

Mass Change Town Hall

Julie A. Robinson, Ph.D. Deputy Director, Earth Science Division Science Mission Directorate, NASA

Dec. 13, 2022

EARTH SYSTEM OBSERVATORY

INTERCONNECTED CORE MISSIONS

SURFACE BIOLOGY AND GEOLOGY

Earth Surface & Ecosystems

SURFACE DEFORMATION AND CHANGE

Earth Surface Dynamics

CLOUDS, CONVECTION AND PRECIPITATION

CCP

Water and Energy in the Atmosphere

AEROSOLS

Particles in the Atmosphere

MASS CHANGE

Large-scale Mass Redistribution

EARTH SYSTEM OBSERVATORY

INNOVATION & COMPETITION EARTH EXPLORER MISSIONS

Snow Depth and Water Content

3D Ecosystem Structure

Ocean Surface Winds and Currents

NASA Earth Action Strategy

NASA EARTH Your Home. Our Mission.

EARTH SYSTEM OBSERVATORY

MASS CHANGE TOWN HALL AGU 2022 – 13 DECEMBER 2022

EARTH SYSTEM OBSERVATORY

INTRODUCTION Lucia Tsaoussi, Mass Change Program Scientist

Mass Change Mission Collaboration

EARTH SYSTEM OBSERVATORY

- Mass Change is 1 of 5 Designated Observables in the 2017 Decadal Survey
 - NASA and International partners are collaborating to implement the next gravity/mass change mission
- The goal of the agencies is to materialize the Bender constellation, shown to meet science and societal objectives described in 2015 paper (Pail et. al.) and by the IUGG Expert Panel *
 - The agencies built on a successful legacy of previous missions: GRACE & GRACE-FO by NASA and DLR, and GOCE by ESA
 - The project will report today on their status and plans
- MC is one of the four missions of the Earth System Observatory (ESO).
 - NASA works to integrate the ESO missions by leveraging engineering, science, data systems and applications capabilities
 - ESO integration will enable multi-disciplinary and interdisciplinary research, and augment the missions' community of practice

Pail, R., Bingham, R., Braitenberg, C. *et al.* Science and User Needs for Observing Global Mass Transport to Understand Global Change and to Benefit Society. *Surv Geophys* **36**, 743–772 (2015). https://doi.org/10.1007/s10712-015-9348-9

EARTH SYSTEM OBSERVATORY

INTERCONNECTED CORE MISSIONS

SURFACE BIOLOGY AND GEOLOGY

Earth Surface & Ecosystems

SURFACE DEFORMATION AND CHANGE

Earth Surface Dynamics

CLOUDS, CONVECTION AND PRECIPITATION

CCP

Water and Energy in the Atmosphere

AEROSOLS

Particles in the Atmosphere

MASS CHANGE

Large-scale Mass Redistribution

EARTH BARREN BAR

OPENING REMARKS Bernie Bienstock, Mass Change Project Office

AGENDA

EARTH SYSTEM OBSERVATORY

Welcome	Julie Robinson / NASA HQ
Introduction	Lucia Tsaoussi / NASA HQ
Opening Remarks	Bernie Bienstock / JPL, Caltech
Overview	Mike Gross / JPL, Caltech
DLR – P1 Status	Michael Nyenhuis / DLR
ESA – P2 Status	Ilias Daras / ESA
Science	David Wiese / JPL. Caltech
Mission Implementation	André Girerd / JPL. Caltech
Summary	Mike Gross / JPL. Caltech
Community Discussion / Questions	Moderated by David Wiese / JPL. Caltech

Mass Change Development

EARTH SYSTEM OBSERVATORY

- Mass Change (MC) DO study began in October 2018
- Continued through 2019, 2020, until May 2021 hosted town halls at the past 3 AGUs
- Developed the SATM, including vetting by the community
- Defined architecture classes, with science value metrics for each
- Studied predicted life of GRACE-FO to meet the continuity requirements of the DS
- Assessed technology readiness, risks and maturation plans
- Identified potential international partnerships and began dialogues with each
- Produced a comprehensive final report in July 2021, summarized in AGU publication*

* Wiese, D., Bienstock, B., *et al*. The Mass Change Designated Observable Study: Overview and Results, AGU Earth and Space Science, Volume 9, Issue 8, August 2022, https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022EA002311

Identified High-Level Architectures

The MC study team analyses included:

NASA Headquarters (HQ) guidance and constraints

Decadal Survey (DS) recommendations

Community input

Technology readiness

High-level cost estimates

International partner interest, capabilities, and readiness

The highest-value architectures were identified to

Provide acceptable levels of DS recommended science, as judged by the community

Include technology elements that can be matured within the MC timeframe

EARTH

SYSTEM

0 B S E R V A T O R Y

EARTH BARNER BAR

OVERVIEW Mike Gross, Mass Change Project Manager

Mature Mass Change (MC) Mission Concept

- Implementation and operation architecture is same as GRACE/GRACE-FO
- Division of responsibilities between US (NASA) and Germany (DLR) is the same as GRACE-FO
- Launch is currently planned for Late 2027/Early 2028
- Continuity of the gravity record is fundamental

EARTH SYSTEM OBSERVATORY

Mass Change AGU 2022 Town Hall

MC and GRACE-FO Architectures are Nearly Identical

Integration & Test

Launch

Dispensing

Ground Stations and Data Flow

End-to-End Information System

EARTH

ΑΤΟΡΥ

Operation

Science

Project Implementation Maturity Beyond Typical for Phase-A

EARTH SYSTEM OBSERVATORY

- MC currently has baselined the same satellite-satellite tracking implementation as GRACE-FO
 - Laser Ranging Interferometer (LRI) replaces Microwave Ranging Instrument
 - Gravity fields derived from LRI tech demo on GRACE-FO are consistent with those derived from MWI, while offering improved performance at high frequencies (Pie et al., 2021; Peidou et al, 2021; Ghobadi-Far et al., 2020)
- Approaches to ACC redundancy will be assessed in Phase A, including potential contribution from ESA
- Major Project Milestones (all are current estimates and might change)
 - System Requirements Review/Mission Design Review (SRR/MDR) March 2023
 - Preliminary Design Review (PDR) February 2024
 - Critical Design Review (CDR) April of 2025
 - Assembly, Integration and Test (AIT) October 2026
 - Launch Currently planned for Late 2027/Early 2028.

EARTH SYSTEM OBSERVATORY

DLR – P1 STATUS Michael Nyenhuis, DLR Mass Change Project Manager

Continue US-D partnership on mass transport monitoring

- Germany shares NASA's ambitions to continue mass transport monitoring as one of five top priorities in EO for the next decade highlighted in the NASA Earth Science Decadal Survey Report.
- To continue the very successful technological and scientific GRACE/GRACE-FO partnership Germany initially proposed a joint US-D MC/GRACE-I mission combining
 - a quickly realized single-pair GRACE-FO successor based on redundant LRI SST with launch in 2027 into a polar orbit to guarantee data continuity, and
 - an (optional) **ICARUS payload** (International Cooperation for Animal Research Using Space) which globally monitors animal movements as biodiversity indicator.
- Germany supports NGGM* in the Mission of Opportunity element of ESA's FutureEO program as the second component of a double pair mission (P1/P2 staggered approach).

MC/GRACE-I Phase A study results (Apr-Sep 2022)

Detailed Mission Analysis (funded by BMBF, Lead by GFZ, supported by DLR, close collaboration with NASA/JPL and ESA)

- Two satellites based on GRACE-FO with technical enhancements
 - Partly redundant LRI as SST instrument
 - Improved acceleration measurement (redundant ACCs based on GRACE-FO superSTAR or "adapted microSTAR")
 - Heritage cold gas thrusters, potential improvements (hybrid concept with EP) discussed
- Optional payloads
 - ICARUS to detect animal movements (operational biodiversity monitoring in parallel to variations in the global water cycle)
 - Radio occultation (RO) instrument
- Discarded options
 - Low-shock cold gas thrusters
 - MicroSTAR (4th ACC) and Quantum gravity gradiometer (QGG) tech demos

MC/GRACE-I Phase A study results (Apr-Sep 2022)

Detailed Mission Analysis (funded by BMBF, Lead by GFZ, supported by DLR, close collaboration with NASA/JPL and ESA)

- Joint effort: 3 TIMs & PRR (Preliminary requirements review) co-location involving NASA/JPL and ESA
- Identified synergies and commonalities of MC/GRACE-I and NGGM (i.e. P1 and P2 in MAGIC) in cooperation with ESA
- Successful PRR in Sep 2022 with key recommendations:
 - Technical showstoppers have not been identified. The results of the PRR permit the transition into Phase B.
 - NASA/JPL and DLR to harmonize programmatic boundary conditions for a joint mass change mission: requirements baseline, redundancy concept (ACC/LRI), PA-approach, launcher strategy, NGGM/MAGIC framework and implementation schedule. Harmonization with ESA with regard to the MAGIC cooperation is strongly recommended.
 - To meet the expectations and needs of the scientific community for continuity and in the frame of MAGIC enhanced spatial / temporal resolution of mass transport products a minimum lifetime of 5 years (goal: 7 years) needs to be achieved.

German Parliament has approved

the budget to allow implementation of baseline option of "MC/GRACE-I" without ICARUS or RO

 \rightarrow GRACE-FO re-built with enhancements and LRI as primary SST technology

 \rightarrow Start of Phase B/C/D for German contributions required in 2023

EARTH SYSTEM OBSERVATORY

ESA – P2 STATUS Ilias Daras, ESA NGGM/MAGIC Mission Scientist

MAGIC An international constellation for mass change science and applications

- **MA**ss-change and **G**eosciences International **C**onstellation (**MAGIC**) is the joint **NASA/ESA** two-pair "Bender-type" constellation concept based on NASA's MCDO and ESA's NGGM (Next Generation Gravity Mission).
- Enhanced continuity after **GRACE-FO** ensured to preserve climate series, per US Decadal Survey 2018
- Strong user demand expressed by IUGG, IAG, GGOS for improved temporal and spatial resolutions and accuracy in enhanced continuity Single-pair vs. MAGIC constellation (current assumptions) of observations, paving the way to future sustained observations
- Goal is to implement <u>a pre-operational mission</u> with improved observations • to meet science and application objectives outlined in ESA/NASA MAGIC Mission Requirements Document (MRD).

L2 performance against Measurement System and Mass Change product MAGIC MRD requirements.

→ THE EUROPEAN SPACE AGENCY

MAGIC An international constellation for mass change science and applications

First satellite pair (P1)- Mass Change / GRACE-I

 Implemented via a US-Germany fast-paced cooperation programme to ensure continuity of observations with GRACE-FO, with potential ESA in-kind contributions for a new generation of accelerometers

Second satellite pair (P2) – NGGM

- Nov. 2022 ESA's Council at Ministerial level resolved that FutureEO-1 programme will include the start of the development of NGGM/MAGIC in cooperation with NASA
- Implemented via Europe-US cooperation programme with potential NASA in-kind contributions for a redundant Laser Ranging Instrument
- Inclined controlled orbit with a target altitude of ~400 km and inclination between 65 deg and 70 deg, forming a "Bender constellation" to mitigate spatio-temporal aliasing errors
- Target launch aiming to maintain a minimum of 4 years of combined operations between P1 and P2
- **MicroSTAR** family accelerometers developed by ONERA for ESA with GOCE-like performance
- Hybrid propulsion concept: electric propulsion for orbit maintenance & drag compensation, linear cold gas thrusters for fine attitude control/drag compensation

EARTH SYSTEM OBSERVATORY

SCIENCE David Wiese, Mass Change Scientist

GRACE and GRACE-FO: 20 years of Amazing Discoveries

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2002	-150 -100 ·	-50 0 50	100 150	235	A 200			14 4 M	A BAS	S B B B	535	18 8 8 8 V
	A AA	288	235	228	888			588	CAR.	238	238	C BR
2004	E SE	A the	\$ \$\$	A and	A SEC	A BAS	S SK	STR	E BE	States	E BAS	A BA
	A BA	A BA	A BAS	A BAS	234	No and	C C C C C C C C C C C C C C C C C C C	A BAS	A BAS	C C C C C C C C C C C C C C C C C C C	No and	A Star
2006	A CAR	A B B	A BAR	225	× 9%	284	A A A	888	A BES	223	A BAS	A BAR
	A BB	A B B	C SSE	A are	888	1 5 5 5 5 S	A BAS	S FR	K SK	C S S S S	A BAS	A BAR
2008	18 2 4 S	1 2 2 X	C C C C C C C C C C C C C C C C C C C	C Prod	A BAS	A CARE	NE BES	C TTO	C Providence	A BAR	C BEE	18 8 8 V
	× 2 4	A BAS	5 8 K	284	2 P. 2	A CAN	A BAS		× 8%		× 57 45	× 3 ×
2010	CARRY C	× 9%	1 9 4 K	2 9 K	244	No.	1 2 2 3 3 S	5 5 5 S	× 3%	1 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	A BAR
	CTF6 TO	1 2 2 4 4 F	244	2 3 4 K	A DAY		S 25 5	5 8 8 5 S	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 3 3 3 4 5 S	A Property	11 IV - 2010
2012	5 9 4 S	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A BE	1 2 4 A		5 8 8 S	<u>\$ 555</u>	STS.	\$ 3%		1 7 7 S	2 5 5 S
	5 3 4 5 C	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		5 97 85	A GAR	5 5 8 4 4 5	A AR			\$ 7 KS	\$7%	A BAR
2014	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 3 4 K	A CARA	1 24 AS	A CAR		59%	\$ 7%	S ANS	A 34	
	\$\$\$	S S S		A SAR	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		<u>\$98</u>		<u>838</u>			238
2016		S Star			2 (3 A)		<u>898</u>	1 2 2 K			A 3.8	1 3 3 4 5 V
	A BAR		2 2 2 K	1 97 W.	\$ 97 K		GRACE	ends				
2018			GR	ACE-FO	begins						235	25%
	1 97 % C	23%	2 97%	1 7 7 %	285						276	27%
2020	27%	188		18.2	28.2	29.8	27%	336	14		andereroral nase.c	eb-2021
					288						A A A	A A A
2022	2 2.2	5 3 4 S	5 88	2 2.2	232	5 8 8 S	2.2.2	5 7 K		37%		

26

GRACE and GRACE-FO: 20 years of Amazing Discoveries

Overlap with GRACE-FO Drives FY28 MC Launch

EARTH SYSTEM OBSERVATORY

- MCDO Study Team assessed the probability of different observing system architectures to provide overlap with GRACE-FO
 - Heritage architecture (single in-line pair with a free-drifting orbit) was found to have highest probability of providing overlap
 - GRACE-FO reliability is 50% by June 2028 (50% launch readiness date)
- GRACE-FO project continues monitoring health and potential end of life date
 - Single string on accelerometer and IPU (GNSS receiver and MWI tracking)
 - Consumables and space environment likely put end of mission in 2027-2030 timeframe
 - Current Solar Cycle 25 is above-average strength, implying relatively fast orbit decay and reduced lifetime (MCDO Study used a more benign solar cycle prediction in lifetime assessment)
 - Thruster leaks and uncertainty in future leak evolution
 - Operational decisions being made to simultaneously maximize quality of science data products considering accelerometer transplant, and to extend mission lifetime
- Desired to have a minimum 6 months of overlap with GRACE-FO
 - Vital for calibration of GRACE-FO accelerometer transplant and the resulting 10-year mass change data record (2018-2028)

Mass Change Science and Applications at a Glance

MC Applications Community Assessment

- Goal: Maximize the return on investment of current and future MC missions by enhancing their applications value and societal benefits
- Two communities
 - Community of Practice: assessed through survey and workshops
 - **Community of Potential**: Led by RTI International, through a series of discussion panels and interviews with representatives from private industry and public agencies

New Uses by Known Users: New ways of using and New Uses by New Users: New uses for MC-type data new purposes for the data by current MC-type data by new users who previously did not use MC-type or other NASA EO data. users KAR KAR Predicting high or low extreme-water events to manage operational water resources Community NEW USES Reducing water consumption for manufacturing operations Creating corporate watershed replenishment acting water planning for agricultural plans Potential Using historic flood records to inform future flood risk projections for pension fund real estate investors 6 Using global historic flood records to inform international communities of future flood risks Known Uses by Known Users encompass current MC-Known Uses by New Users focuses on users who do not type data users who offered input for improvements. currently use MC-type data but have the potential to use it for known applications or uses. Community Conducting watershed land analysis for (NOWN USES Conducting groundwater and water conservation stormwater management **O** planning Monitoring ground water levels from aquifer Assessing the need for state drought emergency systems for sole-source drinking water Practice Monitoring drought to make decisions on Managing land resources around water 25 when to execute drought protocols for ecosystems to ensure quality and quantity for watershed management product use Assessing new land areas for manufacturing site 1 L selection **KNOWN USERS NEW USERS**

EARTH SYSTEM OBSERVATORY

80

MC Community of Practice

EARTH SYSTEM OBSERVATORY

Table 1. Select questions from MC Applications Survey

Desired Spatial	GRACE terrestrial water storage data have a resolution no better than 3° x 3°
Resolution	latitude/longitude (~100,000 km²), with some assimilated products at 0.125°
	resolution. Are those spatial resolutions adequate? If no, what spatial
	resolution would you require/prefer for your application?
Desired Temporal	GRACE terrestrial water storage data are typically provided as monthly
Resolution	means, with some assimilated products updated weekly. Are those temporal
	resolutions adequate? If no, what temporal resolution would you
	require/prefer for your application?
Desired maximum	GRACE terrestrial water storage products were released with roughly 2-to-4-
Latency	month latency, while some assimilated products had 2-to-8-day latency. Are
	those timely enough for your application? If no, what latency would be
	sufficient?
Desired Accuracy	GRACE terrestrial water storage data have an uncertainty of roughly 1.5 cm
	equivalent height of water over a 100,000 km ² area. What accuracy or
	precision is required to be useful for your application?

Fractions of Respondents Satisfied at Varying Data Attribute Thresholds

Data Assimilation Frameworks can satisfy needs of majority of users

MC Community of Potential

Capturing and aggregating anecdotal interview results

EARTH SYSTEM **OBSERVATORY**

1 pair: raw data

Temporal Resolution Needs

Mass Change AGU 2022 Town Hall

Spatial Resolution Needs

Science Data System 1 pair: raw data

MC Measurement System Requirements

 Compliance with the Decadal Survey is ensured by placing an overarching requirement on the MC measurement system performance

EARTH SYSTEM OBSERVATORY

All MC SATM Measurement Parameters are met, ensuring responsiveness to the Decadal Survey Science Objectives

EARTH SYSTEM OBSERVATORY

MISSION IMPLEMENTATION André Girerd Mass Change Project Systems Engineer

Spacecraft Leverages Heritage

The system performance requirements for the Mass Change mission are identical to the performance requirements of GRACE-FO

Maintenance of true heritage of the GRACE-FO system allows for a minimization of cost and risk and a maximization of the probability of success

Changes to the Mass Change system are under consideration for the following categories Removal of Microwave Instrument (MWI) Accommodation of LRI Scale Factor Unit

Redundancy options

Resolution of issues discovered on the GRACE-FO mission

Utilization of current generation of Airbus spacecraft

Heritage of Configuration

EARTH SYSTEM OBSERVATORY

• Elimination of the Microwave Instrument for the Mass Change Mission results in GRACE like component spacing and higher radiator margins

Mass Change

Heritage Spacecraft Platform

CHAMP Launched 2000

GRACE Launched 2002

GRACE Follow-On Launched 2018

Mass Change Planned 2027

GOCE Launched 2009

Cryosat 2 Launched 2010

SWARM Launched 2013

Sentinel-6 (MF) Launched 2020

Mass Change AGU 2022 Town Hall

Laser Ranging Interferometer is Proven

EARTH SYSTEM Laser (LAS): Provides 25 mW OBSERVATORY

Optical Bench Assembly (OBA) Includes the guadrant photoreceiver (QPR), fine steering mirror (FSM), and main interferometer optical bench (TRL 7)

of 1064nm light; frequency

(reference), or to the

(TRL 7)

stabilized to the optical cavity

incoming light (transponder)

Baffles + Light Path Closures (BAF+LPC) Baffles and Light Path Closures ensure unobstructed field view and protect the system against ATOX (TRL 7)

(TMA)

Three mirror CFRP "virtual" corner-cube retroreflector. Routes the laser beams around the fuel tanks (TRL 7)

Triple Mirror Assembly

Optical Cavity (CAV): Passive resonator used to stabilize the laser frequency on spacecraft in the Reference role (TRL 7)

Ultra Stable Oscillator (USO): Provides the stable 40 MHz clock to LRP, SFU, and 10 MHz to GNSS (TRL 7)

Scale Factor Unit (SFU)

Free-Spectral Range

Measures the change of the laser

frequency over long durations by

relating the USO clock to the cavity

Optical Bench Electronics (OBE) Powers the steering mirror and photoreceivers and provides signal conditioning for the science signal (TRL 7)

Laser Ranging Processor (LRP) :

Measures the interferometer phase and records the science signal; Laser frequency stabilization electronics; Commands the steering mirror angle for acquisition and tracking. Secondary power for OBE, LAS, CAV

Mass Change AGU 2022 Town Hall

40

EARTH SYSTEM OBSERVATORY

SUMMARY Mike Gross, Mass Change Project Manager

Summary

EARTH SYSTEM OBSERVATORY

- International Partnership with Germany has lead to the success of GRACE and GRACE-FO, and continues to be enabling for the success of Mass Change
- The MC Project has made a tremendous amount of progress over the last year
- The end-to-end system has high heritage of both the design and the team
 - Ensures high probability of an on-schedule launch
 - Minimizes risk to loss of continuity of the gravity record
- NASA, ESA, EC (European Commission), DLR, ASI, CNES and other Agencies continue to discuss approaches to establishing a long-term international plan for sustained gravimetry observations beyond MC and NGGM

EARTH SYSTEM OBSERVATORY

COMMUNITY QUESTIONS/DISCUSSION David Wiese, Mass Change Science