2018 Workshop on Autonomy for Future NASA Science Missions October 10-11, 2018

Small-Body Design Reference Mission (DRM) Issa Nesnas and Tim Swindle

Small-Body DRM Participants

Name	Affiliation
Sarjoun Skaff	Founder /CTO Basso Nova
Shyam Bhaskaran	Supervisor, Outer Planet Navigation Group, JPL/Caltech
Julie Castillo (remotely)	Research Scientist, JPL/Caltech
Michelle Chen	Software Systems, JHU/APL
David Gump	Former CEO, Deep Space Industries
Issa Nesnas	Robotics/Autonomy Technologist, AS-SCLT, JPL/Caltech
Lute Maleki	Senior Distinguished Engineer, Cruise Automation
Jay McMahon	Assistant Professor, University of Colorado, Boulder
Carolyn Mercer	Manager, Planetary Exploration Science Technology Office, NASA
Harry Partridge	Chief Technologist, NASA ARC
Marco Pavone	Assistant Professor, Stanford University
Andrew Rivkin	Principal Professional Staff, JHU/APL
Timothy Swindle	Director, Lunar and Planetary Laboratory, University of Arizona
Bob Touchton	Chief Autonomy Scientist, Leidos Advanced Solutions Group
Felix Gervits	Graduate Student Researcher, Tufts University

Scope, Drivers and Platforms

Scope:

- Missions to small bodied: comets, near-Earth objects (NEOs), main-belt asteroids, and other bodies
- Emphasis on bodies closer to Earth

Small-body Drivers:

- Science objectives *
- Planetary defense *
- Resources extraction *
- Human exploration

Platforms

- Fly-by spacecraft and orbiters
- Landers
- Surface or near-surface mobile platforms
- Below-surface access and sampling systems
- Others?

Questions to Ponder

Communicating Desirements

- What would scientists like to see in the near term and long term?
- What would engineers like to know from scientists to make their work more relevant and applicable?
- What would industrial partners like to know from scientists and engineers at NASA?

Capability Advances:

- Current: What would current activities in autonomy enable for nearterm missions?
- Incremental: What science/capabilities could be achieved with incremental advances in autonomy that are not being pursued today or not being considered by scientists?
- Revolutionary: What science/capabilities could be achieved with revolutionary advances in autonomy?

Implementation Roadmap

- How would autonomy help with different types of requirements for target bodies?
- What are the steps in developing autonomy technologies to enable such missions?
- What would *enable* or *prevent* the infusion of such technologies?
- What are the key elements of a small-body DRM?
- Are there *technical* reasons why the DRM we define would <u>not</u> be possible today?

Outcome and Deliverables

Targeted Outcome

- Leverage collective knowledge and expertise to draft a DRM
- Follow up after workshop to complete the DRM

Perhaps a more modest outcome from the face-to-face could be identifying the three to four elements of autonomy that would be most useful to enable one or more of the small-body drivers.

Science Mission Directorate Expectations

- A Small-body DRM enabled by autonomy: new or better science, reduced risk, or new opportunities in planetary defense or resource extraction
- Specific strategic recommendations to NASA on autonomy/AI investments (both programmatic and technical)

Deliverables to SMD

- PowerPoint presentation to workshop attendees on Day 2 (15 minutes)
- Completed DRM framework
- White paper for the next AGU or AAS
- Briefing to SMD upper management at NASA Headquarters by DRM leads (in 6 months)