Space Test Program
Standard Interface Vehicle
Lessons Learned
(STP-SIV)

Mr. Mike Marlow
Chief Engineer, Space Development Branch

Common Instrument Interface Workshop -21 April 2011

SPACE & MESS. SPACE DEVELOPMENT & TEST WITH

One SIV Complete and Second Underway

- Overview of SIV Capabilities
- Acquisition plan "as-envisioned vs. as-realized"
- System requirements, standards and risk posture
- Standardized interfaces enhance cost efficiency and responsiveness
- Economies of a standard spacecraft design
- Incorporation of lessons learned reaping benefits on second spacecraft

STP-SIV - Designed to Support Scientific, Technology Development and Risk-Reduction Missions

Spacecraft Parameter	SIV Capability
Orbit Altitude	400 – 850 km
Orbit Inclination	40° – 98.8°
Launch Mass	≤ 180 kg
SV Dimensions (cm)	60.9 x 71.1 x 96.5
SV Lifetime	1 year
Stabilization Method	3-axis
Pointing Modes	Nadir, Solar, Inertial
Attitude Knowledge	0.022° 3 σ
Attitude Control	0.1° 3 σ (nadir mode)
Bus Voltage	28 V ± 6 V
Comm Frequency	Secure SGLS
Command Rate	2 kbps uplink (via AFSCN)
Telemetry Rate	2 Mbps downlink (via AFSCN)

- Designed for a range of LEO orbits without design changes
- Standard payload-to-spacecraft interface for all experiments
- Compatible with a variety of launch vehicles including ESPA
- Designed/tested to rigorous requirements
 - compliant to MIL-STD-1540e

■ IDIQ contract allows quick response - demonstrated <90-day turn-on

with STPSat-3

Acquisition Plan As-Planned vs. As-Envisioned

Ball

Second SIV Started 2 Years Later than Planned

Reasons

- Invalid budget assumptions
- Cost growth and launch delays on other SDTD missions reduced available funding to start DO#2
- Designing for wide range of missions and orbits and associated analysis more than designing for single mission affecting cost and schedule
- Cost growth on Delivery Order (DO) #1

Impacts

- Cost growth on second set of components
- Delayed realization of cost synergy between DOs
- Benefit: ability to capitalize on I&T lessons learned

Achieving Common Understanding of Requirements and Risk Posture is Critical for Successful Program Execution

- Frequent communication regarding program requirements and risk evaluations is critical to keeping the program on cost and schedule
- In general, Technical Requirements Document was well defined with few TBDs
 - Thorough review of requirements at contract start resulted in numerous clarifications but few changes that affected proposed design
 - Communication allowed for some design simplification leading to cost reduction
 - Example: Elimination of deployed SGLS antenna
 - Some ambiguous language did provide challenges: 'tailoring consistent with Class C spacecraft'
 - Government and contractor had different expectations that led to non-trivial cost growth
- Risk tolerance challenging to quantify
 - Individual interpretation and experience influence interpretation of risk strategy
 - Ball included Air Force program office in risk board still took over a year for both organizations to reconcile the other's vision for risk posture
- Lessons learned incorporated into plans and requirements for sustaining a product line that spans many years and multiple deliveries

STP-SIV Defined Standard Interfaces

- Launch Vehicle Interface STP-SIV designed for multiple launch vehicles (Minotaur I, Minotaur IV, Pegasus, ESPA)
 - Powered off at launch minimizes required signal interfaces
 - Designed and tested to enveloping environments
- AFSCN Interface Designed to SIS-00502
- Mission Operations Complex Interface Multi-Mission SOC Ground Support Architecture (MMSOC-GSA)
 - Operating multiple missions on same ground system allows reuse of command and telemetry databases and operators are familiar with spacecraft operations
- Payload Interface Most volatile of interfaces
 - Standardization maximizes SDTD's ability to manifest SERB payloads
 - Documented standard interface allows payloads to design prior to manifest decision

Standardization maximizes mission flexibility

- SDTD has more flexibility to respond to changing needs of the military
 - Space Experiment Review Board (SERB) annually prioritizes ~60 payloads
- Ability to leverage launch opportunities as they become available
- Payload manifest process can run in parallel with spacecraft integration
 - Minimizes Cost and Schedule for Space Vehicle Integration and Test
 - On STPSat-2, Navy's Ocean Data Telemetry Monitoring Link (ODTML) was added after CDR without spacecraft design changes
 - STPSat-3 components procured and heritage review complete prior to payload manifest
- Reduced risk and schedule at payload integration
 - Integrated 3 payloads on STPSat-2 in 4 days

Standard Design Provides Possibility of Significant Savings

- Cost drivers that can be mitigated for recurring vehicles include
 - spacecraft components acquisition
 - program timing and contract type selection
 - leveraging investment Non-Recurring Engineering
- Standardization allows for lower risk by using the same components
- Realizing maximum savings less straightforward

- More significant savings can be realized through volume production (Up to 20% total program cost)
 - Supplier can capitalize on efficiencies shared program resources, parts procurement, parallel processing
 - Volume purchases of standard vehicles could significantly improve program cost effectiveness, responsiveness to urgent mission needs, and total value to the government
- Both government and contractor need to emphasize limited change to realize savings

STPSat-3 Realizing Significant Savings with Procurement Strategy

- For a recurring spacecraft program, component procurement schedules typically drive the program I&T schedule
 - Typical components take up to one year to produce
 - Preparation for integration of recurring build is much shorter
- STP-SIV initiated long lead component production as a separate FFP program
 - Allows contractor to keep very limited staff to manage component procurement
 - FFP contract has fewer deliverables and simplified Earned Value (EVMS)
 - Government and contractor share savings generated with leaner program execution
- STP-SIV procured longest-lead components even further in advance
 - For \$100K investment, purchased 5 ship sets of frequency dependent components and slip rings for solar array drive assembly
 - Cost and schedule savings through additional 2 months schedule reduction

Key Lessons Learned Are Successfully Being Applied on STPSat-3

- Establishing open communication and fostering an environment of mutual trust as a significant factor in controlling program cost
- Ensuring requirements and expectations are clearly established early in the program and captured to ensure continuity across normal staff transitions
- Establishing and enforcing standard interfaces to reap dividends in reduced NRE build-to-build, a compressed production schedule, and rapid response to changing defense priorities
- Seeking opportunities to purchase multiple components simultaneously and ordering targeted long lead elements in advance to reduce component procurement costs and schedules.

Manifesting Payloads on STP-SIV

- SDTD identifies candidate payloads for STP-SIV
 - DoD Prioritized PL list
 - Reimbursable PLs
- SDTD performs bundling study
 - Identify payloads with compatible mission reqts
- BATC performs more detailed compatibility study
 - Payload to SC
 - Payload to payload
 - Verifies Payload Suite within SC design limits
 - Identify potential mission risk
- Memorandum of Agreement between SDTD and PL
- Signed Space Flight Plan
- For More Information
 - stp@kirtland.af.mil

