EXPLORE SCIENCE

National Aeronautics and Space Administration

2021 NASA Small Spacecraft Forum

NASA Glenn Research Center (GRC) Space Science Project Office Deputy Chief, Carl E. Sandifer II March 25, 2021

NASA GRC Small Spacecraft Capabilities

- NASA GRC is seeking opportunities to develop and test small spacecraft, while fostering commercial partnerships to help satisfy NASA exploration and science mission requirements.
- > GRC maintains an array of test/vacuum facilities (VF) along with production and assembly capabilities
 - ➢VF-3 (pulsed plasma thruster testbed), VF-8 (low power EP testbed), VF-11 (ion propulsion testbed)
 - Conducive for small spacecraft testing/development
- Recent and noteworthy IV&V/development activities

≻Enpulsion

➢Busek electrospray & Busek BHT-600 thruster

≻Alameda

Busek ST-7 Electrospray

Busek BHT-600

≻Upcoming Announcement of Collaboration Opportunity (ACO) with Phase Four LLC.

Small Spacecraft Electric Propulsion (SSEP)

- > The NASA Glenn Research Center (GRC) has expertise in SSEP.
 - NASA's SSEP project is developing technologies critical to expanding spacecraft capabilities and enabling ambitious new missions into deep space. (e.g., High Thrust – SSEP Hall thruster; H71M)
- > Benefits of Electric Propulsion (EP)
 - Utilizes propellant to produce thrust (specific impulse) 1 to 2 orders of magnitude more effectively than chemical/thermal propulsion, thus enabling:
 - Reduction in the amount of propellant required for a specific mission, thus decreasing mass of the overall spacecraft
 - Increase in the payload mass for a specific mission
 - Increase overall mission velocity capability (ΔV)
 - > The low-thrust and highly tailorable in-space trajectories enabled by EP offers additional benefits:
 - Broadens launch windows and provides more flexibility in mission planning
 - Multiple rendezvous with small planetary bodies
 - Better control of arrival conditions
 - Reduce number of mission critical events

Points of Contact

- > Carl Sandifer II; Deputy Chief, GRC Space Science Project Office; carl.e.sandifer@nasa.gov
- > Tim Smith; Chief, GRC Space Technology Project Office; timothy.d.smith@nasa.gov
- > David Jacobson, Chief, GRC Electric Propulsion Systems Branch; david.t.jacobson@nasa.gov
- > Gabriel Benavides, SME, GRC Electric Propulsion Systems Branch; gabriel.f.benavides@nasa.gov

Conceptual rendering of Pathfinder Technology Demonstrator CubeSat

Low Power Cathode Heater Test

Northrop Grumman Mission Extension Pod (MEP)