Mass Change Designated Observable Study identifies high value observing systems for implementation within the next decade

The NASA Mass Change Designated Observable Study: Progress and Future Plans

The Mass Change Designated Observable Study Team^{1,2,3,4,5} Presented by: David Wiese¹, Mass Change Deputy Study Coordinator ¹California Institute of Technology/Jet Propulsion Laboratory, ²NASA Goddard Space Flight Center, ³NASA Langley Research Center, ⁴NASA Ames Research Center, ⁵NASA Headquarters

Satellite-Satellite-Tracking (SST) is the recommended architecture family for implementation as the next observing system

Identification of architectures with highest value: improved science return while enabling continuity

- The Decadal Survey stressed the importance of continuity in mass change measurements
 - GRACE-FO lifetime is more likely to be limited by system reliability than orbit lifetime
 - Schedule estimates indicate that the single in-line pair is likely to have the earliest launch readiness date (LRD) and is most likely to enable continuity with GRACE-FO

	Estimated 50th Percentile LRD	Expected GRACE-FO Reliability at LRD
Single In-Line (no drag comp.)	Jun 2028	50%
Pendulum (no drag comp.)	Jul 2029	40%
Bender (w/ drag comp.)	Mar 2030	35%

- Architectures (A, B, C, D) are identified which have at least one component that includes a single in-line polar pair to allow the highest likelihood of continuity with GRACE-FO
 - Implementation of B, C, D may be staggered; Element A can be launched first and remaining elements launched later
- Architecture D (2-pair high/low) provides only slightly degraded science value relative to highest performing architecture (2-pair low/low)

04/30/21

EGU 2021

The Path Forward

- MC is in the process of transitioning to Pre-Phase A which refines the mission concept and allows further in-depth study of identified high-value architecture variants
- Awaiting guidance from NASA HQ on scope of Pre-Phase A activities
- Ongoing International Formulation Activities and Collaborations with MC Study Team:
 - ESA NGGM Concept
 - DLR/GFZ GRACE-I Concept
 - CNES MARVEL Concept

Questions/Comments:

https://science.nasa.gov/earth-science/decadal-mc

masschange@jpl.nasa.gov

