

National Aeronautics and Space Administration

SCIENCE ACTIVATION Primer

Kristen Erickson & Lin Chambers

Science Engagement and Partnerships Science Mission Directorate, NASA Headquarters October 19, 2020

Purpose

- To Provide an Overview of Science
 Mission Directorate
- To Provide Background and Operating Model of Science Activation
- Discussions

""A scientist's job is to ask questions. Children are born scientists, but somewhere along the way they lose it. We need to bring it back." Ramirez emphasized that STEM education allows us to build the "human soft skills." Among these are curiosity, creativity, embracing failure, ability to use analogies and metaphors, problem-solving, and imagination. In particular, she emphasized the importance of "making friends with failure." Explained Ramirez: "Scientists fail all the time. We just rebrand it and call it data. Trial-and-error is a fancy way to say fail a lot."

> Dr. Ainissa Ramirez Yale University Associate Professor of Mechanical Engineering & Materials Science July 28, 2015

KEY SCIENCE THEMES*

DISCOVER SECRETS OF THE UNIVERSE

PROTECT AND IMPROVE LIFE ON EARTH AND IN SPACE

SEARCH FOR LIFE ELSEWHERE

*See 2020-2024 Science Plan

NASA Science Strategic Approach

VISION

Lead a globally interconnected program of scientific discovery that encourages innovation, positively impacts people's lives, and is a source of inspiration

MISSION

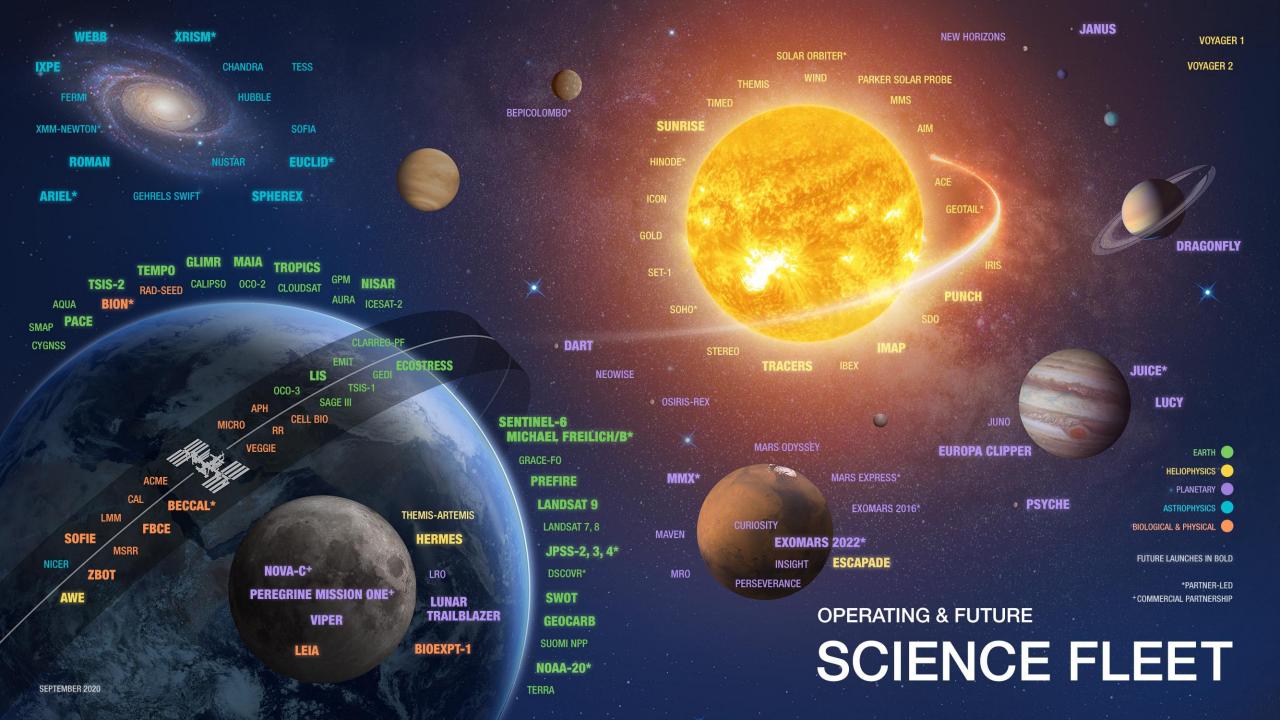
Discover the secrets of the universe

Search for life elsewhere

Protect and improve life on Earth and in Space

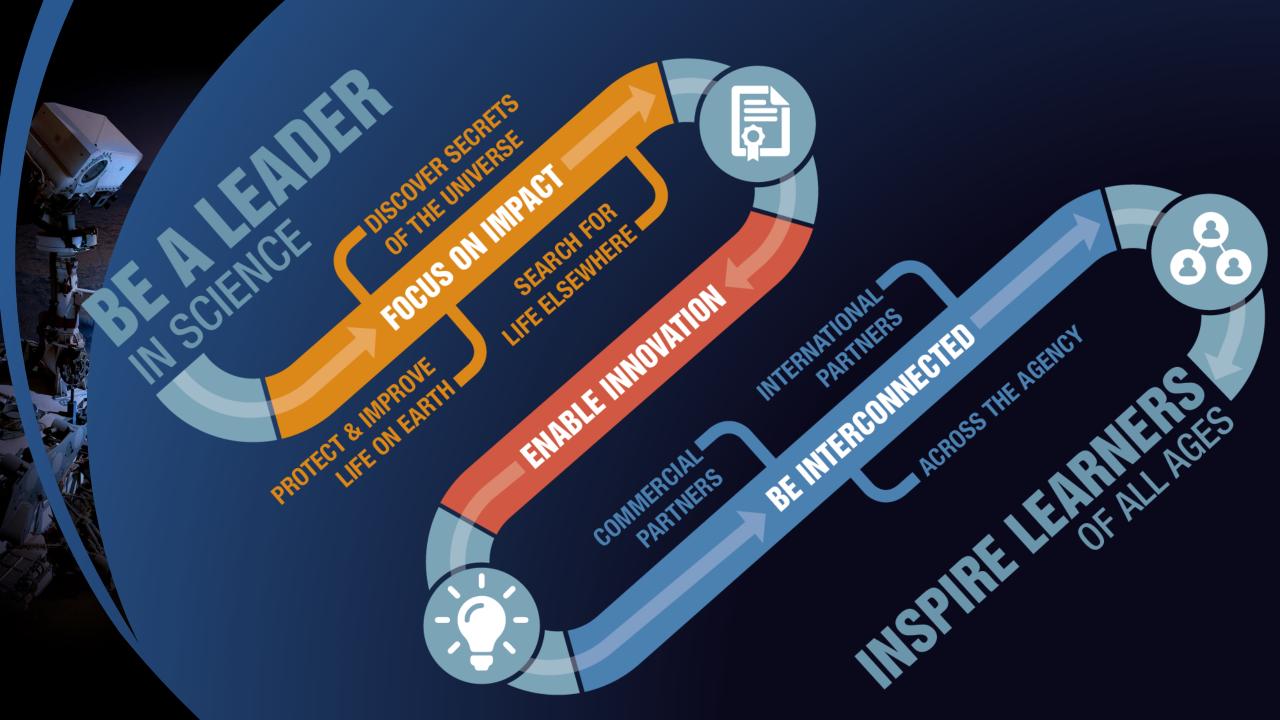
VALUES

Excellence Leadership Integrity Teamwork Safety


PRIORITIES

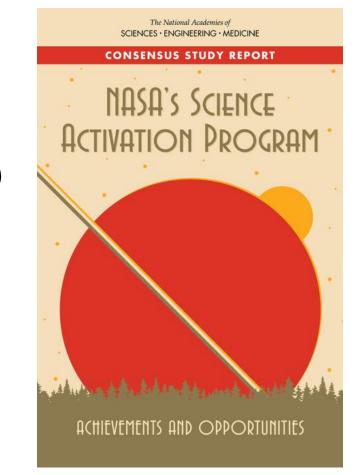
Exploration and Scientific Discovery

Innovation


Interconnectivity and Partnerships

Inspiration

Science Activation Summary


- Baselined in November 2016, this collaborative model leverages over 220 partnerships through network of science and community-based institutions using "multiplier effect" across U.S. to achieve objectives
- 27 Competitively-selected awardees enables NASA science experts and content to engage more effectively and efficiently with learners of all ages
- Each agreement uses independent evaluators to validate performance; new community of practice established
- Volunteer networks, such as Solar System Ambassadors and Night Sky Network, mobilized across the U.S.
- National Academies assessment completed in 2019
- Annual SMD funding \$46M for Science Activation activities (includes citizen science)

- The culture of science and disciplined pursuit of answers to questions are directly aligned with the skills necessary to succeed now and in the future. The NRC (2007, 2009) identifies the following as part of "21 Century Skills":
 - Solve complex problems
 - Think critically about tasks
 - Effectively communicate with people from a variety of different cultures
 - Work in collaboration with others
 - Adapt to rapidly changing environments and conditions for performing tasks
 - Effectively manage one's work
 - Acquire new skills and information on one's own
- All Four Decadal Surveys recommend the continued involvement of NASA Science in STEM and Literacy

2019 Program Assessment

- NASEM Board on Science Education (BOSE)
- 14 committee members with broad expertise
- 158-page <u>report</u>
- 15 conclusions
- 7 1/2 recommendations

Bottom line: Validated Science Activation Model

Color Key

Green - underway

Gold – ROSES call & extension process

Blue – planned future work

NASEM Recommendations

1. NASA SciAct should go through a **visioning process** that brings the portfolio up to date with current research on learning and design, the new Federal STEM plan, and evidence-based approaches to broadening participation. This process should also consider how SciAct fits within and contributes to the larger STEM education ecosystem, and should provide the foundation for developing actionable and measurable portfolio goals.

2. SciAct should articulate how it expects that the portfolio will leverage NASA assets, how partnerships and networks will be built, and how these actions will lead to desired, **measurable outcomes**.

3. SciAct must consider whether the development of a **coordinated learning network** of awardees across its portfolio is a program priority. If it is a priority, then the program must provide the necessary infrastructure to support a more active network of projects. At the very least, SciAct needs to develop more systematic mechanisms for projects to share best practices and learn from successes and failure.

4. SciAct should use the opportunity provided by Phase Two to reflect on the current portfolio within the context of the new vision, goals and logic model. This process should **critically review and guide existing projects, be explicit about the rationale and criteria for including new projects**, and consider how best to integrate them into the existing portfolio. One important area for consideration is how to ensure that **underserved communities** receive more focused attention in the next phase of the program.

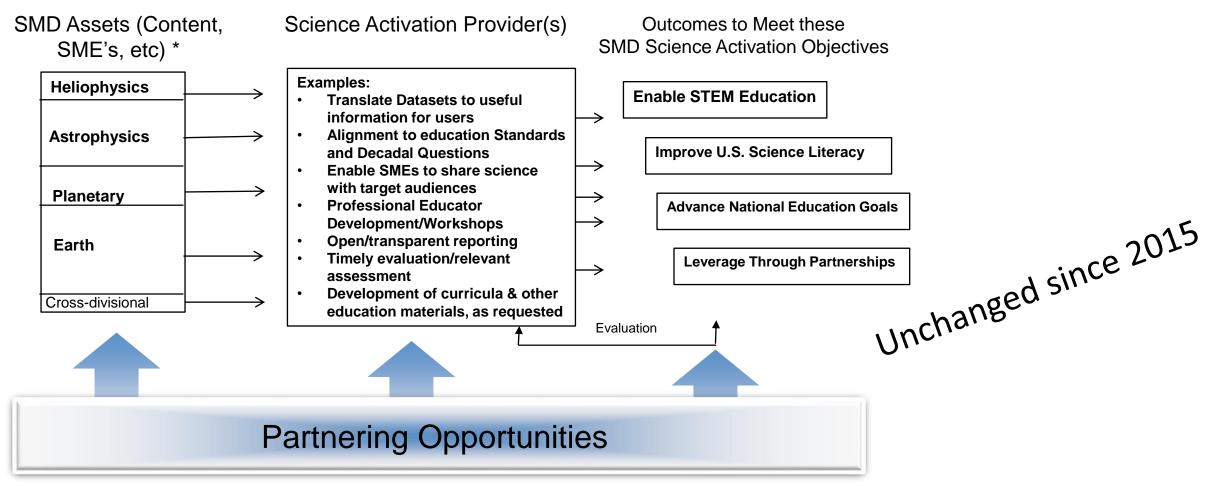
5. SciAct should deepen its commitment to **broadening participation** by using evaluation measures that go beyond counting numbers of individuals who represent specific groups. In order to do this, SciAct must identify ways that the portfolio as a whole could draw upon and implement evidence-based strategies for broadening participation.

6. SciAct should build ongoing opportunities for **dialogue with NASA Science Mission Directorate's missions and scientists.**

7. SciAct should create an **independent mechanism to obtain ongoing, real time advice** from individuals with expertise in learning and design, the larger policy context of STEM education, partnering with local communities, broadening participation in STEM, and science content relevant to the missions of NASA's Science Mission Directorate. Among other responsibilities, these experts should inform the new visioning and planning process.

7a. With input from these experts, SciAct should consider whether and how a **portfolio-level evaluation** could strengthen the focus of the program and ensure that projects in the portfolio are effectively meeting overarching SciAct program goals and objectives.

August 2020

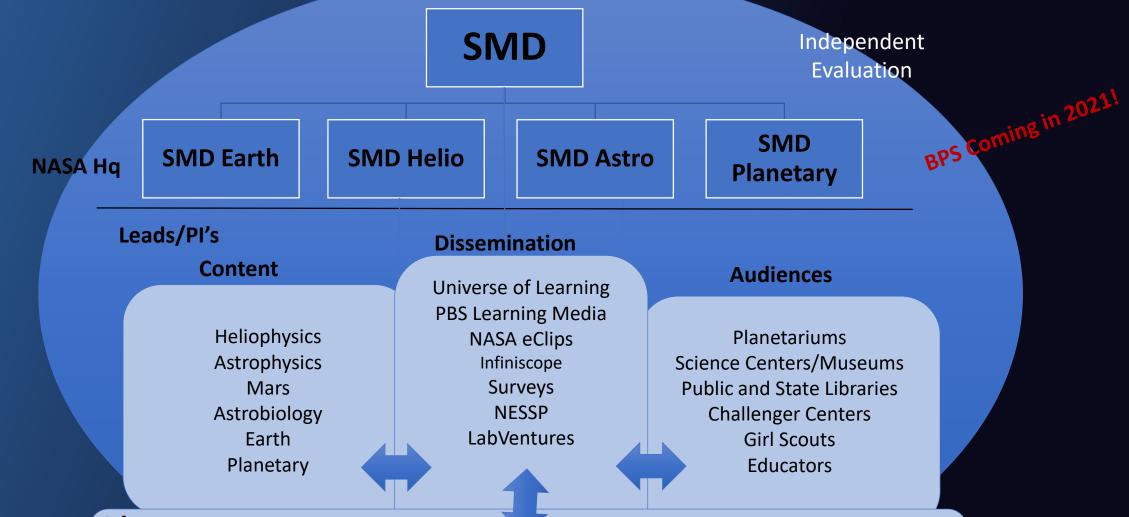

For Internal NASA Civil Servant Use Only

Science Activation Desired Outcome To further enable NASA science experts and content into the learning environment more effectively and efficiently with learners of all ages.

Unchanged since 2015

SMD Science Activation Model

* Divisions responsible for science content datasets, Infrastructure/Tools (e.g. Eyes, GSFC Visualizations), SME selection, and enabling flight opportunities


SCIENCE ACTIVATION DESIRED OUTCOME/VISION STATEMENT:

To further enable NASA science experts and content into the learning environment more effectively and efficiently with learners of all ages.

OBJECTIVES :	Mid Level Objectives:
	Inspire participants' interest in STEM and the development of their identities as science learners.
Enable STEM Education	Provide opportunities for participants to engage with the disciplinary content related to NASA science and engineering.
	Increase number of and frequency with which NASA SMD assets are used by learners across the US.
Improve U.S. Scientific Literacy	Advance participants' understanding of the process of doing science using NASA SMD assets.
	Increase participation in learner-centered experiences based on NASA SMD assets.
Advance National Education Goals	Increase the diversity of participants reached by Science Activation through intentional, inclusive programming.
	Engage participants in learning experiences that promote development of skills for STEM careers.
Leverage Efforts	Leverage internal mechanisms to support sharing and learning across the Science Activation portfolio.
through Partnerships	Utilize external partners to leverage reach and effectiveness of the Science Activation portfolio.

NASA SMD assets = science content and data, space and airborne platforms, and scientific and technical personnel.

2020 SMD Collective Relationships

Infrastructure

APOD, Eyes, Treks, SVS, IDP, Wavelength, Solar System Ambassadors, Night Sky Network, American Camp Association, National Parks, 3D Resources, JSC Astromaterials, Museum Alliance, LPI/smdepo.org, Space 365

52 exhibits developed and distributed to curated organizations

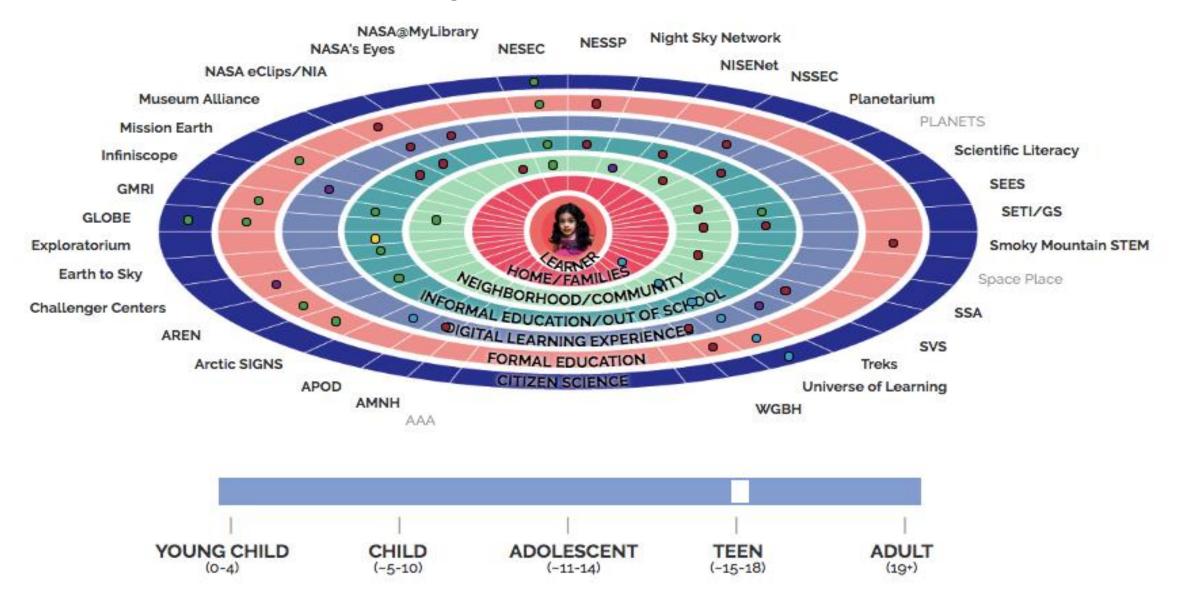
Science Activation Across the Nation By the Numbers*

4600 libraries participating in summer reading, "Universe of Stories". 88 to receive extensive science content

350 hands-on Toolkits developed and distributed to science centers and museums

421 subject matter experts

1.9 million registered educators Received 197 digital Earth and Space resources through PBS LearningMedia


* Through April 2019

PLANETARY CROSS DIVISION

EARTH HELIOPHYSICS

Science Activation Ecosystem

https://science.nasa.gov/infographic

A Reminder About Infrastructure...

As identified on page 1 of ROSES E.6, the following infrastructure items are "out of scope" and funded separately:

- <u>3D Resources</u>
- <u>Astrocamp</u>
- Astronomy Picture of the Day
- Astromaterials
- <u>Citizen Science</u>
- Earth to Sky
- GLOBE Program
- Lunar and Planetary Institute
- <u>Museum Alliance</u>
- NASA Solar System Treks
- Eyes on Earth, Solar System, Universe
- Night Sky Network
- Space Grant
- SpacePlace
- <u>Scientific Visualization Studio</u>
- Other NASA Communications Infrastructure to include web and social media sites.

In addition, Sally Ride Internships (\$140K/yr) is a programmatic element

Estimate for SMD costs are about \$6M/year. Infrastructure items are reviewed and confirmed annually.

SciAct 2.0 Long-Term Vision

By 2025, to increase learners' active participation in the advancement of knowledge

PI Guidance

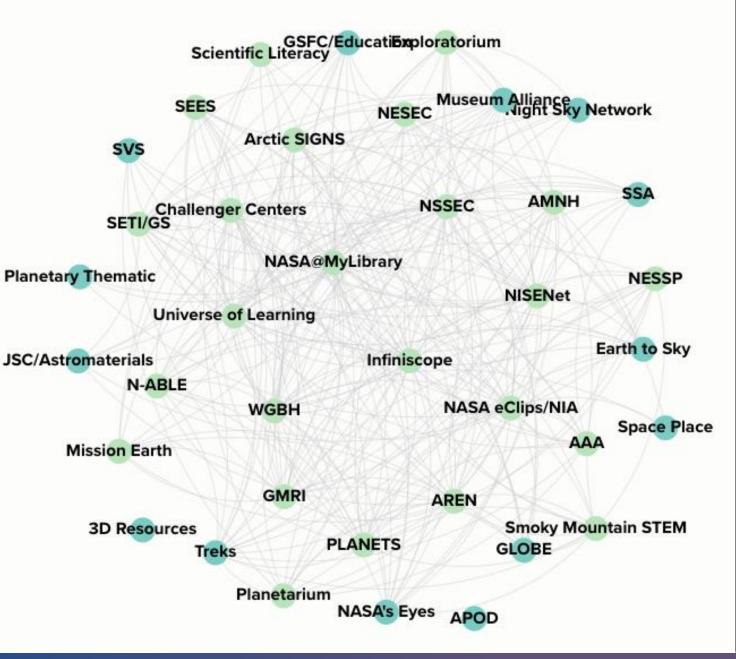
Map of SciAct 2.0

3 EPSCOR States (AK, ME, *OK)

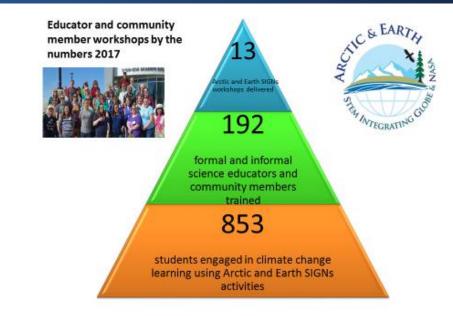
Selected for Negotiations Leading to New Awards:

- NASA's Neurodiversity Network (N3): Creating Inclusive Informal Learning Opportunities Across the Spectrum: Lynn Cominsky, Sonoma State University
- NASA SMD Community of Practice for Education (SCoPE): Meenakshi (Mini) Wadhwa, Arizona State University
- The NASA Community College Network: Simon Steel, SETI Institute
- Cosmic Storytelling with NASA Data: Tools for Exploring Data Science: Alyssa Goodman, President and Fellows of Harvard College
- The Eclipse Soundscapes Citizen Science Project): Henry Winter, ARISA Lab L.L.C.
- SciAct STEM Ecosystems to Broaden Participation in Authentic STEM Learning: Connecting Subject Matter Experts, Communities, and Learners of All Ages ("SciAct STEM Ecosystems"): Rae Ostman, *Arizona State University*
- STEM Pathways for Native Americans: Bridging Native Knowledge of Earth and Sky with Traditional STEM Programming through the "Native Earth | Native Sky" Program: Kathryn Gardner-Vandy, Oklahoma State University
- Student Airborne Science Activation for MSI (SASA): Charles Gatebe, Universities Space Research Association
- Planetary Resources and Content Heroes (ReaCH): Andy Shaner, Universities Space Research Association

Role of the Members of Our Collective

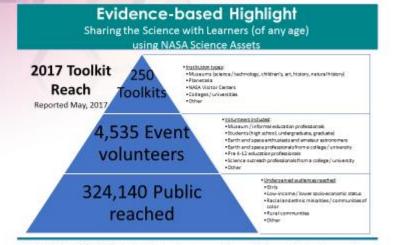

- PI's: At least 25% of your time
- All: You are not only representing your Institution, but NASA
- You are Knowledge Experts
- Leaders of your effort. Responsibility to *first* accomplish project
- Also, responsibility to provide feedback to us at NASA Hq and strengthen the "connections" of the Collective
- Thoughtful, strategic, adaptive
- Independent Evaluators Are our Ground Truth!
- If PIs transition, it is your responsibility to capture knowledge and pass along to successor

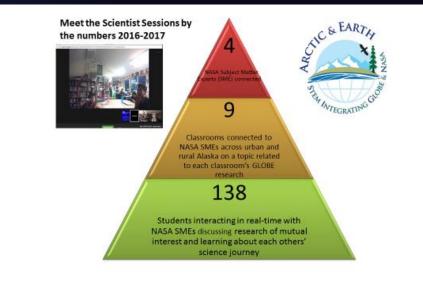
Alignment Within


- Tools include Statements of Collaboration between Institution and SMD Program Officer
- Logic Models
- Evaluation Plans, monitored by Independent Evaluators
- Monthly and Annual reporting
- Scorecard to PIs
- Working Groups
- Face-to-Face sessions
- Statements of Cross-Collaboration

Cross Collaboration Mapping

2010 AL OF PROVIDEN	Agrammente	CROSS COLLABORATION MATRIX																																			
											9018		спуать		105		_							_					IN	RAST	висти	RE					
Institution	я	Title			Cardena and		NUMBER IN		- Calebra		Adams, S	1		-	***	-	- **				Annalis	UTstate		-	Rynnellin,	THEOPI.	Real Property lies	Carcy	-	ava	1	Alleren		JAC No.	Section Section	0.000	TOTALS
American Museum Of Natural History	Kingler	OpenSpace: An Engine for Dynamic Visualization of Earth and Space Science for Informat Education and Deyond					×		×		,			×			•		×					×	×	×						×					10
Alternediate School District	Dydiowski	AEROKATS and ROVER Education Network (AREN)					3	(Ħ					×			×	×		×	×	×	×				×								×	10
Arizona State University/Infiniscope	Ariber	NASA SMD Exploration Connection				1	×	×		×	×	(×	+	×	×	<	×	-	×	×		×	×	×	×	×	×		×		×	×		×		99
Challenger Center for Space Science Education	Dush	CodeRed My STEM Mexico						×	×	×	×										×					×					×						7
Exploratorium	Semper	Navigating the Path of Totality									3	()	¢			×								×			×					x					•
Godderd Spece Flight Center/NSGEC	Young	Heliophysics Education Consortium: Through the Eyes of NASA to the Hearts and Minds of the Nation	×	×				×	×	×	1		×			×								×	×	×	×	×	×	×		×	×		×	×	•
Institute For Global Environmental Otrateglos/NEGGO	Schwerin	NASA Earth Science Education Collaborative		×						×	3			×		×	_	×			×	×			×							×			×		- 11
Laboratoroficacionilara	Viotti	Imagine Mars Real World, Real Sciences		×	×		×			11	x	-	_		+		<		_					×	×	x						x	×		×		11
Maine/Gulf of Maine Research Institute	Peake	Using NASA Data to Explore Weather and Climate	×		×		×			×	3	•				×						×		×						×		×					10
National Institute Of Aerospace Associates/NADA eClips	Spears	Multi-Olimensional Strategies to Promote Understanding of NASA Science: Design, Develop, Dissertingte and		×	×		* 1	•	×		×	•	¢	×					×				×	×	×	×		×	×			×	×	×	×		80
Northern Arizona University/PLANETS	Clark	Discover PLANETS (Henetary Learning that Advances the Necus of Engineering, Technology, and Drience)		×	×			×		×								×					×	×		×						×			×		10
-ASUNISENM	Mertin	NASA Space and Earth Informal Science Education Network (NISE-Net)	×	×		×	×	<	×	×			×			×	•								×	×	×			×	×	×	×		×		18
SET Institute/AAA	Beckmen	Airborne Astronomy Ambassedore (AAA)				×				×						3																	×				- 4
SETI Institute/GS	Harman	Reaching for the Diars: NASA Science for Girl Scouls		×			×			\square	3	1		×		×	٢.		_								×	×				×	×				10
Astronomical Society of the Pacific (ASP)	Cany	CosmoQuest: Engaging Students & the Public through a Virtual Research Facility	×				3	•		*			×			×			×					×								×				×	•
Southwestern Community College	Case	TE: Smoky Mountaine STEM Collaborathes: Bridging the Gaps in the K-12 to Post- Secondary Education Pathway NASAR My Library:		×												×									×	×										×	•
Space Science Institute/NASA/0 My Librery	Dusenbery	A National Earth and Space Science Initiative that Connects NASA, Public Libraries and their Communities		×		×	×	•	×		3	•	×	×		1	•	×	×					×	×	×	×	×	×			×	×	×		×	22
Space Talescope Science InstituteUniverse of Learning	Smith	NAGA's Universe of Learning: An integrated Astrophysics STEM Learning and Literacy Program	×	×				×			3	•	×			×				×	×		×	×	×	×	×	×		×	×	×					18
University Of Alaska, Fairbanka	Sparrow	impacts and feedbacks of a warming Arctic: Engaging isomers in STEM using NASA and QLOBE assets		××			3	•		Π	×				T	×						×			×										×		
University Of Colorado, Boulder	Dunsen	Enhancement of Astronomy and Earth Science Teaching Using High Resolution Immersive Environments	×	×						×				×		×				×						×				×							•
University Of Michigan, Ann Arbor	Miler	Demonstration of the feesibility of improving scientific iteracy and libring learning through a just-in-time dissemination process		×												×	•		×																		4
University Of Texas, Austin/SEES	Beguio	STEM Enhancement in Earth Science Meakin Earth, Fueins GLOBE		××	×		3	<		LТ						1	<							×	×	×										×	
University Of Toledo	Czajkowski	with NASA Assets to Duild Systemic Innovation in STEM Education		×			3	¢	×									×																			
University Of Washington, Seattle	Wingles	Northwest Earth and Space Sciences Pipeline (NESSP) NASA and WGBH. Bringing the		××						×	×	1		1	T	1	-	_												1							6
WGBH Educational Foundation	Connolly	Universe to America's Classrooms		××		×	×	×	×	×	×			×		×					×				×							×			× 2	0	10
	TOTALS		7	7 14		4		1		19	7 1	3 4		7	2	-	-	6	•	9		4		13	15	-13	7	7	1 9	6	3	e:			•	-	

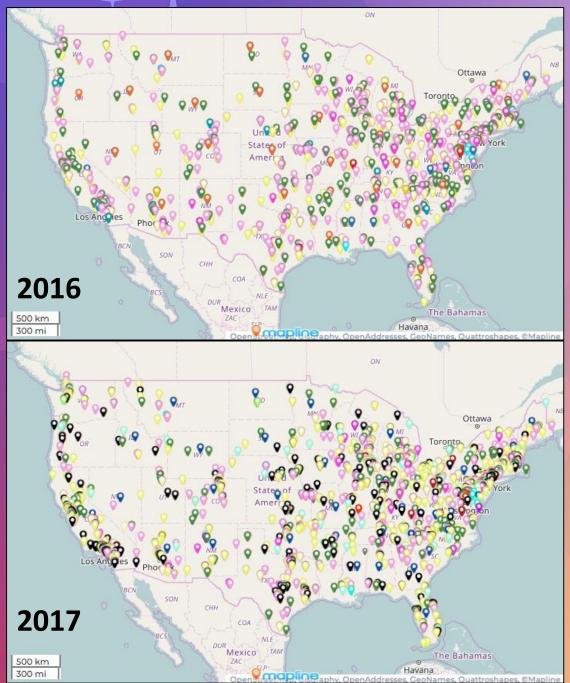

Impact Examples


2017 STEM Science Activation Meeting Impact of Eclipse Box program

NNX16AB90A, Reaching for the Stars: NASA Science for Girl Scouts PI: Edna Devore (SETI Institute); Evaluators: Wendy Friedman, Kristin Bass & Ruchita Patel

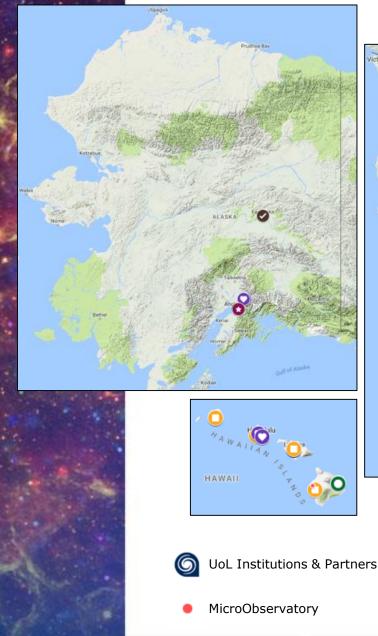
NNX16AC67A, SEISE, PI: Paul Martin, Evaluators: Museum of Science, Baston and Science Museum of Minnesata (Kalimann et al)

Look Ahead


- Join smdepo.org if you haven't already
- October Monthy Review
- Science Activation Annual Review (virtual)
 November 9-13
 - You and your team welcome to attend. Within -90 days of award start date
 - Contact Lin, if have any questions
- January 2021 Kick-off Meeting (dates TBD)
- Plans due 60 days afterwards

Back-Up (Maps, Alignments, 2.0 Awardees, and Acronyms)

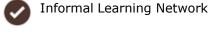
Reach Maps



🐼 🕥 AAA-SETI (2016) Solution Aggregated Organizations (2016) ☑ ◯ AREN PROJECT (2016) 🗹 💡 Challenger Center NASA CAN (2018) ☑ ♀ Heliophysics Citizen Science (2016) 🗹 Q Museum Alliance Institutional Members (2018)🕑 🕥 NAML Partner Libraries (2018) Solution NAML Partner State Libraries (2018) Sec (2016) Solution Night Sky Network (2016) ☑ ♀ NISE Network Museum Partners (2016) SSEC (2016) 🗹 🔾 Planet CAN (2016) 🗹 💡 Reaching for the Stars: NSGS (2016) Smokey Mountain STEM (2016) 🗹 💛 Universe of Learning, STScI (2016)

🗹 💡 Viewspace (2016)

NASA's Universe of Learning Reach Map



ViewSpace

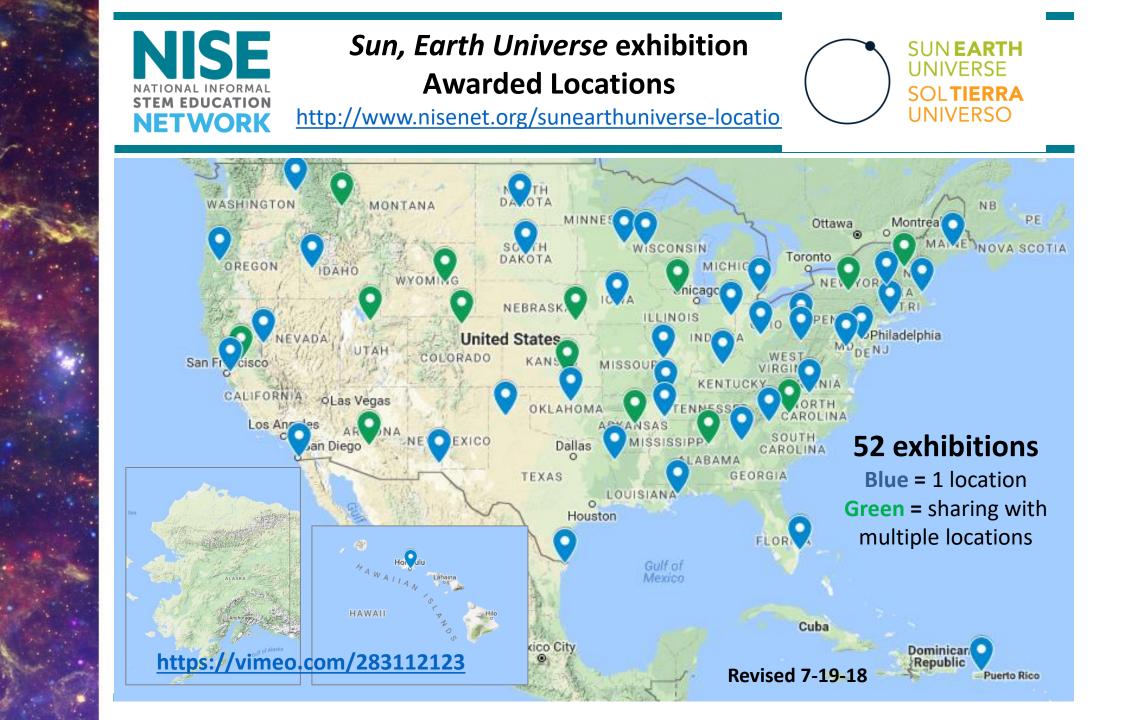
AstroViz

Science Olympiad

Girls STEAM Ahead with NASA

Science Briefing

Alignment Between SMD and Agency Activities


 SMD's STEM-related activities align with the agency's 2018 Strategic Plan

Objectives 1.1, 3.3 and 4.1

- Aligns with the new STEM engagement framework
 - Authentic Experiences
- All Science Activation awards are evidence-based, contribute to science literacy and advance national goals
- For Science Activation, our experts, content, and authentic experiences are what we uniquely contribute into the education ecosystem.
 - New GPRAMA metrics established each year

Alignment Between SciAct and 2018 Federal Co-STEM

Goals for American STEM Education: • Build Strong Foundations for STEM Literacy • Increase Diversity, Equity, and Inclusion in STEM • Prepare the STEM Workforce for the Future										
Pathways	<u>Objectives</u>	<u>NASA</u>								
Develop & Enrich Strategic	Foster STEM ecosystems that unite communities	SciAct								
Partnerships	Increase Work-Based Learning through Educator-Employer Partnerships									
	Blend Successful Practices from Across the Learning Landscape	SciAct								
Engage Students Where	Advance Innovation and Entrepreneurship Education									
Disciplines Converge	Make Mathematics a Magnet									
	Encourage Transdisciplinary Learning	SciAct								
Build Computational Literacy	Promote Digital Literacy and Cyber Safety									
	Make Computational Thinking an Integral Element of All Education									
	Expand Digital Platforms for Teaching and Learning	SciAct								
Operate with Transparency & Accountability		SciAct	33							

Selected for Negotiations Leading to Extensions to Existing Agreements:

- OpenSpace: An Engine for Dynamic Visualization of Earth and Space Science for Informal Education and Beyond: Rosamond Kinzler, American Museum of Natural History
- Real World, Real Science: Using NASA Data to Explore Weather and Climate: Leigh Peake, Gulf of Maine Research Institute
- Smoky Mountains STEM Collaborative: Bridging the Gaps in the K-12 to Post-Secondary Education Pathway: Matt Cass, Southwestern Community College
- Navigating the Path of Totality: Robert Semper, Exploratorium
- PLANETS (Planetary Learning that Advances the Nexus of Engineering, Technology, and Science): Joelle Clark, Northern Arizona University
- Impacts and Feedbacks of a Warming Arctic: Engaging Learners in STEM using NASA and GLOBE Assets: Elena Sparrow, University of Alaska, Fairbanks
- Mission Earth: Fusing GLOBE with NASA Assets to Build Systemic Innovation in STEM Education: Kevin Czajkowski, University of Toledo
- AEROKATS and ROVER Education Network (AREN): Andy Henry, Wayne County Intermediate School District
- NASA SMD Exploration Connection: Ariel Anbar, Arizona State University
- NASA Earth Science Education Collaborative: Theresa Schwerin, Institute for Global Environmental Strategies
- NASA eClips 4D Multi-Dimensional Strategies to Promote Understanding of NASA Science: Design, Develop, Disseminate and Discover: Shelley Spears, National Institute of Aerospace Associates
- NASA's Universe of Learning: An Integrated Astrophysics STEM Learning and Literacy Program: Denise Smith, Space Telescope Science Institute
- NASA Space Science Education Consortium: Through the Eyes of NASA to the Hearts and Minds of the Nation: C. Alex Young, NASA Goddard Space Flight Center
- NASA@ My Library: A National Earth and Space Science Initiative that Connects NASA, Public Libraries and their Communities: Paul Dusenbery, Space Science Institute
- NASA Space and Earth Informal Science Education Network (SEISE-Net): Paul Martin, Arizona State University
- STEM Enhancement in Earth Science: Margaret Baguio, University of Texas, Austin
- Northwest Earth and Space Sciences Pipeline (NESSP): Robert Winglee, University of Washington, Seattle
- Airborne Astronomy Ambassadors (AAA): Dana Backman, SETI Institute

Acronym List

ACE	Advanced Composition Explorer	GeoCARB	Geostationary Carbon Cycle Observatory
AETC	Aerosciences Evaluation and Test Capabilities	GEOTAIL	Japan/NASA mission to study Earth's magnetotail
AIM	Aeronomy of Ice in the Mesosphere	Gehrels Swift	Neil Gehrels Swift Observatory
AO	Announcement of Opportunity	GLOBE	Global Learning and Observations to Benefit the Environment
APMC	Agency Program Management Council	GOES series	Geostationary Operational Environmental Satellites
Aqua	Earth Observing Satellite mission for atmospheric dynamics	GOLD	Global-scale Observations of the Limb and Disk
ARC	Ames Research Center	GPM	Global Precipitation Measurement
ARTEMIS	Acceleration, Reconnection, Turbulence and Electrodynamics of the	GPRAMA	Government Performance Results Act-Modernization Act of 2010
	Moon's Interaction with the Sun	GRACE-FO	Gravity Recovery and Climate Experiment-Follow On
ASTRO-H (JAXA)	Facility-class X-ray mission	HEOMD	Human Exploration and Operations Mission Directorate
Aura	Earth Observing Satellite for atmospheric chemistry	Hinode (JAXA)	Mission to study energy transport and release in the solar
BepiColombo	Joint ESA/JAXA mission to Mercury; NASA is contributing the		atmosphere
	Strofio instrument	HST	Hubble Space Telescope
BPR	Baseline Performance Review	Hubble	Hubble Space Telescope
CALIPSO	Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations	IBEX	Interstellar Boundary Explorer
CECR	Construction and Environmental Compliance and Restoration	ICESat-2	Ice, Clouds and Iand Elevation Satellite-2
Chandra	Chandra X-ray Observatory	ICON	Ionospheric Connection Explorer
CLARREO-PF (ISS)	Climate Absolute Radiance and Refractivity Observatory-Pathfinder	IDIQ	Indefinite delivery/indefinite quantity
CLPS	Commercial Lunar Payload Services	IMAP	Interstellar Mapping and Acceleration Probe
CMC	Center Management Council	InSight	Interior Exploration using Seismic Investigations, Geodesy,
CoF	Construction of Facilities		and Heat Transport
CREAM (ISS)	Cosmic Ray Energetics and Mass experiment on ISS	IRB	Independent Review Board
CYGNSS	Cyclone Global Navigation Satellite System	IRIS	Interface Region Imaging Spectrograph
DART	Double Asteroid Redirection Test	IRT	Independent Review Board
Dawn	Discovery mission to visit asteroids Vesta and Ceres	ISS	International Space Station
DoD	Department of Defense	IXPE	Imaging X-Ray Polarimetry Explorer
DPMC	Directorate Program Management Council	JAXA	Japanese Space Agency
DRIVE	Diversify, Realize, Integrate, Venture and Educate Initiative	JCL	Joint Confidence Level
DR&T	Directed Research and Technology	JPL	Jet Propulsion Laboratory
DSOC	Deep Space Optical Communications	JPSS	Joint Polar-orbiting Satellite System
EP	Episode	JPSS 2	Joint Polar Satellite System (2nd in the series)
EPD	Educator Professional Development	JUICE (ESA)	Jupiter Icy Moons Explorer
ESA	European Space Agency	Juno	New Frontiers mission to Jupiter
Euclid (ESA)	ESA visible/near infrared survey mission	JWST/Webb	James Webb Space Telescope
Europa Clipper	Mission to Jupiter's moon	KDP	Key Decision Point
ExoMars 2016	European Space Agency's (ESA) Exobiology on Mars program	Kepler	Kepler Space Telescope to detect extrasolar planets
ExoMars 2020 (ESA)	Mars rover mission. NASA is contributing the MOMA instrument	LADEE	Lunar Atmosphere Dust and Environment Explorer
FEMA	Federal Emergency Management Agency	LAGEOS	Laser Geodynamics Satellite
Fermi	Fermi Gamma-ray Large Area Space Telescope	Landsat	Land imaging satellite
	Spectroscopic Terahertz Observatory	LDEP	Lunar Discovery and Exploration Program
FY	Fiscal Year	LEO	Low Earth Orbit
GDC	Geospace Dynamic Constellation	LLO	Low Lunar Orbit
GEDI (ISS)	Global Ecosystem Dynamics Investigation	LRD	Launch Readiness Date
GEO	Geosynchronous Earth Orbit	LRO	Lunar Reconnaissance Orbiter

Acronym List

LSST	Large Synoptic Survey Telescope	SCAP	ARC Shared Capabilities Assets Program
Lucy	Discovery mission to six Jovian Trojan asteroids	SciAct	Science Activation
MAIA	Multi-Angle Imager for Aerosols	SDO	Solar Dynamics Observatory
Mars Express (ESA)	Mars orbiter lander mission	Sentinel-6A/B	Sentinel Space Telescope
Mars Odyssey	Mars orbiter	SE&P	Science Engagement and Partnerships
Mars Rover 2020	Next robotic science rover of Mars Exploration Program	SET-1 (ISS)	Space Environment Testbed
MAVEN	Mars Atmosphere and Volatile Evolution	SMAP	Soil Moisture Active/Passive
MetOp-C	Polar orbiting meteorological satellite	SMD	Science Mission Directorate
MIDEX	Medium-class Explorer	SMEX	Small Explorer
MMS	Magnetospheric Multiscale	SOC	Solar Orbiter Collaboration, with ESA
MMX	Mars Moons eXploration	SOFIA	Stratospheric Observatory For Infrared Astronomy
MOXIE	Mars Oxygen ISRU Experiment	SOHO	Solar and Heliospheric Observatory
MRO	Mars Reconnaissance Orbiter	SORCE	Solar Radiation and Climate Experiment
MSL	Mars Science Laboratory (Curiosity)	Spitzer	Spitzer Infrared Space Telescope
MSR	Monthly Status Review / Mars Sample Return	SRB	Standing Review Board
NE	Northeast	SSCG	Scope and Subject Category Guide
NEO	Near-Earth Object	SSEG	
NEOWISE	Near Earth Object Wide-Field Infrared Survey Explorer		Solar System Exploration Research Virtual Institute
New Horizons	New Frontiers mission to fly by Pluto and into the Kuiper Belt	STEM	Science, Technology, Engineering, and Math
NExT-C	NASA Evolutionary Xenon Thruster (NEXT) Commercial	STEREO	Solar Terrestrial Relations Observatory
NGO	Nongovernment Organizations		Science and Technology Mission Directorate
		Suomi NPP	Suomi National Polar-orbiting Partnership
NICER (ISS)	Neutron-star Interior Composition Explorer experiment on ISS	SWFO	Space Weather Follow On Program
NISAR	NASA-ISRO Synthetic Aperture Radar Satellite	SWx	Space Weather
NOAA NSF	National Oceanic and Atmospheric Administration	Swift	Gehrels Swift Gamma-ray Burst Explorer
	National Science Foundation	SWOT	Surface Water Topography
NuSTAR	Nuclear Spectroscopic Telescope Array	TEMPO	Tropospheric Emissions: Monitoring of Pollution
0CO-2	Orbiting Carbon Observatory-2	Terra	Earth Observing System mission for land, ocean, and clouds
OCO-3 (ISS)	Orbiting Carbon Observatory-3	TESS	Transiting Exoplanet Survey Satellite
OpPlan	Operational Plan	THEMIS	Time History of Events and Macroscale Interactions during
Opportunity	Mars Exploration Rover-B		Substorms
OSTM/Jason-2	Ocean Surface Topography Mission with France	TIMED	Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics
OSIRIS-REx	Origins-Spectral Interpretation-Resource Identification-Security-	TRL	Technology Readiness Level
	Regolith Explorer	TROPICS	Time-Resolved Observations of Precipitation structure and storm
OSTP	Office of Science, Technology and Policy		Intensity with a Constellation of SmallSats
PACE	Pre-Aerosol, Clouds, and ocean Ecosystem	TSIS (ISS)	Total Solar Irradiance Spectrometer
Psyche	Discovery mission to asteroid 16-Psyche	TWINS	Two Wide-Angle Imaging Neutral-Atom Spectrometers
QuikSCAT	Quick Scatterometer for ocean winds measurement	USFS	U.S. Forest Service
RFP	Request for Proposals	USGS	U.S. Geological Survey
RHESSI	Reuven Ramaty High Energy Solar Spectroscope Imager	Van Allen Probes	Formerly Radiation Belt Storm Probes
ROSES	Research Opportunities in Earth and Space Science	Voyager	Missions to the outer planets
RPS	Radioisotope Power Systems	WFIRST	Wide-Field Infrared Survey Telescope
SAGE III (ISS)	Stratospheric Aerosols and Gas Experiment III	Wind	Mission to measure energetics of the solar wind
SBIR	Small Business Innovation Research	XRISM	JAXA's X-Ray Astronomy Recovery Mission
SC	Science Centers	XMM-Newton (ESA)	X-ray Multi-mirror Mission

Welcome to the Journey!! Questions?