European interests in GDC science: synergy, science and lessons

I. Jonathan Rae Mullard Space Science Lab, UCL

jonathan.rae@ucl.ac.uk

[•]UCI

et al. [2009]

Rae

Scientific synergies with GDC

Global causes and consequences of solar windmagnetosphere-ionosphere-thermosphere coupling

- Local reconnection creates global consequences
- Large-scale energy transfer via EM waves
- Field-aligned currents

Time dependence and localization

- Explosive energy release in substorms
- Auroral Acceleration

The interchange between the magnetosphere and thermosphere through the ionosphere

- Storm-time dynamics
- Energetic particle precipitation
- Thermospheric driving

Solar wind Magnetosphere Ionosphere Link Explorer (SMILE)

Co-PI: Graziella Branduardi-Raymont (MSSL)

- ESA/CAS with 2023 launch to study the global scale dynamic response of the magnetosphere to solar wind variability
- Soft X-ray Imager to image the solar wind driving
- In situ package for solar wind and IMF
- UV global auroral imager for magnetospheric dynamics

Local process with global consequences: Direct and Indirect energy transfer

- THEMIS fluid scales
- Cluster ion scales
- MMS electron scales
- We need to understand energy transfer with global context

UCL

Large-scale field-aligned currents: the substorm example

- Understanding the coupling of the magnetosphere to the ionosphere remains an outstanding issue
- And one we are only beginning to understand

Courtesy: DMSP/NOAA. Notigetheat vt/astrantam (2002) coincident with the statistical Gjerloev & Hoffman (2002) map

[±]UCl

Single spacecraft FAC assumptions

 For a sufficiently large current sheet, Ampère's law can be simplified to

$$-\frac{\partial B_Y}{\partial x} = \mu_0 j_z$$

- Perturbation field is from FAC only
- Current is sheet-like and field perturbation is in one component
- Spacecraft passes normally through current sheet
- Current does not move, rotate or change amplitude during crossing

Lessons learned from Swarm: when are our assumptions violated?

Forsyth et al. [2014]

The magnetospheric substorm: explosive energy release into the ionosphere

Rae et al. [2009]

Primary: Diagnosing substorm auroral acceleration

- From ground measurements, we have • shown that substorm onset starts with auroral and magnetic waves
 - Same time, same place, same frequency, same characteristics
- We know the particle characteristics of • wave-driven auroral acceleration
- Require observations of aurora with • simultaneous particle measurements of the precipitating electrons (and ions) that cause it

Substorm physics from the ground and lessons

- One of the great successes of the THEMIS mission is the clear ground-based component that puts spacecraft into context
- But also provides new insight into magnetospheric processes!

Distinguishing between drivers - Alfvén wave driven aurora

Wave-driven acceleration

Distinguishing between drivers – Quasi-static potential driven aurora

Dense ionosphere < 300 km

Auroral density cavity: 3-6,000 km

Quasi-static electric potential structures linked to density cavity

 Pegeocentric
 Pegeocentric

 Value
 Value

 Value
 Value

<tr

GDC altitudes

Distinguishing between auroral drivers

- Quasi-static potential drops
 - mono-energetic electron acceleration

- Shear Alfven Waves
 - broadband electron acceleration

Newell et al. [2009]

Energetic Particle Precipitation: where do electrons go?

Horne [2007], Nature Physics

≜UCL

The importance of energetic particle (EPP) precipitation on atmospheric chemistry

- Understanding a 60 year physics problem
- Understanding the natural variation in global temperatures
- Understanding the role of EPP in the destruction of ozone
- EISCAT 3D

In-situ EPP and HOx measurements

- NOAA POES measurements usually used to estimate particle precipitation
- ~835 km Sun synchronous orbit
- Numerous approximations required for scientifically useful data
- Close relationship between EPP and HOx
- Input into chemistry climate models reveal surface temperature redistribution through EPP

Subsalemile coordinales

<u>ສ</u>

Ģ

[2009]

<u>a</u>.

et

Seppälä

Energetic Particle Precipitation and Polar Surface temperatures

- Chemistry Climate models show that when EPP are included, surface temperature variations of -0.5 to +2 K, relative to the no precipitation case.
- Experimentally verified during the winter months when NOx and HOx are long-lived

DJF

Secondary: Particles inside the loss cone

- All* currently flying instruments measure only a small fraction of precipitation, and assume symmetry
- Able to only measure *strong* precipitation events
- Weak precipitation thought to be crucial

Feedback on magnetospheric dynamics

- Reconnection, energy loading and electromagnetic wave penetration and radiation belt morphology
- Don't forget EISCAT 3D

