
Water-Rich Flows over an Extensive Region around Hale Crater

Unique deposits provide a window into late climate on Mars.

Hale crater formed by an impact into an ice-rich terrain in the Early to middle Amazonian (3.5-3.8 billion years ago), and is one of the youngest, largest (~125 km across), and best preserved craters on Mars. Recent research into the rim deposits indicate that these discontinuous, initially water-rich deposits up to 450 km from Hale's rim were ballistically emplaced and resulted in flows for up to two days after impact. The pristine nature of these deposits indicates that erosion rates were low after the Hale impact, Hale's formation post-dates regional alluvial fan activity, and that the formation of this crater did not influence global or regional scale geomorphic activity or climate for any extended period of time.

Grant, J. A. and S. A. Wilson (2017), Meteoritics and Planetary Science.

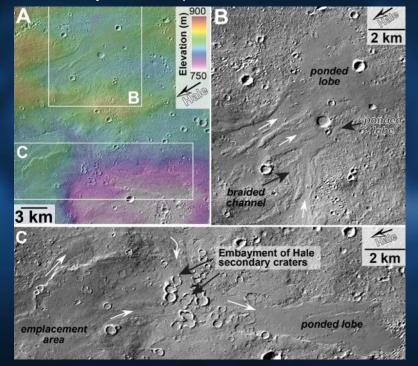


Figure 2. A) Discontinuous distal deposits ~315 km northeast of Hale flowed downhill and ponded in low-lying areas. B) and C) Detail of channels (white arrows), and smooth ponded lobes that often fill and embay secondary craters from Hale crater.