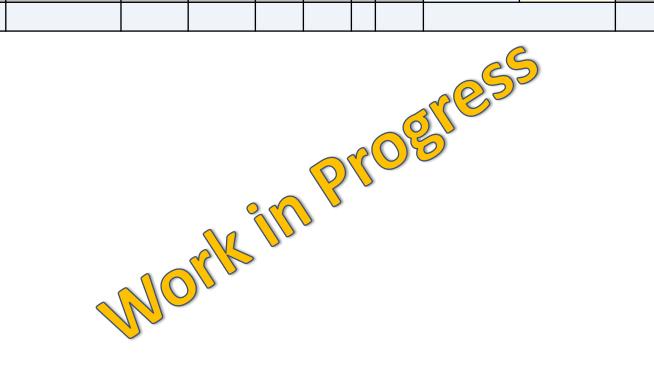
Mission	Agonos	rbit	Operatin	g Period	R	elevant Instruments	Notos
Family	Agency	ō	Designed Likely		Name	Channels	Notes
Motoccat	EUMETSAT		2023-2039		Infrared Sounder (IRS)	MWIR: 1600 to 2250 cm-1 (4.44–6.25 μm) LWIR: 680 to 1210 cm-1 (8.26–14.70 μm)	Medium-resolution IR imaging Fourier- interferometer, hyperspectral (0.625 cm-1 wavenumber), full-disc coverage
Meteosat (MTG-S1,S2)	COM ESA	GEO		2023-2039	Ultraviolet, Visible and Near-Infrared Sounding (UVN) (Sentinel-4)	UV: 305–400 nm, 0.5 nm spectral resolution VIS: 400–500 nm, 0.5 nm spectral resolution NIR: 755–775 nm, 0.12 nm spectral resolution	Scanning SW (UV) spectrometer, European region coverage (30 to 65° N latitude, 30° W to 45° E longitude), better than 10km spatial resolution
GEO-KOMPSAT	KARI	GEO	2019-2029	2019-?	GEMS	300 – 500 nm, 0.6 nm spectral resolution	Medium-resolution spectroradiometer; SE Asia regional coverage (5S-45N latitude, 75-145E longitude)
(2B)	KORDI NIER	GEU	2019-2029	2019-?	Advanced GOCI	380, 412, 443, 490, 510, 555, 620, 660, 680, 709, 745, 865, 643.5(PAN) (nm)	Multipurpose imaging VIS/IR radiometer; Korea/Japan regional coverage (10 times/day) + once daily full disk, spatial resolution ≤ 250m

Mission	Agoney	Orbit	Operatin	g Period		Relevant Instruments	Notes
Family	Agency	ō	Designed	Likely	Name	Channels	Notes
Global Precipitation	NASA	LEO (Non-sun			Dual-frequency Precipitation Radar (DPR)	13.6 (Ku-band), 35.55 (Ka-band) [GHz]	Electronic scanning planar array with swath width of 245 km at 13.6 GHz, 125 km at 35.55 GHz; Coverage: +/-66° latitude every 5 days Spatial resolution: 5km horizontal, 250 m vertical
<u>Measurement</u> (GPM)	JAXA	synch;incline= 65°;alt=407km)	2014-2019	2014-2032+/-5	GPM Microwave Imager (GMI)	10.65(V,H), 18.7(V,H), 23.8(V), 36.5 (V,H), 89.0 (V,H), 166.0 (V,H), 183.31+/-7(V), 183.31+/- 3(V) [GHz]	Conical scanning imager at 53deg zenith angle with 850 km swath width; Coverage: +/-70° latitude every 2 days Spatial resolution varies with frequency: 19x32km at 10.65 to 4.4x7.2km at 89-183.
Global Change Observation Mission- Water (GCOM-W1)	JAXA	LEO (Sun-synch, cross EQ at 1330LST; inclin e=98°;alt=700k m)	2012-2017	2012-2027	Advanced Microwave Scanning Radiome ter v2 (AMSR2)	6.925(V,H), 7.3(V,H), 10.65(V,H), 18.7(V,H), 23.8(V,H), 36.5(V,H), 89.0(V,H) [GHz]	Conical scanning imager at 55° zenith angle with 1450 km swath width; Coverage: Global once/day Spatial resolution varies with frequency: 35x62 km at 6.925 to 3x5 km at 89
		LEO (Sun- synch, cross EQ at 14:00LST.;in cline=97°;alt=3 93km; 92.5min		?	Atmospheric Lidar (ATLID)	355 [nm]	High Spectral Resolution Laser at +/-3° of along-track; Coverage: Global every 16days Spatial resolution: 30 m horizontal and 100 m vertical;
Earth Clouds, Aerosol and Radiation Explorer (EarthCARE)	ESA JAXA		~2021-2024		Cloud Profiling Radar (CPR)	94.05 [GHz]	Doppler capability; Nadir only; Minimum sensitivity of – 35dB; Coverage: Global every 16days Spatial resolution: 750m horizontal x 400m vertical
		period)			Multi-Spectral Imager (MSI)	670-865 [nm] (VNIR), 1670-2210 [nm] (SWIR), 8.8- 12.0 [μm] (TIR)	Pushbroom scanning; 15 km swath Coverage: Global every 8days(IR), 16days(SWIR); Spatial resolution: 500m pixel
Green-house gas Observing Satellite (GOSAT-3)	JAXA	LEO (Sun- synch; polar orbit)	2022-2027	2022-2032	Advanced Microwa ve Scanning Radio meter v3 (AMSR3)	6.925(V,H), 7.3(V,H), 10.65(V,H), 18.7(V,H), 23.8(V,H), 36.5(V,H), 89.0(V,H), 166(V,H), 183 [GHz]	Frequencies will be likely similar to AMSR2 with addition of 2 channels at higher microwave freq.
Weather System Follow-on-Microwave (WSF-M 1, 2)	DoD	LEO (polar orbit)	2022-?	2023-2033	Microwave Imager	10-183 [GHz]	Frequencies will be likely similar to GMI

Mission	Agongy	Orbit	Operating	g Period	Re	elevant Instruments	Notes
Family	Agency	ŏ	Designed Likely		Name	Channels	Notes
					Advanced Technology Microwave Sounder (ATMS)	22 channels from 23.8 GHz –183.3 GHz	Absorption band MW radiometer, cross-track scanning
				2017-2038	Clouds and the Earth's Radiant Energy System (CERES/RBI	CERES: 0.3-5µm, 8-12µm, 0.35-125µm	Broad-band radiometer; RBI de-manifested from JPSS- 2; still scheduled for JPSS-3/4
Joint Polar Satellite		LEO (Sun-synch, Z= 824 km,	2017-2038		Ozone Mapping and Profiler Suite - Nadir (OMPS-N)	Mapper: 300-420nm Profiler: 250-310nm	High-resolution nadir-scanning SW (UV) spectrometer
System (JPSS) JPSS-1/NOAA-20 JPSS-2	NOAA EUMETSAT NASA	incline = 98.7°, period = 101 mins)	JPSS1 ≥ 2017 JPSS2 ≥ 2021 JPSS3 ≥ 2026 JPSS4 ≥ 2031		Ozone Mapping and Profiler Suite- Limb (OMPS-L)		Limb-scanning SW (UV) spectrometer; scheduled for JPSS-2/3/4
JPSS-3 JPSS-4	IVAGA	~13:30 Equator x-ing (Ascending)	(each 7 years)		Cross-track Infrared Sounder (CrIS)	Nominal Mode (NSR): 1,305 spectral channels (SWIR: 3.92-4.64µm; MWIR: 5.71-8.26µm; LWIR: 9.14-15.38µm) Full Spectral Resolution Mode (FSR): 2211 spectral channels in SWIR, MWIR, LWIR	Medium-resolution IR spectrometer NSR spectral resolution: 0.625 (LWIR), 1.25 (MWIR), and 2.5 (SWIR) cm-1 FSR spectral resolution: 0.625 cm-1 in all bands
					Visible Infrared Imaging Radiometer Suite (VIIRS)	M-bands**: 0.41, 0.44, 0.49, 0.55, 0.67, 0.75, 0.87, 1.24, 1.38, 1.61, 2.25, 3.7, 4.0, 8.6, 10.8, 12.0 (μm) DNB**: 0.7 μm I-Bands*: 0.64, 0.87, 1.6, 3.7, 11.4 (μm) Spatial(nadir): * = 0.375 km, ** = 0.75 km	Multipurpose VIS/IR spectrometer M-bands, DNB: 750m spatial resolution (nadir) I-bands: 375m spatial resolution (nadir)

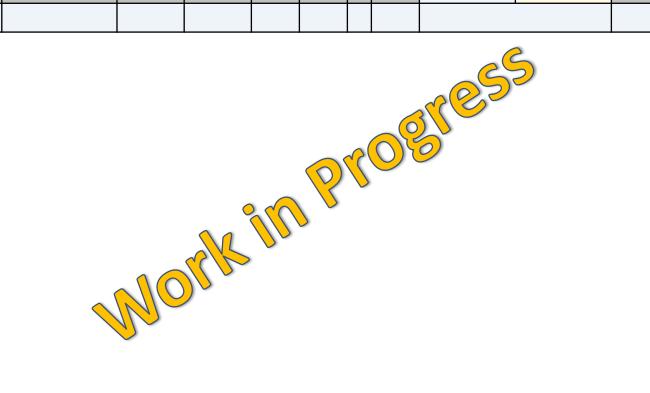
Mission	A = = = = :	Orbit	Operating F	Period	R	elevant Instruments	Notes
Family	Agency	Orl	Designed Likely		Name	Channels	Notes
					Microwave Sounder (MWS)	23.8 – 229.0 GHz	Absorption-band MW radiometer
	EUMETSAT DLR COM CNES ESA				Radio Occultation (RO)	1575.42, 1176.45, 1575.42, 1176.45 (MHz)	GNSS radio occultation receiver
		LEO			UVNS (Sentinel-5)	270-300, 300-370, 370-500, 685-710, 710-750, 750-775, 1590-1675, 2305-2385 (nm)	High-resolution nadir-scanning SW spectrometer
Metop-SG (A1,A2,A3)		Sun-sync, Z=830 km ~9:30 Equator x-ing (descending)	2021-2042 Metop-A1 ≥ 2021 Metop-A2 ≥ 2029 Metop-A3 ≥ 2036	2021-2042	Infrared Atmospheric Sounder Interferometer - New Generation (IASI-NG)	645, 655, 663, 690 (cm-1) 690 – 2420 cm-1 (0.25 cm-1 sampling) 2420, 2450, 2600, 2700, 2760 (cm-1)	IR sounder (Fourier transform spectrometer)
			(each = 8.5 years)		Multi-viewing, Multichannel, Multi-polarization Imager (3MI)	Polarized: 0.410, 0.443, 0.49, 0.55, 0.67, 0.865, 1.37, 1.65, 2.13 (µm) Total Radiance: 0.763, 0.765, 0.91 (µm) Spatial(nadir) = 4 km	Multi-channel/direction/polarization radiometer, swath width > 2200km 14-angles
					METimage	0.443, 0.55, 0.668, 0.752, 0.763, 0.865, 0.914, 1.24, 1.375, 1.63, 2.25, 3.74, 3.959, 4.05, 6.725, 7.325, 8.54, 10.69, 12.02, 13.345 (µm)	Multipurpose VIS/IR radiometer, ~2670km swath width (500m nadir spatial resolution)

Mission	A	Orbit	Operatin	g Period	R	elevant Instruments	Notes
Family	Agency	Orl	Designed	Likely	Name	Channels	Notes
					RO	1575.42, 1176.45, 1575.42, 1176.45 (MHz)	GNSS radio occultation receiver
Metop-SG	EUMETSAT CNES	LEO	2022-2042	2022-2042	ICI	183.31 – 664 GHz	Ice cloud imaging MW radiometer
(B1,B2,B3)	ESA	LLO	2022-2042	2022-2042	MWI	18.7 – 183.31 GHz	Multipurpose imaging MW radiometer
					SCA	5.355 GHz (C band)	Radar scatterometer
Sentinel-2 (C)	ESA COM	LEO	2021-2029	2021-2029	MSI	442.7, 492.4, 559.8, 664.6, 704.1, 740.5, 782.8, 832.8, 864.7, 945.1, 1373.5, 1613.7, 2202.4 (nm)	High-spatial resolution pushbroom optical imager, 290km swath; 2 satellite constellation in same descending orbit, phased 180° apart
Sentinel-3 (C)	ESA EUMETSAT	LEO	2023-2029	2023-2029	Ocean and Land Colour Instrument (OLCI)	21 channels, 0.4 – 1.02 µm 400, 412.5, 442.5, 490, 510, 560, 620, 665, 673.75, 681.25, 708.75, 753.75, 764.37, 767.5, 778.75, 778.75, 865, 885, 900, 940, 1020 (nm) ** these bands are programmable Resolution = 300 m (nadir)	Medium-resolution pushbroom spectroradiometer; 1270 km swath Note 100% overlap with SLSTR-nadir
(5)	COM				Sea and Land Surface Temperature Radiometer (SLSTR)	0.55*, 0.66*, 0.87*, 1.38*, 1.61*, 2.25*, 3.7**, 10.8**, 12.0 (μm) Spatial: *VIS/NIR/SWIR at 0.5 km, TIR at 1 km Gains: **Dual gain (for monitoring fires)	Multi-channel/direction radiometer; dual-view scan (1420km swath nadir, 750km swath aft)
	ESA				TriG		GNSS radio occultation receiver
Sentinel-6 (B)	EUMETSAT NASA NOAA COM CNES	LEO	2025-2030	2025-2030	AMR-C		Advanced MW radiometer



Mission	Agonov	<u>ĕ</u>	Operating	g Period	Re	elevant instruments	Notes
Family	Agency	ō	Designed	Likely	Name Channels		Notes
Plankton, Aerosol, Cloud, ocean Ecosystem (PACE)	NASA SRON	LEO	2022-2025 + 2	2022-2032 (fuel)	Ocean Color Imager (OCI)	340 nm - 890 nm, continuous at 5 nm spectral resolution; 940, 1038, 1250, 1378, 1615, 2130, 2260 nm Resolution = 1 km at nadir	MODIS + SeaWiFS + OMI heritage PACE includes two demonstration multi-angle polarimeters (HARP-2 and SPEXone) but will have low confidence to be running in 2028

Aerosol Absor		PoR	Capabil	ity			Relevant			
AA	Range	Uncertainty	Resolution				Observables		Notes	
Instrument	Instrument Orbit		XY	Z	Т	Swath	Standard	Possible		



Aerosol Angstrom			PoR	Capability				Relevant		
-	onent (1)	Range	Uncertainty		Res	olution	1	Observables		Notes
Instrume nt	Orbit	Nunge			z	Т	Swath	Standard Possible		
		-1.0 - 3.0 (water only)	Metric Ocean (Be Good) Accuracy 0.050 / 0.0 Precision 0.377 / 0.3	0.75 km nadir		daily	3000 km	Reflectance in VIS/NIR/SWIR (NOAA- VIIRS heritage)		NOAA Enterprise Algorithm Resolution varies on native pixel size AE Reported only over water; reported at 0.55/0.86 mm
JPSS (NOAA- 20+)	LEO 13:30 eq. x-ing, ascending	0.0 - 2.0 (Land and Water)	Land: ? water: ?	6 km nadir		daily	3000 km	Reflectance/Rac VIS/NIR/SWIR/ (NASA-MODIS/ heritage)	Thermal IR	NASA MODIS-like ("Deep-Blue/SOAR") aerosol approach: (single view) Retrievals consistent with NASA EOS-MODIS/SNPP-VIIRS products in assumptions, forward models, etc. Resolution varies on native pixel size Water: AE defined as 0.55/0.87 Land: AE defined as 0.41/0.48 over 'bright' surface, 0.48/0.67 over 'dark'.
		-1.0 – 3.0	Land: Ocean: ±(0.4) Requires AOD>	6 km nadir		daily	3000 km	Reflectance/Rac VIS/NIR/SWIR/ (NASA-MODIS	Thermal IR	 NASA MODIS-like ("Dark-Target") aerosol approach: (single view) Retrievals consistent with NASA EOS-MODIS/SNPP-VIIRS products in assumptions, forward models, etc. Resolution varies on native pixel size Ocean: Reported at 0.55/0.86 and 0.86/2.2 μm, but only validated at 0.55/0.86.

Aerosol Index		PoR	Capabil	ity			Relevant				
A	Range	Uncertainty	Resolution				Observables		Notes		
Instrument	Instrument Orbit			XY	Z	T	Swath	Standard Possible			

Aerosol Ang	strom		PoR Cap	ability				Relevant Observables			
Exponer AE (2)		Range	Uncertainty		Reso	olution				Notes	
Instrument	Orbit			XY	Z	Т	Swath	Standard	Possible		
ABI (GOES- S/T/U)		-1.0 - 3.0 (water only)	Metric Ocean (Best / Good) Accuracy 0.050 / 0.001 Precision 0.377 / 0.370	2 km (nadir)		10 min	FD / CONU S	Reflectance in VIS/NIR/SWIR (NOAA-VIIRS heritage)		NOAA algorithms (TBD) Resolution varies on native pixel size AE Reported only over water; reported at 0.55/0.86 mm	
	GEO (75°W and 135°W)	0.0 - 2.0 (Land and Water)	and			TBD	FD	Reflectance/Radia VIS/NIR/SWIR/Th (NASA-MODIS/Se heritage)	ermal IR	NASA MODIS-like ("Deep-Blue/SOAR") aerosol approach: (single view) Retrievals consistent with NASA EOS-MODIS/SNPP-VIIRS products in assumptions, forward models, etc. Resolution varies on native pixel size Water: AE defined as 0.55/0.87 Land: AE defined as TBD (wavelengths) Seed money provided for algorithm porting, further support needed (e.g., ROSES-19 A.33).	
		-1.0 – 3.0	Land: Ocean: ±(0.4) Requires AOD>0.2	10 km nadir		10 min	FD	Reflectance/Radiance in VIS/NIR/SWIR/Thermal IR (NASA-MODIS heritage)		 NASA MODIS-like ("Dark-Target") aerosol approach: (single view) Retrievals consistent with NASA EOS-MODIS/SNPP-VIIRS products in assumptions, forward models, etc. Resolution varies on native pixel size Ocean: Reported at 0.55/0.86 and 0.86/2.2 μm, but only validated at 0.55/0.86. Seed money provided for algorithm porting, further support needed (e.g., ROSES-19 A.33). 	

Aerosol Angstrom Exponent			PoR Capa	ability				Relev	/ant	
Exponer AE (3)		Range	Uncertainty		Res	olution	n	Observ		Notes
Instrument	Orbit		Chiachtamy	XY	z	т	Swath	Standard	Possible	
			_					(5	
								000	2)	
			Nor			3	CO			

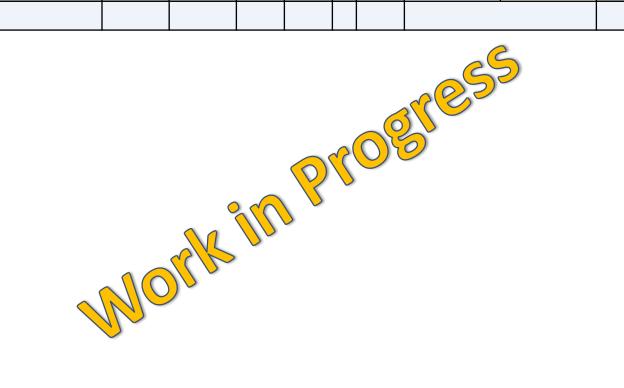
Aerosol Optical Depth AOD (τ)		PoR Ca	pability				Relev	/ant		
Mid-Visib	•	Range	Uncertainty		Res	olution	1	Observ	rables	Notes
Instrument	Orbit	Range	Oncertainty	XY	Z	T	Swath	Standard	Possible	
ABI (GOES-S,T,U)		0.0 – 5.0	A00 Overland A00 Accuracy Precision -0.04	2 km nadir		10 min ? min	FD and CONUS	Reflectance in \ (NOAA-VIIRS h		NOAA Baseline (ABI-AOD) Time/Swath given for FD mode Resolution varies on native pixel size Range/Unc. are for AOD at 0.55 μm, Other variables include spectral AOD
		0.0 - 5.0	Land: ±(0.15τ + 0.05) Ocean: ±(0.10τ + 0.04)	10 km nadir		10 min	FD	Reflectance/Rac VIS/NIR/SWIR/ (NASA-DarkTar	Thermal IR	 "Dark-Target" aerosol approach: (single view) Retrievals consistent with NASA EOS-MODIS/SNPP-VIIRS products in assumptions, forward models, etc. Seed money provided for algorithm porting, further support needed (e.g., ROSES-19 A.33). Resolution varies on native pixel size
GEO (75°W an			Land: ±(0.15τ + 0.05)	1 km		?	gridded	Reflectance/Rad VIS/NIR/SWIR/ NASA-MAIAC H	Thermal IR	 "MAIAC approach" (time/space aggregation) Retrievals consistent with NASA EOS-MODIS/SNPP-VIIRS products in assumptions, forward models, etc. Seed money provided for algorithm porting, further support needed (e.g., ROSES-19 A.33). Resolution is constant (gridded)
		0.0 – 3.0	Land: ? Ocean: ?			?	FD	Reflectance/Radiance in VIS/NIR/SWIR/Thermal IR NASA-DeepBlue Heritage		 "Deep-Blue/SOAR" aerosol approach: (single view) Retrievals consistent with NASA EOS-MODIS/SNPP-VIIRS products in assumptions, forward models, etc. Seed money provided for algorithm porting, further support needed (e.g., ROSES-19 A.33). Resolution varies on native pixel size

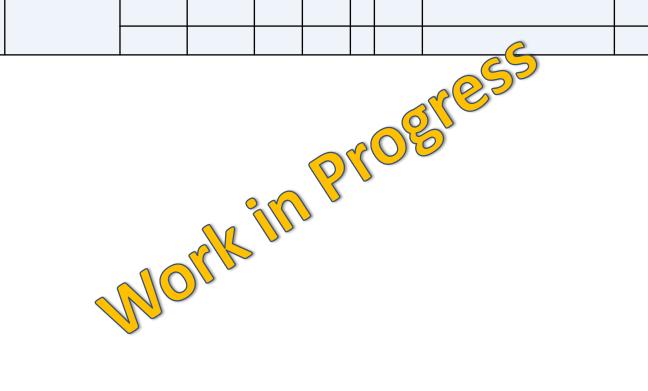
Aerosol Optical Depth AOD (τ)		PoR Cap	ability				Relev	ant		
Mid-Visib	•	Range	Uncertainty	_	Res	olution		Observa	ables	Notes
Instrument	Orbit	Kange	Oncertainty	XY	z	Т	Swath	Standard	Possible	
		0.0 – 5.0?	??	2 km nadir ?		1 hour	FD and Japan	Reflectance in VIS (JAXA heritage)	S/NIR/SWIR	JAXA products Resolution varies on native pixel size Range/Unc. are for AOD at 0.55 μm,
		0.0 - 3.0	Land: ±(0.15τ + 0.05)	6 km nadir		?	FD?	Reflectance in VIS	S/NIR/SWIR	YAER algorithm (single view + minimum reflectance technique)
AHI (Himawari)		0.0 - 5.0	Land: $\pm (0.15\tau + 0.05)$ Ocean: $\pm (0.10\tau + 0.04)$	10 km nadir		10 min	FD	Reflectance/Radiance in VIS/NIR/SWIR/Thermal IR (NASA-MODIS Heritage) Note, there is no 1.38 μm (cirrus channel).		 "Dark-Target" aerosol approach: (single view) Retrievals consistent with NASA EOS-MODIS/SNPP-VIIRS products in assumptions, forward models, etc. Seed money provided for algorithm porting, further support needed (e.g., ROSES-19 A.33). Resolution varies on native pixel size no 1.38 µm cirrus band may impact quality
GEO (141	°E)	0.0 – 4.0	Land: ±(0.15τ + 0.05)	1 km		10 min	FD	Reflectance/Radia VIS/NIR/SWIR/Th NASA-MAIAC He	nermal IR	NASA "MAIAC-like" (time/space aggregation) Retrievals consistent with NASA EOS-MODIS/SNPP-VIIRS products in assumptions, forward models, etc. Seed money provided for algorithm porting, further support needed (e.g., ROSES-19 A.33). Resolution is constant (gridded)
		0.0 – 3.0	Land: ? Ocean: ?					Reflectance/Radiance in VIS/NIR/SWIR/Thermal IR NASA-DeepBlue Heritage		 "Deep-Blue/SOAR" aerosol approach: (single view) Retrievals consistent with NASA EOS-MODIS/SNPP-VIIRS products in assumptions, forward models, etc. Seed money provided for algorithm porting, further support needed (e.g., ROSES-19 A.33). Resolution varies on native pixel size
					•					? [成] [合] [64

Aerosol Optical Depth AOD (τ)		PoR Cap	ability				Relevant			
Mid-Visib	•	Range	Uncertainty		Res	solutio	n	Observ	/ables	Notes
Instrument	Orbit	Kange	Officertainty	XY	Z	Т	Swath	Standard	Possible	
		?	?				FD / Korea	Reflectance in VIS	S/NIR/SWIR	Presumably there is an at-launch product from Korea. Need to ask
AMI (GEO-KOMPSAT 2A) GEO (122°E)		0.0 - 5.0	Land: $\pm (0.15\tau + 0.05)$ Ocean: $\pm (0.10\tau + 0.04)$	10 km nadir		10 min	FD	Reflectance/Radia VIS/NIR/SWIR/Tr (NASA-MODIS Ho Note no 2.25 μm	nermal IR eritage)	NASA heritage algorithms("Dark-Target and/or "Deep Blue/SOAR") approaches: (single view) Retrievals consistent with NASA EOS-MODIS/SNPP-VIIRS products in assumptions, forward models, etc. Resolution varies on native pixel size No 2.25 μm band may impact quality
		0.0 – 4.0	Land: ±(0.15τ + 0.05)	1 km		10 min	FD	Reflectance/Radia VIS/NIR/SWIR/Th NASA-MAIAC He	nermal IR	 NASA "MAIAC-like" (time/space aggregation) Retrievals consistent with NASA EOS-MODIS/SNPP-VIIRS products in assumptions, forward models, etc. Resolution is constant (gridded) No 2.25 µm band may impact quality
		?	?				FD / Europe			Presume at least one ESA algorithm Note presence of 0.91 μm water vapor band
FCI (MTG-I1,2,3,4)		0.0 - 5.0	Land: $\pm (0.15\tau + 0.05)$ Ocean: $\pm (0.10\tau + 0.04)$	10 km nadir		10 min	FD	Reflectance/Radiance in VIS/NIR/SWIR/Thermal IR (NASA-MODIS Heritage) Note no 2.25 µm band		NASA heritage algorithms("Dark-Target and/or "Deep Blue/SOAR") approaches: (single view) Retrievals consistent with NASA EOS-MODIS/SNPP-VIIRS products in assumptions, forward models, etc. Resolution varies on native pixel size
GEO (0°E)		0.0 – 4.0	Land: ±(0.15τ + 0.05)	1 km		10 min	FD	Reflectance/Radiance in VIS/NIR/SWIR/Thermal IR NASA-MAIAC Heritage		NASA "MAIAC-like" (time/space aggregation) Retrievals consistent with NASA EOS-MODIS/SNPP-VIIRS products in assumptions, forward models, etc. Resolution is constant (gridded)
										? 🛈 🔓 65

Aerosol Op Depth			PoR Capa	ability				Relevant Observables		
AOD (τ Mid-Visible)	Range	Uncertainty		Reso	olution				Notes
Instrument	Orbit			XY	Z	Т	Swath	Standard	Possible	
		0.0 – 5.0	Metric Land (Best / Good)	0.75 km nadir		1 or 2 per day	3000 km	Reflectance in VIS/NIR/SWIR (NOAA- VIIRS heritage)		NOAA Enterprise Algorithm Resolution varies on native pixel size Range/Unc. are for AOD at 0.55 μm, based on ATBD paper, rather than specifications.
VIIRS on JPSS (NOAA-20+)	LEO (13:30	0.0 - 3.0	Land: ±(0.20τ + 0.05) Ocean: ±(0.10τ + 0.03)	6 km nadir	I I ner I		3000 km	Reflectance/Rac VIS/NIR/SWIR/ (NASA-MODIS/Sheritage)	Thermal IR	NASA MODIS-like ("Deep-Blue/SOAR") aerosol approach: (single view) Retrievals consistent with NASA EOS-MODIS/SNPP-VIIRS products in assumptions, forward models, etc. Resolution varies on native pixel size Uses 0.41 μm ("Deep-Blue") bands
(NOAA-20+)	A-20+) equator x-ing) 0.0 - 9		Land: ±(0.15τ + 0.05) Ocean: ±(0.10τ + 0.04)	6 km nadir		1 or 2 per day	3000 km	Reflectance/Radiance in VIS/NIR/SWIR/Thermal IR (NASA-MODIS heritage)		NASA MODIS-like ("Dark-Target") aerosol approach: (single view) Retrievals consistent with NASA EOS-MODIS/SNPP-VIIRS products in assumptions, forward models, etc. Resolution varies on native pixel size
		0.0 – 4.0	Land: ±(0.15τ + 0.05)	1 km		1 or 2 per day	3000 km	Reflectance/Radiance in VIS/NIR/SWIR/Thermal IR NASA-MAIAC Heritage		NASA "MAIAC-like" (time/space aggregation) Retrievals consistent with NASA EOS-MODIS/SNPP-VIIRS products in assumptions, forward models, etc. Resolution is constant (gridded)

-	Aerosol Optical Depth		PoR Capa	bility				Releva	ant		
AOD (τ) Mid-Visible)	Range	Uncertainty		Res	olution		Observa	-	Notes	
Instrument	Orbit			хү	Z	Т	Swath	Standard	Possible		
SLSTR (Sentinel-3)	LEO	?		4.5k m		?	?	Reflectance in VIS/NIR/SWIR + dual view (ATSR heritage),		ESA at launch algorithm This is near real-time processing	
OLCI + SLSTR (Sentinel 3)	LEO	?						Dual view reflec mutlispectral VIS high spatial resc	S/NIR at	This is a synergy product for the two sensors on Sentinel-3, uses bands from both sensors.	
OCI	LEO	See NASA	a algorithms on VIIRS (JPSS)	10 km		Every 1 or 2 days		VIS/NIR/SWIR s bands	spectral	MODIS-Dark target and/or Deep Blue/SOARa and/or MAIAC heritage over land and ocean. "At-launch" algorithms TBD	
(PACE)	LEO			1 km	?	Every 1 or 2 days		VIS/NIR/SWIR spectral bands + O2A/B + UV		MODIS + OMI synergy Use O2A/B bands to estimate layer height? Use UV to estimate aerosol absorption?	


•	Aerosol Optical Depth		PoR Capa	bility				Dalamant			
Depth AOD (τ Mid-Visible	c)	Range	Uncertainty		Res	olution	n	Releva Observa		Notes	
Instrument	Orbit			XY	Z	Т	Swath	Standard	Possible		
3MI (Metop-SG A1,2,3)	LEO (9:30 equ xing)		Water: ±(0.05τ + 0.05) Land: ? Water: 0.10τ or 0.05 Land: 0.15τ or 0.10	3.5 (at nadir)				Multi-angle pola reflectance at, e 0.67, 0.865µm Multi-angle pola reflectance plus	rized	POLDER heritage https://www.atmos-meas- tech.net/11/6761/2018/ https://www.atmos-meas- tech.net/4/1383/2011/amt-4-1383-2011.pdf POLDER/GRASP heritage (expectations from Dubovik)	
METImage (Metop-SG A1,2,3)	LEO (9:30 equ xing)		?					Similar image/channels as VIIRS on JPSS		No official L2 aerosol products, but no reason why cannot follow the NASA heritage.	



-	otical Depth		PoR	Capabilit	ty			Rele	evant	
	IV)	Range	Uncertainty	R	lesc	lutio	n	Obse	rvables	Notes
Instrument	Orbit	Nange	Officertainty	XY	z	Т	Swath	Standard	Possible	
OCI (on PACE)	LEO		MAX(0.3τ or 0.1)					Spectral reflectionm	tance in 300-500	OMI-heritage multi-wavelength algorithm retrieves Absorption Aerosol Index, assumes layer height, Lambertian Effective Reflectance At-launch algorithms TBD
								VIS/NIR/SWIR spectral bands + O2A/B + UV		Use O2A/B bands to estimate layer height? Use VIS/NIR/SWIR to estimate AOD and aerosol size?
OMPS (on JPSS)	LEO (13:30 equator x- crossing, ascending)		MAX(0.3τ or 0.1)					Spectral reflectionm	tance in 300-500	OMI-heritage multi-wavelength algorithm retrieves Absorption Aerosol Index, assumes layer height, Lambertian Effective Reflectance No current algorithm
UVNS / Sentinel-5	LEO						2670 km			
UVS / Sentinel-4 on	GEO (Europe)			3.5 x 8 km (Europe)		1 hr	NH / Europe			https://sentinel.esa.int/web/sentinel/miss ions/sentinel-4/data-products
GEMS (on KOMPSAT-2B)	GEO (Korea)	0-5	20% or 0.1@ 400nm	3.5 x 8 km (over Seoul)		1 hr	NH / Korea	Spectral reflectance in 300-500 nm		http://tempo.si.edu/presentations/June2 016/08-GEMS-JKim-TEMPOstm.pdf
TEMPO?	GEO (US)		±0.1	9 x 5 km		1 hr	NH / US	290-490 & 540-740 (Hyp.)		http://tempo.si.edu/presentations.html

•	Mode		PoR	Capabil	ity			Rele	vant		
AODF		Range	Uncertainty		Resolut	tion		Obser	vables	Notes	
Instrument	Orbit	Nange	Officertainty	XY	Z	Т	Swath	Standard	Possible		
						-					

Aerosol Single		PoR	Capabil	ity			Rele	vant	Notes	
Aeros	Range	Uncertainty		Resolu	tion		Obser	vables		
Instrument	Kunge	XY Z T Swath					Standard	Possible		

Aerosol Single Scatter Albedo			PoF	R Capability				Rele	evant	
Aerosol SSA		Range	Uncertainty	R	eso	lution		Obser	vables	Notes
Instrument	Orbit	Nange	Oncertainty	XY	Z	Т	Swath	Standard Possible		
UVSN/Sentinel-5	LEO						2670 km			https://sentinel.esa.int/web/sentinel/missions/sentinel-5/data-products
UVS/Sentinel-4	GEO			8		1 hr				https://sentinel.esa.int/web/sentinel/missions/sentinel-4/data-products
GEMS (KOMPSAT- 2B)	GEO			3.5x8 km (over Seoul)		1 hr				http://tempo.si.edu/presentations/June2016/08- GEMS-JKim-TEMPOstm.pdf

Cloud A		PoR	Capabil	ity			Rele	vant		
C	A	Range	Uncertainty	Resolution Observables		vables	Notes			
Instrument	Orbit	Nange	Officertainty	XY	Z	Т	Swath	Standard	Possible	
CERES/RBI	LEO			20km	20km			TOA radiance in (0.3-5μm, 8-12μι		Cloud albedo derived from TOA radiances, co-located imager observations, and angular distribution models (e.g., VIIRS).
		-	-		-		-	-		

Cloud Effec	tive Radius		PoR (Capabil	ity			Rele	vant	
CER	(1)	Range	Uncertainty		Resol	ution		Observ	vables	Notes
Instrument	Orbit	nange	Onecr tume,	XY	Z	T	Swath	Standard	Possible	
		Liquid and	'lce: ~4µm 2		N/A	15 min	Full Disk	Pofloctance at 2.26	Sum	NOAA Enterprise Daytime Cloud Optical and Microphysical Properties Product (DCOMP/CLAVR-x)
		2.5-100µm	lce: ~5µm	nadir	IN/A	5 min	CONUS			SZA < 65° (degraded product between
			σμπ			5 min	Meso			65° and 82°)
		Liquid: 2-32µm	Liquid: ~40%	2km	NI/A	15 min	Full Disk	Radiance at 3.9, 1		NOAA Enterprise Nighttime Cloud Optical and Microphysical Properties
		Ice (D _e): 5.83-	lce:	15 /20/		(8.5 and 13.3µm ur consideration)	ider iuture	Product (NCOMP) • SZA > 82°		
ABI (GOES-S,T,U)	GEO	134.9µm	~13-42%			5 min	Meso			• 32A > 02
(6013-3,1,0)		Liquid: 4-30µm Ice: 5-60µm	TBD	2km nadir	N/A	TBD	All scan modes possible	Reflectance at 1.61	I , 2.25, 3.9μm	NASA Continuity Cloud Products (CLDPROP): Retrievals consistent with NASA EOS-MODIS/SNPP-VIIRS products (MOD06, CLDPROP) in assumptions, forward models, etc. Seed money provided for algorithm porting, further support sought (see, e.g., ROSES-19 A.33). Daytime only
				5km nadir	N/A	10 min	Full Disk	Reflectance at 2.25	5	JAXA Himawari Products: Daytime only
AHI (Himawari 8,9)	GEO	See ABI	See ABI	See ABI	N/A	See ABI	See ABI	See NOAA Enterp observables under		See NOAA Enterprise Product notes under ABI
(a.a.a 3,5)		See range under ABI	TBD	2km nadir	N/A	TBD	All scan modes possible	See NASA Contin Product (CLDPRO under ABI		See NASA Continuity Cloud Product (CLDPROP) notes under ABI

Cloud Effec	Cloud Effective Radius CER (2)		PoR	Capabil	ity			Rele	vant	
CER	(2)	Pango	Uncertainty		Resol	lution		Obser	vables	Notes
Instrument	Orbit	Range	Officertainty	XY	Z	Т	Swath	Standard Possible		
								Reflectance at 1.6	1, 3.8µm	
AMI (GEO-KOMPSAT	GEO	See ABI	See ABI	See ABI	N/A	See ABI	See ABI	See NOAA Enterp observables under		See NOAA Enterprise Product notes under ABI
2A)		See range under ABI	TBD	2km nadir	N/A	TBD	All scan modes possible	Reflectance at 1.6	1, 3.8μm	See NASA Continuity Cloud Product (CLDPROP) notes under ABI
								Reflectance at 1.6	1, 2.25, 3.8µm	
FCI	GEO	See ABI	See ABI	See ABI	N/A	See ABI	See ABI	See NOAA Enterprise Product observables under ABI		See NOAA Enterprise Product notes under ABI
(MTG-I1,2,3,4)	3-0	See range under ABI	TBD	2km nadir	N/A	TBD	All scan modes possible	See NASA Contin Product (CLDPRO		See NASA Continuity Cloud Product (CLDPROP) notes under ABI

Cloud Effec	tive Radius		PoR (Capabil	ity			Rele	vant	
CER	(3)	Range	Uncertainty -		Resol	ution		Obser	vables	Notes
Instrument	Orbit	Kange	Officertainty	XY Z T Swath				Standard	Possible	
		Liquid and Ice: 2.5-100µm	Liquid: ~4µm Ice: ~5µm	750m nadir	N/A	once daily	3060km	Reflectance at 2.25µm		NOAA Enterprise Daytime Cloud Optical and Microphysical Properties Product (DCOMP) SZA < 65° (degraded product between 65° and 82°)
VIIRS (NOAA-20+)	LEO	Liquid: 2-32µm Ice (De): 5.83- 134.9µm	Liquid: ~40% Ice: ~15-42%	750m nadir	N/A	once daily	3060km	Radiance at 3.7, 10.8, 12.0µm (8.6µm under future consideration)		NOAA Enterprise Nighttime Cloud Optical and Microphysical Properties Product (NCOMP) SZA > 82°
		Liquid: 4-30µm Ice: 5-60µm		750m nadir	N/A	once daily	3060km	Reflectance at 1.6	1, 2.25, 3.8µm	NASA Continuity Cloud Products (CLDPROP): • MOD06 heritage • JPSS/NOAA-20+ products expected following SNPP-VIIRS efforts. • Daytime only
3MI (Metop-SG A1,2,3)	LEO							Multi-angle polarizone.g., 0.443, 0.67, 0	· ·	Cloud top CER Requires adequate angular sampling of the cloud bow region, scattering angles roughly 135-165°
METImage (Metop-SG A1,2,3)	LEO			500m nadir				Reflectance at 1.63	3, 2.25, 3.74µm	
MSI (Sentinel-2)	LEO							Reflectance at 161	3.7, 2202.4nm	Spectral channel capabilities available

(GUES-S,1,U)			cloud						
		cloud (conf, prob) clear (conf, prob)	TBD	2km nadir	N/A	TBD	All scan modes possible	Reflectance at 0.47, 0.64, 0.87, 1.38, 1.61, 2.25µm Radiance at 3.9, 8.6, 11.2, 12.3µm	NASA Continuity Cloud Mask (CLDMSK): Cloud detection consistent with NASA EOS-MODIS/SNPP-VIIRS products Seed money provided for algorithm porting, further support sought (see, e.g., ROSES-19 A.33).
				5km nadir	N/A	10 min	Full Disk		JAXA Himawari Products: • Daytime only
AHI (Himawari 8,9)	GEO	See ABI	See ABI	See ABI	N/A	See ABI	See ABI	See NOAA Enterprise Product observables under ABI	See NOAA Enterprise Product notes under ABI
		See range under ABI	TBD	2km nadir	N/A	TBD	All scan modes possible	See NASA Continuity Cloud Mask (CLDMSK) observables under ABI	See NASA Continuity Cloud Mask (CLDMSK) notes under ABI
						-			
Note: Rec	ause cloud f	raction	is ill-de	efine	h) h	ene	nds c	on FOV aggregation	

PoR Capability

XY

2km

2km

2km

Uncertainty

Comparison

with

CALIOP:

~91%

detection

rate, ~4%

false

detection,

~5% missed

Range

cloud

(conf. prob)

clear

(conf, prob)

Resolution

Т

15

min

15

min

5

min

Swath

Full

Disk

CONUS

Meso

Ζ

N/A

N/A

N/A

Relevant

Observables

Reflectance at 0.64, 1.38, 1.61µm

Radiance at 3.9, 6.9, 7.4, 8.6, 11.2,

Possible

Standard

12.3µm

Areal Cloud Fraction/Areal

Extent

ACF/CAE (1)

Instrument

ABI

(COES-S T II)

Orbit

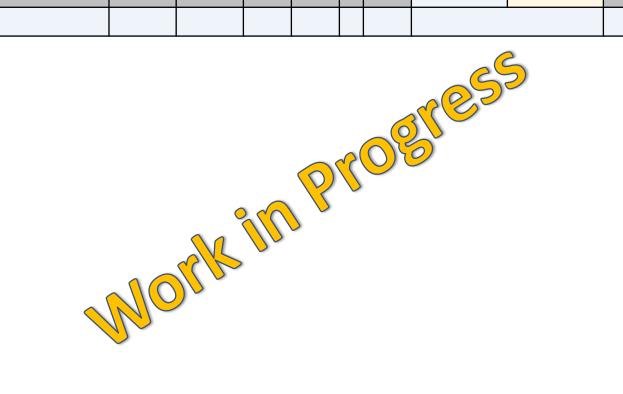
GEO

Note: Because cloud fraction is ill-defined (depends on FOV, aggregation scale, etc.), the PoR Capabilities are in terms of pixel-level cloud detection. **Notes**

NOAA Enterprise Cloud Mask

Areal Cloud Fr Areal I	·		PoR (Capabil	ity			Rele	vant	
ACF/C		Range	Uncertainty -		Resol	lution		Obser	vables	Notes
Instrument	Orbit	Kunge	Officertainty	XY Z T Swath				Standard	Possible	
AMI (GEO-KOMPSAT	GEO	See ABI	See ABI	See ABI	N/A	See ABI	See ABI	See NOAA Enterprise Product observables under ABI		See NOAA Enterprise Product notes under ABI
2A)		See range under ABI	TBD	2km nadir	N/A	TBD	All scan modes possible	See NASA Contin (CLDMSK) observe		See NASA Continuity Cloud Mask (CLDMSK) notes under ABI
FCI (MTG-I1,2,3,4)	GEO	See ABI	See ABI	See ABI	N/A	See ABI	See ABI	See NOAA Enterprise Product observables under ABI		See NOAA Enterprise Product notes under ABI
(1011 0-11,2,3,4)		See range under ABI	TBD	2km nadir	N/A	TBD	All scan modes possible	See NASA Contin (CLDMSK) observe		See NASA Continuity Cloud Mask (CLDMSK) notes under ABI
VIIRS (NOAA-20+)	LEO	cloud (conf, prob) clear (conf, prob)	Comparison with CALIOP: ~91% detection rate, ~4% false detection, ~5% missed cloud	750m nadir	N/A	twice daily	3060km	Reflectance at 0.4 1.61, 2.25µm, plus Radiance at 3.7, 4 12.0µm	0.7μm DNB	NOAA Enterprise Cloud Mask
,		cloud (conf, prob) clear (conf, prob)		750m nadir	N/A	twice daily	3060km	Reflectance at 0.4 0.87, 1.24, 1.38, 1. Radiance at 3.7, 8.	61, 2.25μm	NASA Continuity Cloud Mask (CLDMSK): MOD35 heritage JPSS/NOAA-20+ products expected following SNPP-VIIRS efforts.
METImage (Metop-SG A1,2,3)	LEO									

Ice Wat	er Path		PoR (Capabil	ity			Rele	vant	
IWP	(1)	Range	Uncertainty		Resol	lution		Obser	vables	Notes
Instrument	Orbit	Range	Officertainty	XY	Z	Т	Swath	Standard	Possible	
		~0-6375 g		2km		15 min	Full Disk	Derived from COT		NOAA Enterprise Daytime Cloud Optical and Microphysical Properties Product
		m ⁻²	65 g m ⁻²	nadir	N/A	5 min	CONUS	0.64μm) and CER (reflectance at 2.25μm)	(reflectance at	(DCOMP/CLAVR-x) SZA < 65° (degraded product between
						5 min	Meso	<u></u> 2.25μm)		65° and 82°)
		~0-1525 g		2km		15 min	Full Disk	Radiance at 3.9, 11.2, 12.3µm	NOAA Enterprise Nighttime Cloud Optical and Microphysical Properties	
		m ⁻²	N/A	nadir	N/A	5 min	CONUS	(8.5 and 13.3µm un consideration)	nder future	Product (NCOMP)
ABI (GOES-S,T,U)	ABI :S-S,T,U) GEO			5 r		5 min	Meso	Consideration)		• SZA > 82°
(0020 0,1,0)			TBD	2km nadir	N/A	TBD	All scan modes possible	Derived from COT 0.64 or 0.87µm) ar (reflectance at 1.67	nd CER	NASA Continuity Cloud Products (CLDPROP): Retrievals consistent with NASA EOS-MODIS/SNPP-VIIRS products in assumptions, forward models, etc. Seed money provided for algorithm porting, further support sought (see, e.g., ROSES-19 A.33). Daytime only
				5km nadir	N/A	10 min	Full Disk	Derived from COT and CER		JAXA Himawari Products: Not explicitly available, but can be calculated from existing products Daytime only
AHI (Himawari 8,9)	GEO	See ABI	See ABI	See ABI	N/A	See ABI	See ABI	See NOAA Enterp		See NOAA Enterprise Product notes under ABI
(See range under ABI	TBD	2km nadir	N/A	TBD	All scan modes possible	See NASA Contine Product (CLDPRO under ABI		See NASA Continuity Cloud Product (CLDPROP) notes under ABI


Ice Wat	er Path		PoR	Capabil	ity			Rele	vant	
IWP	(2)	Range	Resolution					Observ	vables	Notes
Instrument	Orbit	Nange	Officertainty	XY	Z	Т	Swath	Standard	Possible	
					N/A					
AMI (GEO-KOMPSAT GEO	GEO	See ABI	See ABI	See ABI	N/A	See ABI	See ABI	See NOAA Enterp observables under		See NOAA Enterprise Product notes under ABI
2A)		See range under ABI	TBD	2km nadir	N/A	TBD	All scan modes possible			See NASA Continuity Cloud Product (CLDPROP) notes under ABI
					N/A					
FCI	GEO	See ABI	See ABI	See ABI	N/A	See ABI	See ABI	See NOAA Enterprise Product observables under ABI		See NOAA Enterprise Product notes under ABI
(MTG-I1,2,3,4)		See range under ABI	TBD	2km nadir	N/A	TBD	All scan modes possible	See NASA Contin Product (CLDPRO under ABI		See NASA Continuity Cloud Product (CLDPROP) notes under ABI

Ice Water Path IWP (3)			PoR (Capabil	ity			Rele	vant	
IWP	(3)	Range	Uncertainty		Reso	lution		Obser	vables	Notes
Instrument	Orbit	Nange	Officertainty	XY	Z	Т	Swath	Standard	Possible	
		~0-6375 g m ⁻²	65 g m ⁻²	750m nadir	N/A	once daily	3060km	Derived from COT 0.64µm) and CER 2.25µm)		NOAA Enterprise Daytime Cloud Optical and Microphysical Properties Product (DCOMP) SZA < 65° (degraded product between 65° and 82°)
VIIRS (NOAA-20+)	LEO	~0-1525 g m ⁻²	N/A	750m nadir	N/A	once daily	3060km	Derived from COT (radiance at 3.7, 10		NOAA Enterprise Nighttime Cloud Optical and Microphysical Properties Product (NCOMP) SZA > 82°
				750m nadir	N/A	once daily	3060km	Derived from COT 0.67, 0.87, or 1.24 (reflectance at 1.67	µm) and CER	NASA Continuity Cloud Products (CLDPROP): Algorithm heritage: MOD06 JPSS/NOAA-20+ products expected following SNPP-VIIRS efforts. Daytime only
3MI (Metop-SG A1,2,3)	LEO							Multi-angle polarize e.g., 0.443, 0.67, 0	•	 Cloud top CER Requires adequate angular sampling of the cloud bow region, scattering angles roughly 135-165°
METImage (Metop-SG A1,2,3)	LEO			500m nadir						
MSI (Sentinel-2)	LEO									Spectral channel capabilities available

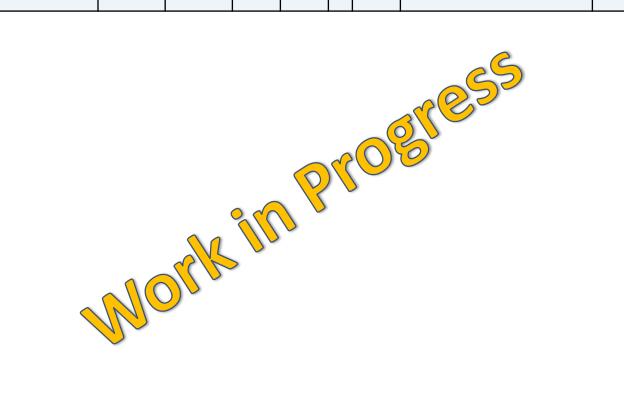
Cloud Lifecyc	le Categories		PoR	Capabil	ity			Rele	vant	
CI	Range	Uncertainty		Resolut	tion		Obser	vables	Notes	
Instrument	Orbit	Nange	Officertainty	XY	Z	Т	Swath	Standard	Possible	
		_					-		-	

Cloud Liquid	Water Path		PoR (Capabil	ity			Relevant				
CLW	P (1)	Range	Uncertainty -		Resol	ution		Obser	vables	Notes		
Instrument	Orbit	Mange	Officertainty	XY	Z	Т	Swath	Standard	Possible			
		~0-8750 g				15 min	Full Disk	Derived from COT		NOAA Enterprise Daytime Cloud Optical and Microphysical Properties Product		
		m ⁻²	g m ⁻²	2km nadir	N/A	5 min	CONUS	0.64µm) and CER (reflectance at 2.25µm)		(DCOMP/CLAVR-x) SZA < 65° (degraded product between		
						5 min	Meso	2.25μm)		65° and 82°)		
		~0-674 g	14.7 g m ⁻²	2km		15 min	Full Disk	Derived from COT	and CER	NOAA Enterprise Nighttime Cloud Optical and Microphysical Properties		
		m ⁻²	or 29.5%	nadir	N/A	5 min	CONUS	(radiance at 3.7, 10		Product (NCOMP)		
	ABI OES-S,T,U) GEO			5 min		Meso			• SZA > 82°			
(0020 0,1,0)			TBD	2km nadir	N/A	TBD	All scan modes possible	Derived from COT 0.64 or 0.87µm) ar (reflectance at 1.61	nd CER	NASA Continuity Cloud Products (CLDPROP): Retrievals consistent with NASA EOS-MODIS/SNPP-VIIRS products in assumptions, forward models, etc. Seed money provided for algorithm porting, further support sought (see, e.g., ROSES-19 A.33). Daytime only		
				5km nadir	N/A	10 min	Full Disk	Derived from COT	and CER	JAXA Himawari Products: Not explicitly available, but can be calculated from existing products Daytime only		
AHI (Himawari 8,9)	See ABI S	See ABI	See ABI	N/A	See ABI	See ABI	See NOAA Enterp observables under		See NOAA Enterprise Product notes under ABI			
			See A	See range under ABI	TBD	2km nadir	N/A	TBD	All scan modes possible	See NASA Contin Product (CLDPRO under ABI		See NASA Continuity Cloud Product (CLDPROP) notes under ABI

Cloud Liquid	Water Path		PoR	Capabil	ity			Rele	vant	
CLW	P (2)	Pango	Resolution Uncertainty				1	Obser	vables	Notes
Instrument	Orbit	Range	Officertainty	XY	Z	Т	Swath	Standard	Possible	
					N/A					
AMI (GEO-KOMPSAT	GEO	See ABI	See ABI	See ABI	N/A	See ABI	See ABI	See NOAA Enterprise Product observables under ABI		See NOAA Enterprise Product notes under ABI
2A)		See range under ABI	TBD	2km nadir	N/A	TBD	All scan modes possible			See NASA Continuity Cloud Product (CLDPROP) notes under ABI
					N/A					
FCI	GEO	See ABI	See ABI	See ABI	N/A	See ABI	See ABI	See NOAA Enterp observables under		See NOAA Enterprise Product notes under ABI
(MTG-I1,2,3,4)	010	See range under ABI	TBD	2km nadir	N/A	TBD	All scan modes possible	See NASA Continuity Cloud Product (CLDPROP) observables under ABI		See NASA Continuity Cloud Product (CLDPROP) notes under ABI
GMI (GPM)	LEO	0-600 g/m2	10 g/m2	15 km	N/A	Vari es	904 km	Multichannel micro	wave radiances	

Cloud Ice V	Vater Path		PoR (Capabil	ity			Rele	vant	
CLW	P (3)	Range	Uncertainty		Resol	lution		Obser	vables	Notes
Instrument	Orbit	Kange	Officertainty	XY	Z	Т	Swath	Standard Possible		
		~0-8750 g m ⁻²	17-47 g m ⁻²	750m nadir	N/A	once daily	3060km	Derived from COT 0.64µm) and CER 2.25µm)		 NOAA Enterprise Daytime Cloud Optical and Microphysical Properties Product (DCOMP) SZA < 65° (degraded product between 65° and 82°)
VIIRS (NOAA-20+)	LEO	~0-674 g m ⁻²	14.7 g m ⁻² or 29.5%	750m nadir	N/A	once daily	3060km	Derived from COT and CER (radiance at 3.7, 10.8, 12.0µm)		NOAA Enterprise Nighttime Cloud Optical and Microphysical Properties Product (NCOMP) SZA > 82°
				750m nadir	N/A	once daily	3060km	Derived from COT (reflectance at 0.67, 0.87, or 1.24µm) and CER (reflectance at 1.61, 2.25, 3.8µm)		NASA Continuity Cloud Products (CLDPROP): • MOD06 heritage • JPSS/NOAA-20+ products expected following SNPP-VIIRS efforts. • Daytime only
3MI (Metop-SG A1,2,3)	LEO									
METImage (Metop-SG A1,2,3)	LEO			500m nadir						
MSI (Sentinel-2)	LEO									Spectral channel capabilities available

Cloud Optica	al Thickness		PoR (Capabil	ity			Rele	vant	
СОТ	(1)	Range	Uncertainty		Reso	lution		Observ	vables	Notes
Instrument	Orbit	Nange	Officertainty	XY	Z T Swath		Standard	Possible		
		Liquid and	Liquid: ~25%	4km nadir	N/A	15 min	Full Disk	Reflectance at 0.64µm		NOAA Enterprise Daytime Cloud Optical and Microphysical Properties Product (DCOMP(CLAVE):)
		Ice: 0-158	lce: ~30%	2km nadir	IN/A	15 min	CONUS	Reflectance at 0.64	+μm	(DCOMP/CLAVR-x) SZA < 65° (degraded product between 65° and 82°)
		Liquid and Ice:	Liquid: 22-28%	4km nadir	N/A	15 min	Full Disk	Radiance at 3.9, 11.2, 12.3µm (8.5 and 13.3µm under future		NOAA Enterprise Nighttime Cloud Optical and Microphysical Properties
ABI (GOES-S,T,U)	GEO	0-32	lce: 15-32%	2km nadir	IN/A	15 min	CONUS	consideration)	idei ididie	Product (NCOMP) • SZA > 82°
(0020 0,1,0)		Liquid and Ice: 0-150	TBD	2km nadir	N/A	TBD	All scan modes possible	Reflectance at 0.64 (surface type depe	•	NASA Continuity Cloud Products (CLDPROP): Retrievals consistent with NASA EOS-MODIS/SNPP-VIIRS products in assumptions, forward models, etc. Seed money provided for algorithm porting, further support sought (see, e.g., ROSES-19 A.33). Daytime only
				5km nadir	N/A	10 min	Full Disk	Reflectance at 0.64	4μm	JAXA Himawari Products: Daytime only
AHI (Himawari 8,9)	GEO	See ABI	See ABI	See ABI	N/A	See ABI	See ABI	See NOAA Enterprise Product observables under ABI		See NOAA Enterprise Product notes under ABI
(Fillingwari 0,0)		See range under ABI	TBD	2km nadir	N/A	TBD	All scan modes possible	See NASA Continuity Cloud Product (CLDPROP) observables under ABI		See NASA Continuity Cloud Product (CLDPROP) notes under ABI



Cloud Optical Thickness		PoR (Capabil	ity			Rele	vant		
СОТ	(2)	Range Uncertain		Resolution				Obser	vables	Notes
Instrument	Orbit	Nalige	Officertainty	XY	Z	Т	Swath	Standard Possible		
								Reflectance at		
AMI (GEO-KOMPSAT	GEO	See ABI	See ABI	See ABI	N/A	See ABI	See ABI	See NOAA Enterp observables under		See NOAA Enterprise Product notes under ABI
2A)	020	See range under ABI	TBD	2km nadir	N/A	TBD	All scan modes possible	See NASA Contin Product (CLDPRO under ABI	•	See NASA Continuity Cloud Product (CLDPROP) notes under ABI
								Reflectance at		
FCI	GEO	See ABI	See ABI	See ABI	N/A	See ABI	See ABI	See NOAA Enterprise Product observables under ABI		See NOAA Enterprise Product notes under ABI
(MTG-I1,2,3,4)		See range under ABI	TBD	2km nadir	N/A	TBD	All scan modes possible	See NASA Continuity Cloud Product (CLDPROP) observables under ABI		See NASA Continuity Cloud Product (CLDPROP) notes under ABI

Cloud Optical Thickness COT (3)			PoR (Capabil	ity			Rele	vant	
СОТ	(3)	Range	Uncertainty		Resol	ution		Obser	vables	Notes
Instrument	Orbit	Kange	Officertainty	XY	XY Z T Swath		Standard	Possible		
		Liquid and Ice: 2.5-100µm	Liquid: ~4µm Ice: ~5µm	750m nadir	N/A	once daily	3060km	Reflectance at 0.67	7μm	NOAA Enterprise Daytime Cloud Optical and Microphysical Properties Product (DCOMP) SZA < 65° (degraded product between 65° and 82°)
VIIRS (NOAA-20+)	LEO	Liquid and Ice: 0-32	Liquid: 22-28% Ice: 15-32%	750m nadir	N/A	once daily	3060km	Radiance at 3.7, 10.8, 12.0µm (8.6µm under future consideration)		NOAA Enterprise Nighttime Cloud Optical and Microphysical Properties Product (NCOMP) SZA > 82°
		Liquid and Ice: 0-150		750m nadir	N/A	once daily	3060km			NASA Continuity Cloud Products (CLDPROP): Algorithm heritage: MOD06 JPSS/NOAA-20+ products expected following SNPP-VIIRS efforts. Daytime only
3MI (Metop-SG A1,2,3)	LEO									
METImage (Metop-SG A1,2,3)	LEO			500m nadir						
MSI (Sentinel-2)	LEO									Spectral channel capabilities available
						_				

Cloud Radiative	Effects (SW/LW)		PoR Capability					Rele	vant	
CF	Range	Uncertainty		Resolut	tion		Obser	vables	Notes	
Instrument	Orbit	Kange	Officertainty	XY	Z	Т	Swath	Standard	Possible	
		-	-						-	

Cloud To	p Height		PoR	Capabil	ity			Rele	vant	
СТН	(1)	Range	Uncertainty		Reso	lution		Obser	vables	Notes
Instrument	Orbit	Nange	Officertainty	XY	Z	Т	Swath	Standard Possible		
		0-15km	~1km	10km	N/A	60 min	Full Disk			NOAA Enterprise API Cloud Height Algerithm
		0-15km	~1km	10km	N/A	60 min	CONUS	Radiance at 11.2,	12.3, and 13.3µm	NOAA Enterprise ABI Cloud Height Algorithm (ACHA)
		0-20km	~1km	4km	N/A	5 min	Meso	Radiance at 11.2, 12.3, and 13.3µm (additional IR absorption channels possible)		
ABI (GOES-S,T,U)	GEO	TBD	TBD	TBD	N/A	TBD	All scan modes possible			NASA Continuity Cloud Products (CLDPROP): Retrievals consistent with NASA EOS-MODIS/SNPP-VIIRS products in assumptions, forward models, etc. Seed money provided for algorithm porting, further support sought (see, e.g., ROSES-19 A.33).
				5km nadir	N/A	10 min	Full Disk			JAXA Himawari Products: • Daytime only
AHI (Himawari 8,9)	GEO	See ABI	See ABI	See ABI	N/A	See ABI	See ABI	observables under ABI See NASA Continuity Cloud Products (CLDPROP) observables		See NOAA Enterprise Product notes under ABI
(TBD	TBD	TBD	N/A	TBD	All scan modes possible			See NASA Continuity Cloud Products (CLDPROP) notes under ABI

Cloud To	p Height		PoR	Capabil	ity			Rele	vant	
CTH	I (2)	Pango	Uncertainty		Reso	lution	Observables		vables	Notes
Instrument	Orbit	Range	Officertainty	XY	Z	Т	Swath	Standard Possible		
AMI (GEO-KOMPSAT	GEO	See ABI	See ABI	See ABI	N/A	See ABI	See ABI	See NOAA Enterprise Product observables under ABI		See NOAA Enterprise Product notes under ABI
2A)	323	TBD	TBD	TBD	N/A	TBD	All scan modes possible	See NASA Contin Products (CLDPR under ABI		See NASA Continuity Cloud Products (CLDPROP) notes under ABI
FCI	GEO	See ABI	See ABI	See ABI	N/A	See ABI	See ABI	See NOAA Enterprise Product observables under ABI		See NOAA Enterprise Product notes under ABI
(MTG-I1,2,3,4)		TBD	TBD	TBD	N/A	TBD	All scan modes possible	See NASA Continuity Cloud Products (CLDPROP) observables under ABI		See NASA Continuity Cloud Products (CLDPROP) notes under ABI

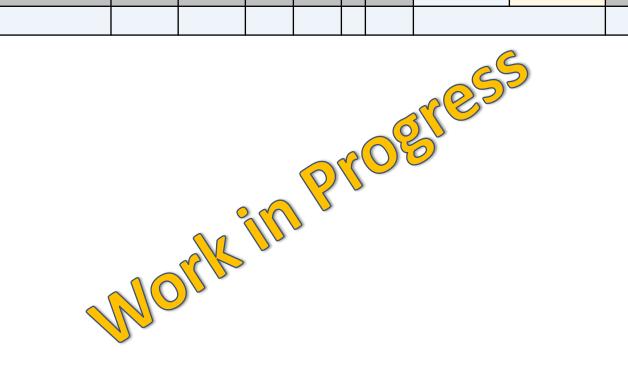
Cloud Top Height CTH (3)		PoR (Capabil	lity			Relevant			
СТН	l (3)	Range	Uncertainty		Reso	lution	1	Obser	vables	Notes
Instrument	Orbit	Nange	Officertainty	XY	Z	Т	Swath	Standard Possible		
		0-20km	~0.75km	750m nadir	N/A	twice daily	3060km	Radiance at 8.6, 10.8, 12.0 µm		NOAA Enterprise AWG Cloud Height Algorithm (ACHA)
VIIRS (NOAA-20+)	LEO	0-20km	~0.75km	750m nadir	N/A	twice daily	3060km	Radiance at 8.6, 10.8, 12.0 µm		NASA Continuity Cloud Products (CLDPROP): Algorithm heritage: currently NOAA ACHA, additional approaches under consideration JPSS/NOAA-20+ products expected following SNPP-VIIRS efforts.
3MI (Metop-SG A1,2,3)	LEO									
METImage (Metop-SG A1,2,3)	LEO			500m nadir						
MSI (Sentinel-2)	LEO									

Cloud To	p Phase		PoR	Capabil	ity			Rele	vant	
СТР	(1)	Range	Uncertainty		Resol	ution		Observables		Notes
Instrument	Orbit	Nange	Officertainty	XY	Z	Т	Swath	Standard	Possible	
		warm liq, supercooled	~90% agreement	2km	N/A	15 min	Full Disk			NOAA Enterprise Cloud Type and Cloud
		liq, mixed,	with CALIOP	2km	N/A	5 min	CONUS	Radiance at 7.3, 8.6, 11.2, 12.3µm		Phase Algorithm
ABI		ice	CALIOP 2km N/		N/A	5 min	Meso			
(GOES-S,T,U)	GEO	liq, ice, undetermined	N/A	2km	N/A	TBD	All scan modes possible	Cloud-top tempera 11.2, 12.3, and 13. liq/ice CER (reflect 2.25, 3.8µm)	3µm), spectral	NASA Continuity Cloud Products (CLDPROP): • Algorithm heritage: MOD06 (daytime only) and NOAA ACHA (day and night) • JPSS/NOAA-20+ products expected following SNPP-VIIRS efforts.
				5km nadir	N/A	10 min	Full Disk			JAXA Himawari Products: • Daytime only
AHI (Himawari 8,9)	GEO	See ABI	See ABI	See ABI	See ABI	See ABI	See ABI	See NOAA Enterp observables under		See NOAA Enterprise Product notes under ABI
(= , -, -,		TBD	TBD	TBD	N/A	TBD	All scan modes possible	See NASA Continuity Cloud Products (CLDPROP) observables under ABI		See NASA Continuity Cloud Products (CLDPROP) notes under ABI

Cloud To	p Phase		PoR	Capabil	ity			Rele	vant	
СТР	(2)	Range	Resolution Observables		Notes					
Instrument	Orbit	Nange	Officertainty	XY	Z	Т	Swath	Standard Possible		
AMI (GEO-KOMPSAT	GEO	See ABI	See ABI	See ABI	See ABI	See ABI	See ABI	See NOAA Enterprise Product observables under ABI		See NOAA Enterprise Product notes under ABI
2A)		TBD	TBD	TBD	N/A	TBD	All scan modes possible	See NASA Contin Products (CLDPR under ABI	•	See NASA Continuity Cloud Products (CLDPROP) notes under ABI
FCI	GEO	See ABI	See ABI	See ABI	See ABI	See ABI	See ABI	See NOAA Enterprise Product observables under ABI		See NOAA Enterprise Product notes under ABI
(MTG-I1,2,3,4)		TBD	TBD	TBD	N/A	TBD	All scan modes possible	See NASA Continuity Cloud Products (CLDPROP) observables under ABI		See NASA Continuity Cloud Products (CLDPROP) notes under ABI

Cloud To	p Phase		PoR	Capabil	ity			Rele	vant	
СТР	(3)	Pango	Uncertainty		Resol	ution	1	Obser	vables	Notes
Instrument	Orbit	Range	Officertainty	XY	Z	Т	Swath	Standard Possible		
		warm liq, supercooled liq, mixed, ice	~88% agreement with CALIOP	750m	N/A	twice daily	3060km	Radiance at 8.6, 10.8, 12.0µm		NOAA Enterprise Cloud Type and Cloud Phase Algorithm
VIIRS (NOAA-20+)	LEO	liq, ice, undetermined	N/A	750m	N/A	once or twice daily	3060km	Cloud-top temperature (radiance at 8.6, 10.8, 12.0 µm), spectral liq/ice CER (reflectance at 1.61, 2.25, 3.8µm)		NASA Continuity Cloud Products (CLDPROP): Algorithm heritage: MOD06 (daytime only) and NOAA ACHA (day and night) JPSS/NOAA-20+ products expected following SNPP-VIIRS efforts.
3MI (Metop-SG A1,2,3)	LEO									
METImage (Metop-SG A1,2,3)	LEO									
MSI (Sentinel-2)	LEO									

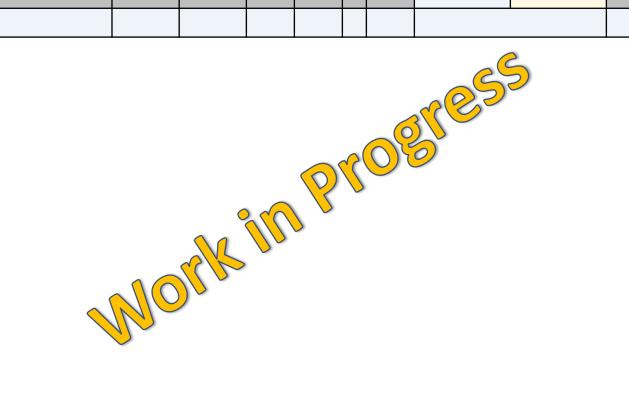
Cloud Top T	emperature		PoR	Capabil	ity			Rele	vant	
СТТ	(1)	Range	Uncertainty		Resol	lution		Obser	vables	Notes
Instrument	Orbit	Nalige	Officertainty	XY	Z	Т	Swath	Standard Possible		
		180-300K	~4.75K	2km	N/A	15 min	Full Disk	Radiance at 11.2, 12.3, and 13.3µm		NOAA Enterprise ABI Cloud Height Algorithm
		180-300K	~4.75K	2km	N/A	5 min	Meso			(ACHA)
ABI (GOES-S,T,U)	GEO	TBD	TBD	TBD	N/A	TBD	All scan modes possible	Radiance at 11.2, (additional IR abso possible)		NASA Continuity Cloud Products (CLDPROP): Retrievals consistent with NASA EOS-MODIS/SNPP-VIIRS products in assumptions, forward models, etc. Seed money provided for algorithm porting, further support sought (see, e.g., ROSES-19 A.33).
				5km nadir	N/A	10 min	Full Disk			JAXA Himawari Products: • Daytime only
AHI (Himawari 8,9)	GEO	See ABI	See ABI	See ABI	N/A	See ABI	See ABI	See NOAA Enterprise Product observables under ABI		See NOAA Enterprise Product notes under ABI
		TBD	TBD	TBD	N/A	TBD	All scan modes possible	See NASA Contin Products (CLDPR under ABI		See NASA Continuity Cloud Products (CLDPROP) notes under ABI



Cloud Top Temperature CTT (2)			PoR	Capabil	ity			Relevant		
СТТ	(2)	Range	Resolution Observables		Notes					
Instrument	Orbit	Kange	Officertainty	XY	Z	Т	Swath	Standard Possible		
AMI (GEO-KOMPSAT	GEO	See ABI	See ABI	See ABI	N/A	See ABI	See ABI	See NOAA Enterp observables under		See NOAA Enterprise Product notes under ABI
2A)		TBD	TBD	TBD	N/A	TBD	All scan modes possible	See NASA Contin Products (CLDPR under ABI	•	See NASA Continuity Cloud Products (CLDPROP) notes under ABI
FCI	GEO	See ABI	See ABI	See ABI	N/A	See ABI	See ABI	See NOAA Enterprise Product observables under ABI		See NOAA Enterprise Product notes under ABI
(MTG-I1,2,3,4)		TBD	TBD	TBD	N/A	TBD	All scan modes possible	See NASA Continuity Cloud Products (CLDPROP) observables under ABI		See NASA Continuity Cloud Products (CLDPROP) notes under ABI

Cloud Top Temperature			PoR	Capabil	ity			Rele	vant	
CTT (3)		Range	Uncertainty Resolution					Obser	vables	Notes
Instrument	Orbit	Nange	Officertainty	XY	Z	Т	Swath	Standard	Possible	
		180-300K	~3.65K	750m nadir	N/A	twice daily	3060km	Radiance at 8.6, 10	0.8, 12.0 μm	NOAA Enterprise AWG Cloud Height Algorithm (<u>ACHA</u>)
VIIRS (NOAA-20+)	LEO	180-300K	~3.65K	750m nadir	N/A	twice daily	3060km	Radiance at 8.6, 10.8, 12.0 μm		NASA Continuity Cloud Products (CLDPROP): • Algorithm heritage: currently NOAA ACHA, additional approaches under consideration • JPSS/NOAA-20+ products expected following SNPP-VIIRS efforts.

Cloud Vertic	al Structure		PoR	Capabil	ity			Rele	vant	
C\	Range	Uncertainty		Resolut	tion		Obser	vables	Notes	
Instrument	Orbit	Nange	Officertainty	XY	Z	Т	Swath	Standard	Possible	
								_	_	


Convective Classification CC			PoF	R Capabil	ity			Rele	vant		
C	С	Range	Uncertainty	F	Resolu	ition		Observ	vables	Notes	
Instrument	Orbit	Kange	Officertainty	XY Z T Swath				Standard	Possible		
				< 2 km at nadir		15- min	Full Disk	Radiances at 0.64µ Cloud top height ar		Mr. Franklijka arasını 4500 Filosoftadı	
ABI (GOES-R)	GEO	≥3 classes	N/A	(varies with spectral N/A 5-min		CONUS	(radiances at 11.2, Cloud top phase (ra 8.4, 11.2, 12.3 μm)	12.3, 13.3 µm); adiances at 7.3,	W+E satellites covers ~150°E longitude eastward to ~0°E longitude Methods: Texture and cloud depth/top trends from VIS/IR		
				km	band) km		Mesoscal e	Cloud optical depth (radiances at 0.64, 2.2, 3.9, 11.2, 12.3 µm)			
				< 2 km at nadir			Full Disk	Radiances at 0.64µ Cloud top height ar	•	Covers ~65°E longitude eastward to ~35°W	
AHI (Himawari)	GEO	≥3 classes	N/A	(varies with spectral	N/A	2.5- min	Japan/ Target Area	(radiances at 11.2, Cloud top phase (radiance) 8.4, 11.2, 12.3 µm)	12.3, 13.3 µm); adiances at 7.3,	longitude Methods: Texture and cloud depth/top trends from VIS/IR	
				band) km	band) km 30- k/M sec k/M 250 Vario		Landmar k/Mesosc ale	Cloud optical depth 0.64, 2.2, 3.9, 11.2			
DPR (GPM)	LEO	≥ 3 classes	N/A	5+ km			245 km	Radar reflectivity fa	actor	Precipitation-based observable. Can characterize as deep/shallow convection Methods: 2ADPR, Univ.	

Convective	Cloud Cover		PoR	Capabil	ity			Rele	vant	
CC	Range	Uncertainty		Resolut	tion		Obser	vables	Notes	
Instrument	Orbit	Nange	Officertainty	XY	Z	Т	Swath	Standard	Possible	
									_	

	Horizontal Wind		Po	oR Capabil	ity			Relevant		
	files W.z	Range	Uncertainty	F	Resolu	ıtion		Observ	ables	Notes
Instrument	Orbit	Kange	Officertainty	XY	Z	Т	Swath	Standard	Possible	
				Varies based on	Low	15 min	Full Disk			
ABI (GOES-16+)	Geostationary	> 10 m/s	2-7 m/s	channel, availability of	- Mid- Hig	5 min	CONUS	Atmospheric Motion	on Vectors – oor channels	
				trackable features	h	30 s	Meso	953)	
AHI (Himawari 8/9)	Geostationary	> 10 m/s	2-7 m/s	Varies based on channel, availability of trackable features	Low - Mid-	10 min 2.5	Full-ok	Atmospheric Motic Vis, IR, Water Vap	on Vectors – oor channels	
		N	ork							

Bro	filoc			Сирин	,			Kele	vant	
Profiles EH.z		Range	Uncertainty Resolution			Obser	vables	Notes		
Instrument	Orbit	Kange	Officertainty	XY	Z	Т	Swath	Standard	Possible	
CrIS/ATMS (JPSS)	Polar	0-100 %	35%	6 I IKM I 2/day I I		Combined microwave and IR radiances				

PoR Capability

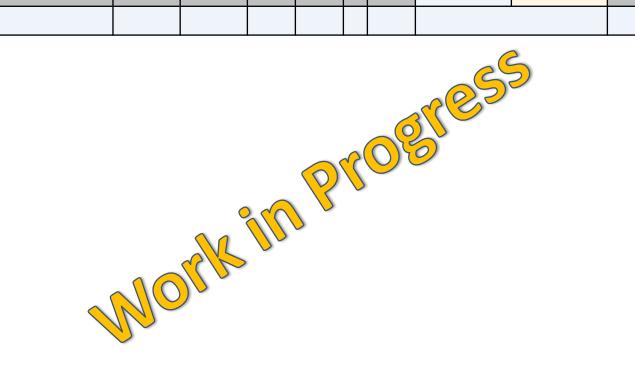
Environmental Humidity

Dro	files							Keie	vant	
	T.z	Range	Uncertainty		Reso	lution		Obser	vables	Notes
Instrument	Orbit	Kange	Officertainty	XY	Z	T	Swath	Standard	Possible	
CrIS/ATMS (JPSS)	Polar	-80-50 C	1.5 K	I I I KM I 2/day I I				Combined microwa radiances	ave and IR	
								6	2	

Polovant

PoR Capability

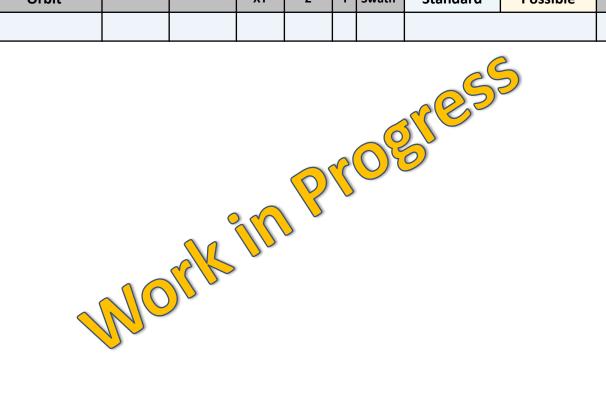
Environmental Temperature


	files		POR	Capau	ility			Rele	vant	
	W.z	Range	Uncertainty		Reso	lution		Obser	vables	Notes
Instrument	Orbit	Nunge	Officertainty	XY	Z	Т	Swath	Standard	Possible	
CrIS/ATMS (JPSS)	T: -80-50 T: 1.5 K Absolute 25 Humidity: km 2/day 2600 km					Combined microwaradiances	ave and IR			
							05			

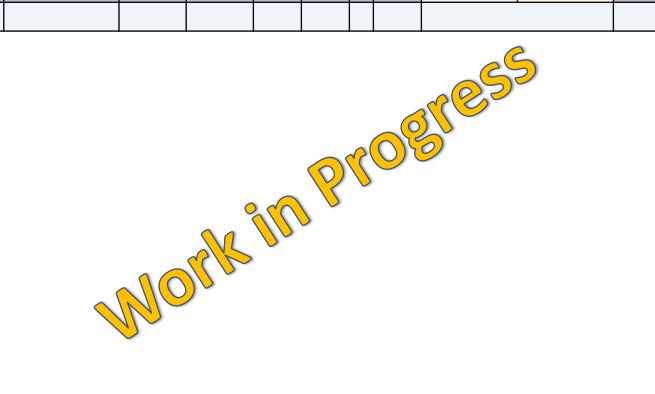
PoR Canability

Environmental Vertical Wind

Latent Hea	ting Profile		PoR	Capabil	ity			Rele	vant	
LH.z		Range	Uncertainty		Resolut	tion		Obser	vables	Notes
Instrument	Orbit	Nange	Officertainty	XY	Z	Т	Swath	Standard	Possible	
		-								



Light	ning		PoR	Capabil	ity			Rele	vant	
Lig	ght	Pango	Uncertainty		Resolu	ution		Obser	vables	Notes
Instrument	Orbit	Range	Officertainty	XY	Z	Т	Swath	Standard	Possible	
Geostationary Lightning Mapper (GLM) - GOES-16+	Geostationary	0-60+ flashes/mi n	70% Detection Efficiency, 5% False Alarm Rate	10 km	N/A	< 1 s	Full Disk	Data structure - Ev Flashes Notable products - Event/Group/Flash Area, Flash Duration	Rates, Flash	Measures total lightning
Lightning Imager (LI) - MTG	Geostationary	0- 60+ flashe s/min	70% Detection Efficiency	10 km	N/A	< 1 s	Full Disk	Data structure - Events, Groups, Flashes Notable products – Event/Group/Flash Rates, Flash Area, Flash Duration, Flash Optical Energy		Measures total lightning
Lightning Mapping Imager (LMI) - FY4	Geostationary	0- 60+ flashe s/min	90% Detection Efficiency, 10% False Alarm Rate	10 km	N/A	< 1 s	China	Data structure - Events, Groups, Flashes Notable products – Event/Group/Flash Rates, Flash Area, Flash Duration, Flash Optical Energy		Measures total lightning



	te Matter stration		PoR	Capabil	ity			Rele	vant	
P	Range	Uncertainty		Resolution			Obser	vables	Notes	
Instrument	Orbit	Nange	Officertainty	XY	Z	Т	Swath	Standard	Possible	
	-	-	_							

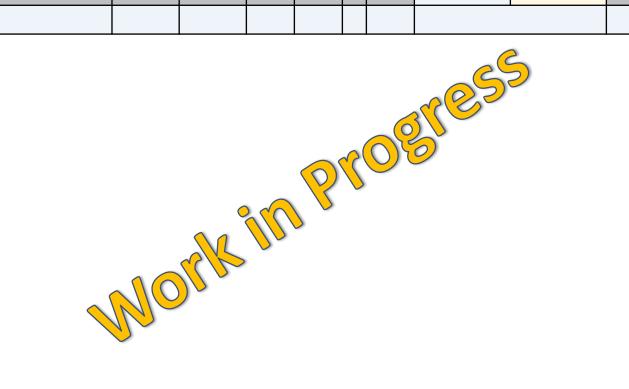
-	undary Layer ght		PoR	Capabil	ity			Rele	vant	
PB	Range	Uncertainty		Resolut	tion		Obser	vables	Notes	
Instrument Orbit		Nange	Officertainty	XY	Z	Т	Swath	Standard	Possible	
	-						-			

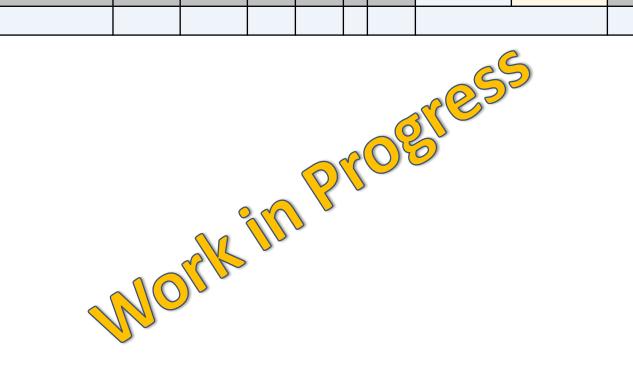
-	Discrimination (Convective)		PoF	R Capabil	ity			Rele	vant	
(Stratiform/Convective) PD		Range	Uncertainty		Resolu	ıtion		Obser	vables	Notes
Instrument	Orbit	Kange	Officertainty	XY	Z	Т	Swath	Standard	Possible	
DPR (GPM)	LEO (incline=65°)	3 classes	< 13%	fp (~5km@ nadir)	250 m	Vari es with latit ude	245 km	Reflectivity profile		Parameter represented as 3 classes (stratiform/convective/other) in the 2ADPR product. Method relies upon both horizontal variability of the reflectivity and the vertical profile of reflectivity at Ku- and Ka-bands (Awaka et al., 2016 doi: 10.1175/JTECH-D-16-0016.1) Uncertainty is taken from Le et al., 2016 (doi: 10.1175/JTECH-D-15-0253.1)

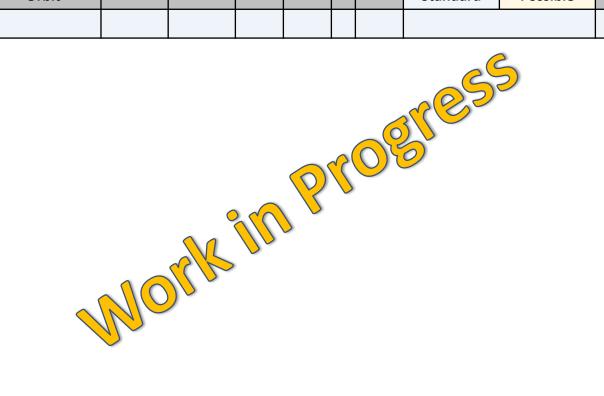
Precipitation	Particle Size		PoF	R Capabil	ity			Rele	vant	
PP	S.z	Range	Uncertainty	F	Resolu	ıtion		Obser	vables	Notes
Instrument	Orbit	nunge	oneer came,	XY	Z	T	Swath	Standard Possible		
DPR (GPM)	LEO (incline=65°)	0.5-4.0 mm	0.25 mm	fp (~5km@ nadir)	250 m	Vari es with latit ude	245 km (Ku- band) 125 km (Dual- frequn cy Swath)	Reflectivity profile at Ku-band (more accurate with dual-frequency profile at Ku- and Ka-band)		From the GPM DPR algorithm. Parameter represented as the melted particle massweighted mean diameter (Dm) in the GPM 2ADPR product. Method: Uses single frequency (Ku-band) used except for inner swath where dualfrequency technique is used as well. These are detailed in Seto et al., 2016 (doi: 10.1109/IGARSS.2016.7730023) Uncertainty given as MAE for 2ADPRv6 and is relative to the GPM VN (from Petersen et al., 2019 Springer book chapter). For convective precipitation, the uncertainty is higher, especially when the dual-frequency is used in v6 of 2ADPR.
DPR+GMI (GPM)	LEO (incline=65°)	0.5-4.0 mm	0.32 mm	5km@ nadir	250 m	Vari es with latit ude	125 km (Match ed Swath)	Reflectivity profile at Ku- and Ka- bands, Brightness Temperatures		From the GPM Combined Algorithm. Parameter represented as melting particle mass-weighted mean diameter (Dm) in the GPM 2BCORRA product. Method: A combination of radar+radiometer measurements, a priori scattering tables and environmental information as detailed in Grecu et al. 2016 (doi: 10.1175/JTECH-D-16-0019.1). Uncertainty given as MAE for v5 of Combined Algorithm. and is relative to GPM VN (from Petersen et al., 2019 Springer book chapter).

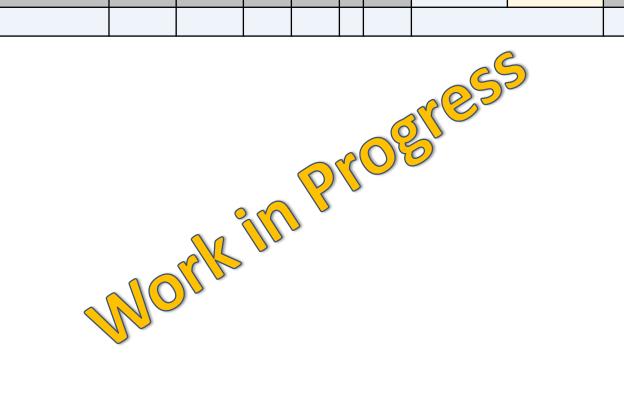
Precipitation Phase Profile		Pof	R Capabil	lity			Rele	vant		
PP.z		Range	Resolution					Observables		Notes
Instrument	Orbit	Natige	Officertainty	XY	Z T Swath		Standard	Possible		
DPR (GPM)	LEO (incline=65°)	3 classes	<5-10% (top of ML) <6-13% (bottom of ML)	5 km	250 m	Vari es with latit ude	245 km (Ku- band) 125 km (Dual- freque ncy)	Reflectivity profile Ku/Ka-band (aka c ratio)		Method: Identification of a melting layer via detection of a Ku-band reflectivity bright band and the dual frequency ratio (DFR) profile (see Le and Chandrasekar, 2013, doi: 110.1109/TGRS.2012.2224352) Uncertainty based on for DFR method only (from Le and Chandrasekar, 2013)

Precipitation Rate Profile		Pof	R Capab	ility			Relevant			
PR.z		Range	Resolution					Obser	vables	Notes
Instrument	Orbit	Nalige	Officertainty	XY	Z	Т	Swath	Standard Possible		
DPR (GPM)	LEO (incline=65°)	0.2-110 mm/h	<~40% @ 1 mm/h <~30% @ 10 mm/h	5 km	250 m	Varies	245 km	Radar reflectivity fa	actor	Liquid precipitation only Uncertainties are based on near surface rainfall for 2ADPRv5 from Fig 4 of Skofronick-Jackson et al., 2018, doi: 10.1002/qj.3313)
DPR+GMI (GPM)	LEO (incline=65°)	0.2- 110 mm/ h	<40% @ 1 mm/h <25% @ 10 mm/h	5 km	250 m	Varies	245 km	Radar reflectivity factor, Brightness temperature		Liquid precipitation only Uncertainties are based on near surface rainfall for GPM Combined Alg. v5 from Fig 4 of Skofronick-Jackson et al., 2018, doi: 10.1002/qj.3313)

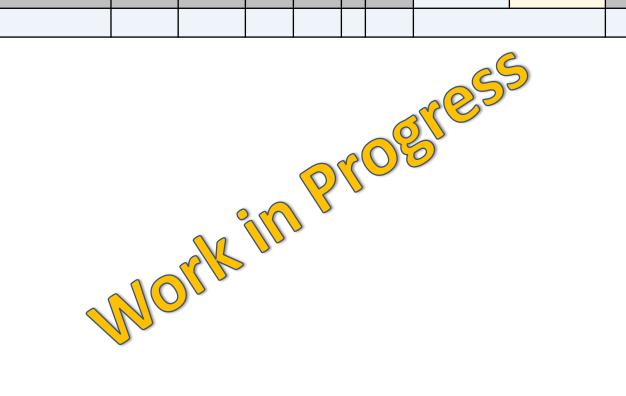

Precipitation Rate, 2D Surface PR2D (1)		PoF	R Capab	ility			Rele			
PR2I) (1)	Range	Uncertainty -		Reso	lution		Obser	vables	Notes
Instrument	Orbit	Kange	Officer taility	XY	Z	Т	Swath	Standard Possible		
DPR (GPM)	LEO (incline=65°)	0.2-110 mm/h	<~40% @ 1 mm/h <~30% @ 10 mm/h	5 km	N/A	Varies	245 km	Radar reflectivity factor		Liquid precipitation only Uncertainties are based on near surface rainfall for 2ADPRv5 from Fig 4 of Skofronick-Jackson et al., 2018, doi: 10.1002/qj.3313)
DPR+GMI (GPM)	LEO (incline=65°)	0.2- 110 mm/ h	<40% @ 1 mm/h <25% @ 10 mm/h	5 km	N/A	Varies	245 km	Radar reflectivity factor, Brightness temperature		Liquid precipitation only Uncertainties are based on near surface rainfall for GPM Combined Alg. v5 from Fig 4 of Skofronick-Jackson et al., 2018, doi: 10.1002/qj.3313)
GMI (GPM)	LEO (incline=65°)	0.2- 110 mm/ h	75%@ 1mm/h 25%@10 mm/h	Varies based on freque ncy	N/A	Varies	885 km	Brightness tempera	ature	Method: Bayesian retrieval such as that in the GPROF Algorithm (Kummerow et al. 2015, doi: 10.1175/JTECH-D-15-0039.1) Uncertainties are based on GPROFv5 results from Fig 4 of Skofronick-Jackson et al., 2018, doi: 10.1002/qj.3313)


Precipitation Rate, 2D Surface PR2D (2)	ate, 2D Surface		PoF	R Capab	ility			Rele	vant	
PR2	D (2)	Range	Uncertainty		Reso	lution		Obser	vables	Notes
Instrument	Orbit	Kange	Officertainty	XY	XY Z T Swath			Standard	Possible	
AMSR2 (GCOM-W1)	LEO (Sun-synch, cross EQ at 1330LST; incline= 98°)	0.2- 110 mm/ h	Similar to GMI	Varies based on freque ncy	N/A	Varies	1450 km			AMSR3 should also provide this record as well other Passive Microwave Radiometers planned on future missions (e.g., WSF-M, MetOP). Method: Bayesian retrieval such as that in the GPROF Algorithm (Kummerow et al. 2015, doi: 10.1175/JTECH-D-15-0039.1) Uncertainties are based on GPROFv5 comparisons from Kidd et al., 2017 (doi: 10.1002/qj.3175)
IMERG (GPM constellation+Geosta tionary IR)	LEO+GEO	0.2- 110 mm/ h		0.1°	N/A	30- min	Global			This is the Integrated Multi-Satellite Retrievals for GPM (IMERG) product created by NASA from multiple other LEO- and GEO- based products and is precipitation gauge corrected (see Huffman et al. 2017)

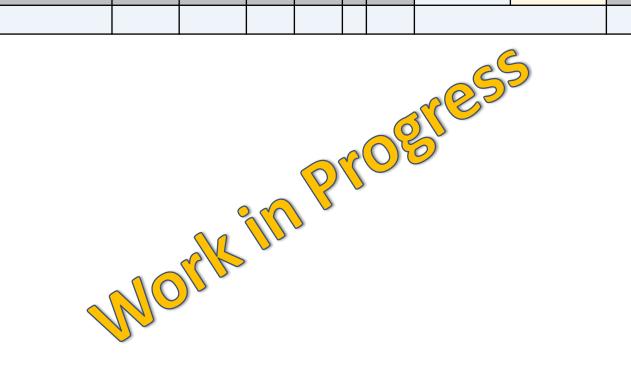

Precursor Gas	Concentration		PoR	Capabil	ity			Rele	vant	
PC	Range	Uncertainty	Resolution					Obser	vables	Notes
Instrument	Orbit	Nange	Oncertainty	XY	Z	Т	Swath	Standard	Possible	
	-	-	-							


Radiativ	e Fluxes		PoR	Capabil	ity			Rele	vant	
Ra	dF	Range	Uncertainty		Resolut	tion		Obser	vables	Notes
Instrument	Orbit	Nange	Officertainty	XY	Z	Т	Swath	Standard	Possible	
		-			-		-			

Surface	Albedo		PoR	Capabil	ity			Rele	vant	
S	Range	Resolution					Obser	vables	Notes	
Instrument	Orbit	Nange	Officertainty	XY	Z	Т	Swath	Standard	Possible	
		-	-		-		-			



Surface Radi	ation Budget		PoR	Capabil	ity			Rele	vant	
SF	Range	Uncertainty		Resolut	tion		Obser	vables	Notes	
Instrument	Orbit	Nange	Officertainty	XY	Z	Т	Swath	Standard	Possible	
	-	-	-							


Surface Turbulent Fluxes (Land/Ocean)			PoR	Capabil	ity			Rele	vant	
STF		Range	Resolution Uncertainty			Obser	vables	Notes		
Instrument	Orbit	Nange	Officertainty	XY Z T Swath			Swath	Standard	Possible	
GMI (GPM)	LEO	0-1500 W/m2 LHF -300-1500 W/m2 SHF	20% Ocean 30% Land	25 km	N/A	N/A Vari 904 es km		Microwave radianc reanalysis model in land)		

Total Liquid Water Path			PoR	Capabil	ity			Rele	vant	
TLWP		Range	Uncertainty	Resolution				Obser	vables	Notes
Instrument	Orbit	Kange	Officertainty	XY	Z	Т	Swath	Standard	Possible	
		-	_		-					

Water Vapor Advection			PoR	Capabil	ity			Rele	vant	
WVA		Pange	Uncertainty	Resolution				Obser	vables	Notes
Instrument	Orbit	Range	Officertainty	XY	Z	Т	Swath	Standard	Possible	
									_	

Aerosol	PoR Capability									Relevant							
Parameters												Resolution			Observables		Notes
Instrument / Orbit	ric	AOD (VIS	Ocear (Best Good	n	OD (UV)	AE Ocean (Best /	F - AOD	SSA	AAOD	Refr	ХҮ	z	т	Swath	Standard	Possible	
Accu		0.018 / 0.047	0.030 0.049		Accuracy Precision	0.050 / 0.001		N/A	N/A	N/A	0.75 km (nadir)	N / A	1 or 2 daily	3000 km	Multi-spectral in V VIIRS heritage NOAA Enterpr		
VIIRS (JPSS)	±(0.117 0.138 Ocean: (0.04 + 10 Land: (0.05 + 15	0.060 : 0%)		N/A	Ocean: ±0.4 Land: N/A	Ocean: Land:	N/A	N/A	N/A	6 km (nadir)	N / A	1 or 2 daily	3000 km	Multi-spectral in \ MODIS "Dark-Tar		Single view
LEO		Land: ±(0.15τ 0.05) Ocean ±(0.10τ 0.04)	+ : +		N/A			?	?	N/A	6 km (nadir)	N / A	1 or 2 daily	3000 km	Multi-spectral in E VIS/NIR/SWIR MODIS "Deep Blu hertiage	·	Single View
		Land: ±(0.15τ 0.05)	+		N/A	N/A					1 km (gridde d)	N / A	daily	N/A	"MAIAC heritiatge	,n	Multi-view aggregation
OCI (PACE)											10 km	N / A	1/day	?			See VIIRS (JPSS) At;launch algroithm
LEO		YES			YES	YES	YES	YES	YES	N/A	?	?	1/day		Multispectral VIS/ + O2A and O2B b		MODIS + OMI heritage

DS Traceability Goals 1-2

2017 Decadal Survey Goals (from Appendix B)	ACCP Goals
 C-2a Reduce uncertainty in low and high cloud feedback. W-1a Determine the effects of key boundary layer processes on weather, hydrological, and air quality forecasts at minutes to subseasonal time scales. W-2a Improve the observed and modeled representation of natural, low-frequency modes of weather/climate variability. C-2g Quantify the contribution of the UTS to climate feedbacks and change. 	G1 <u>Cloud Feedbacks</u> Reduce the uncertainty in low- and high-cloud climate feedbacks by advancing our ability to predict the properties of low and high clouds.
 C-5c Quantify the effect that aerosol has on cloud. C-2g Quantify the contribution of the UTS to climate feedbacks and change. H-1b Quantify rates of precipitation and its phase (rain and snow/ice) worldwide at convective and orographic scales suitable to capture flash floods and beyond. W-1a Determine the effects of key boundary layer processes on weather, hydrological, and air quality. W-2a Improve the observed and modeled representation of natural, low-frequency modes of weather/climate variability. W-4a Measure the vertical motion within deep convection to within 1 m/s and heavy precipitation rates to within 1 mm/hour to improve model representation of extreme precipitation and to determine convective transport and redistribution of mass, moisture, momentum, and chemical species. 	G2 Storm Dynamics Improve our physical understanding and model representations of cloud, precipitation and dynamical processes within storms.

DS Traceability Goals 3-5

2017 Decadal Survey Goals (from Appendix B)	ACCP Goals
 H-1b Quantify rates of precipitation and its phase (rain and snow/ice) worldwide at convective and orographic scales suitable to capture flash floods and beyond. S-4a Quantify global, decadal landscape change produced by abrupt events and by continuous reshaping of Earth's surface due to surface processes, tectonics, and societal activity. (Recommended measurement of rainfall and snowfall rates). W-1a Determine the effects of key boundary layer processes on weather, hydrological, and air quality. W-3a Determine how spatial variability in surface characteristics modifies region cycles of energy and water 	G3 Cold Cloud and Precipitation Quantify the rate of falling snow at middle to high latitudes to advance understanding of its role in cryosphere-climate feedbacks.
W-1a (boundary layer processes) W-5a (air pollution and health) C-5a Improve estimates of the emissions of natural and anthropogenic aerosols	G4 Aerosol Processes Reduce uncertainty in key processes that link aerosols to weather, climate and air quality related impacts.
C-2a Reduce uncertainty in low and high cloud feedback. C-2h Reduce aerosol radiative forcing uncertainty C-5c Quantify the effect that aerosol has on cloud	G5 Aerosol Impacts on Radiation Reduce the uncertainty in Direct (D) and Indirect (I) aerosol-related radiative forcing of the climate system.

Acronyms (1/3)

Α	Aerosols
AFWA	Air Force Weather Agency
AAOD	Absorbing Aerosol Optical Depth
AOD	Aerosol Optical Depth
AQ	Air Quality
ССР	Clouds, Convection, and Precipitation
CDC	Centers for Disease Control
CMAQ	The Community Multiscale Air Quality Modeling System
СТМ	Chemical Transport Model
D	Direct
DOD	Department of Defense
DOE	Department of Energy
DRE	Direct Radiative Effect
ECMWF	European Centre for Medium-Range Weather Forecasts
EPA	Environmental Protection Agency
FAA	Federal Aviation Administration
FAO	Food and Agriculture Organization
FP	Footprint
G	Goal
GE	General Electric
GPS	Global Positioning System

Acronyms (2/3)

I	Indirect
IR	Infrared
JMA	Japan Meteorological Agency
JTWC	Joint Typhoon Warning Center
LW	Longwave
LWP	Liquid Water Path
NCAR	National Center for Atmospheric Research
NIH	National Institutes of Health
NG	Northrop Grumman
NOAA	National Oceanic and Atmospheric Administration
NRL	Naval Research Laboratory
NWP	Numerical Weather Prediction
0	Objective
OD	Optical Depth
PBL	Planetary Boundary Layer
PDC	Pacific Disaster Center
PEA	Potential Enabled Application
PM	Particulate Matter
PoR	Program of Record
P&W	Pratt & Whitney
RO	Radio Occultation
RR	Rolls Royce

Acronyms (3/3)

S	SBG (Surface Biology and Geology)
SW	Shortwave
SWNIR	Shortwave-Near Infrared
TBD	To Be Determined
TOA	Top Of Atmosphere
USDA	United States Department of Agriculture
VAAC	Volcanic Ash Advisory Center
VIS	Visible
WHO	World Health Organizations
WRF	Weather Research and Weather (Forecasting Model)

Information and Request for Feedback

- Numbers in the current Geophysical Variable and Observable tables are very preliminary and in the process of being vetted.
- Under Minimum capabilities, Enhanced values may also be provided when improved data quality is desired in an Enhanced system.
- Comments and suggestions on geophysical variables, Minimum and Enhanced desired capabilities, and observables/measurement approaches are welcome.
- At this early stage, Minimum capabilities should be set as low as possible, but must be defensible as adequate for science objectives.

Conventions for Variable List Table

- Table entries are color-coded depending on whether the variable is needed to satisfy Minimum Or Enhanced Objective.
- Each Column on the left identify potential sources for the geophysical variable:
 - A typical aerosol payload (e.g., lidar, polarimeter)
 - CCP typical CCP payload (e.g., radar, microwave radiometers)
 - ODO complementary observations from other 2017 Decadal Survey Designated Observables: "S" denotes the Surface Biology and Geology (SBG), and "M" denotes Mass Change.
 - PoR Program of Record
 - PEA Potential Enabled Application listed on the table to the left.
- The check mark V indicates that the geophysical variable is needed for meeting the objective. The check mark (V) indicates that the geophysical variable coming from the PoR may contribute to the objective but by itself it is insufficient to fully meet the objective.

Geophysical Variable Table Conventions

- Table entries are color-coded depending on whether the variable is needed to satisfy Minimum or Enhanced Objective.
- Desired capabilities:
 - ➤ The spatial/temporal scales give the averaging context for the precision/accuracy for the geophysical variable
 - o XY is the horizontal scale, while Z is the vertical scale
 - \circ T is the temporal scale with these conventions: I Instantaneous (at the time resolution of the sensor), H hourly, R Diurnal, ΔT Sequential sample at TBD delta-T (e.g., 2-minutes), D daily, W weekly, M Monthly, A annual.
 - ➤ When a variable is required with a different accuracy/precision or scale for the enhanced objective, multiple values are provided following the color convention above.
- Example of Observables. Within each Objective, groups of observables are labelled (1), (2), ..., and referred by these numbers in subsequent rows.