

NASA's Planetary Data System Status and Future Plans

Planetary Data System: Project Office Report to the Planetary Science Advisory Committee

March 9 - 10, 2020

Tim McClanahan PDS Project Office Manager

Planetary Data System (PDS) Overview NASA Planetary Mission Data Status PDS Next Directions PDS Survey

Planetary Data System 30 years and Counting...

1989: NASA established the PDS as a formal Planetary Data Archive

PDS Level 1 Requirements

- Provide expertise to guide and assist missions, programs, and individuals to organize and document digital data supporting NASA's goals in planetary science and solar system exploration.
- Collect and curate suitably organized and well-documented data into peer archives that are maintained by members of the scientific community.
- Ensure the long-term preservation of the data and maintain their usability.
- Make data accessible to users seeking to achieve NASA's goals for exploration and science.

Evolving Community Needs..... Evolving Technologies

Level 1 requirements are levied by Headquarters.

Planetary Data System (PDS) Configuration

PDS 1 Project Office 6 Discipline Nodes 2 Support Nodes 6 Sub-Nodes 8 Data-Nodes

NODES/SUBNODES/DATA NODES

Planetary Data System (PDS) Management Team

NASA Headquarters

Lori Glaze Planetary Science Division **Director**

Becky McCauley Rench **Planetary Data** System Program Scientist

Discipline Nodes

Atmospheres: **New Mexico State** University Las Cruces, NM (Nancy Chanover)

Planetary Plasma Interactions: University of California Los Angeles, CA (Ray Walker)

Eric lanson Planetary Science Division Deputy Director

Meagan Thompson **Planetary Data** System Program Executive

Cartography & Imaging: US Geological Survey Flagstaff, AZ (Lisa Gaddis)

Ring Moon Systems: SETI Institute Mountain View, CA (Mark Showalter)

Small Bodies:

College Park, MD

(J. 'Gerbs' Bauer)

University of

Maryland

Lunar & Planetary Institute

Louise Prockter **Planetary Data** System **Chief Scientist**

NASA - GSFC PDS Project Office

Timothy **McClanahan Planetary Data System Project Manager**

Geosciences: Washington Universitv St. Louis, MO (Ray Arvidson)

Support Nodes

Engineering: Jet Propulsion Lab, Pasadena, CA (Jordan Padams)

Navigation & Ancillary **Information Facility:** Jet Propulsion Lab, Pasadena, CA (Chuck Action)

4

Planetary Data System (PDS) Project Office at GSFC

Solar System Exploration Division (SSED) 690 Director: Dr. Paul Mahaffy | Asst: Ms. Marley Fleishman

Solar System Exploration Data Services Office (SSEDSO) 690.1

Office Head: Dr. Thomas Morgan | Asst: Jessica Still

National Space Science Data Coordinating Archive (NSSDCA) Planetary Data System Project Office (PDSPO)

PDSPO Project Manager: Dr. Timothy McClanahan

Director: Dr. David Williams

NSSDCA Ingest Manager Patrick McCaslin

NSSDCA Technical Manager Edwin Bell Deputy PM for R&A, Node Liaison and PDS3-PDS4 Migration: Dr. David Hollibaugh Baker

> Deputy PM for Budget and Planning: Dr. Thomas Morgan

Tools and IT Transformation Lead: Dr. Maria Banks

Training and Public Outreach: Sheri Loftin

> Resource Analyst: Lois Hughes

Project Support Analyst: Laura Givens

Planetary Data System (PDS) Archive Metrics

Web Statistics

- PDS contains >1.85PB of data from >70 missions.
- Represents >2000 data sets from >600 unique instruments.
- 10 active missions are currently delivering data to the PDS.

PDS Summary Jan to Feb 2020

2020 (Jan to Feb)	PDS						
Files Downloaded (2020)	48,314,932						
Total Volume in PDS (Mb)	184,293,428						
Visitors (2020)	605,720						

U.S. Planetary Data Archives (TBs)

3500						
3000			- (
2500						
2000						
1500		0			R&A	ar (+
1000				Fair and	Com	ms
500						
0 2001 2003	2007 2010	2012 2015	2016	2018 2020	2022	2025

Active U.S. Missions: Stoplight Chart

Active US Missions	Budget				Schedule			Technical					Node				
January 2020 Status	Oct	Nov	Dec	Jan	Oct	Nov	Dec	Jan	Oct	Nov	Dec	Jan	Oct	Nov	Dec	Jan	
2001 Mars Odyssey	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	GEO
	_	1				-	-		_	1	-			-	-	-	
2005 Mars Reconnaissance Orbiter	G	G	G	G	Y	Y	Y	Y	G	G	G	G	Y	Y	Y	Y	GEO
Lunar Reconnaissance Orbiter	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	GEO
Mars Science Laboratory	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	GEO
InSight	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	GEO
New Horizons	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	SBN
OSIRIS-REx	G	G	G	G	G	Y	Y	Y	G	G	G	G	G	Y	Y	Y	SBN
MAVEN	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	PPI
Juno	G	G	G	G	Y	Y	Y	Y	G	G	G	G	Y	Y	Y	Y	ATM
Cassini (EOM)	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	ATM
DART (Future)	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	SBN
Europa Clipper (Future)	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	IMG
Lucy (Future)	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	SBN
Mars 2020 (Future)	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	GEO
Psyche (Future)	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	SBN

8

January 2020 Status Report: U.S. Missions

Juno

JIRAM (YELLOW on External)

The Juno/JIRAM deliveries for Orbits 13-18 have been delayed pending the resolution of a navigation issue.

Data deliveries have been on time with the exception of FGM perijove data and JIRAM data.

MRO

SHARAD (YELLOW on External)

SHARAD-ASI RDR deliveries are still behind schedule, but have resumed with the RDR backlog.

OSIRIS-REx

Radio Science (YELLOW on External)

The first delivery of Radio Science data has been delayed due to health issues with a key team member. $^{9}\,$

An Evolving Planetary Data Environment

Planetary Data System (PDS) Evolving Requirements

Factors Impacting the PDS

- Increasing Data Volume (Lunar, R&A, Journals Comms)
- Greater Complexity (instruments, Data)
- More Producer Interfaces
- Greater / New User Expectations

- Need for Internationalization
- Integrating a federated system
- Increasing IT security threats
- New Technology
 Opportunities

- Archive Usability

Funding Constraints

"Support the ongoing effort to evolve the Planetary Data System from an archiving facility to an effective online resource for the NASA and international communities." -- Planetary Science Decadal Survey, NRC, 2013-2022

PDS R&A Growth

Also, Data from Journal Articles

Planetary Data System (PDS) Moving Forward...

2017 PDS Roadmap Study

Data Discoverability Modernizing Metadata **Documentation and Training** Transparency Internationalization

2019 PDS Whitepaper: Discoverability via Data Services (D. Crichton)

Develop Standardized Search API's Improved Search Engine Technology Link Search Engines across archives Comprehensive /consistent mission archive user guides **Cloud Computing**

2020 Strategy for Data Mgmt and Computing for Grndbreaking Sci. Area #1: Open Data/ Open Software Area #2: High End Computing Area #3: Archive Modernization Area #4: Advanced Capabilities

• An international, information model-driven data architecture for documenting planetary data archives

An explicit information model

- Explicitly describe the diversity of planetary data in XML
- A heirarchy of meta-data dictionaries that describe Planetary Data
- Drive the definition of data to enable management, search and analytics across PDS and IPDA
- Distributed software services architecture
 - Services both within PDS and at international partners
 - Consistent protocols for access to the data and services
 - A distributed registry and search infrastructure
 - Tools that are built on top of the PDS4 information model

PDS4 is co-developed with the international Planetary community

Planetary Data System PDS3 to PDS4 Migration

High Priority: PDS3 to PDS4 Migration of **Existing PDS Archives**

- Most data is in PDS3.
- Migration to PDS4 standards is still in the beginning stages.
- ~65% of PDS3 volume is LRO! (mostly LROC).
- Migrations are planned over the next few years.

Delivered in PDS4: LADEE, Maven, InSight, OSIRIS-REx

Planetary Data System PDS3 to PDS4 Migration

Migrations in Progress (whole or partial)

- Cassini
- Chandraayan
- Clementine
- Dawn
- Galileo Probe / Orbiter
- Ground-based / other
- Huygens Probe
- Juno
- LRO

- Mars Pathfinder
- MER
- MESSENGER
- Phoenix
- Viking
- Voyager 1
- Voyager 2
- Rosetta

Future migrations planned over the next few years

"Facilitate global access to, and exchange of, high quality scientific data products managed across international boundaries"

IPDA Membership

Armenian Astronomical Society China National Space Agency (CNSA) European Space Agency (ESA) Finnish Space Agency (FSA) German Aerospace Center (DLR) Indian Space Research Organization (ISRO) Italian Space Agency (ASI) Japanese Aerospace Exploration Agency (JAXA) Korean Astronomy and Space Administration National Air and Space Administration (NASA) National Centre for Space Studies (CNES) Space Research Institute (IKI) UAE Space Agency UK Space Agency 17

The Cornerstone: Adoption of PDS4 Standards

Source: D. Crichton, JPL

Planetary Data System (PDS) Training and Outreach

Images of some of the more than 70 scientists, engineers, archivists, and IT professio nals who make the PDS work.

Cloud Computing

- Several PDS Nodes implementing Cloud Systems
 - Backups, Data Services, EN General Services

Investigating full archive deployments

PDS Whitepaper on Cloud Computing. (D. Crichton / J. Padams, JPL)

- In Development
- Factors:

Providers, Services, Models, Tradeoffs, IT Security, Administration, Costs

- Recommendations
- April 2020

Please help NASA define the next generation of the PDS!

The PDS Customer Satisfaction Survey will be used to set the future priorities of the Planetary Data System (PDS). The results will indicate areas for improvement and what new services are needed, ensuring the needs of the scientific community are met both now and in the future.

For more information:

https://feedback.app.cfigroup.com/l/r/NASAPDSGen

Summary

Upcoming NASA HQ Planetary Data Ecosystem Study

PDS Priorities

- 1. Curate High Quality Archives
- 2. PDS3 to PDS4 Migration

3. Ongoing Effort

Training Modules and Outreach Expand PDS4 Information Model Increase scalability, accessibility: IPDA PDS User Interfaces / Website Improve Usability

Develop Data Services, App Programming Inter. (API) PDS Cloud Whitepaper and Study

PDS Survey:

Letter of the other of the second of the sec