
Science and Applications Traceability Matrix

Public Release A 19 February 2019

Note to <u>External</u> Reviewers: Please use this on-line form to provide your comments: <u>https://goo.gl/forms/RbSbNez4lNjjEjun2</u>

A-CCP SATM Navigation Map

Overarching A-CCP Goal	A+CC P	A	Goals	
			<u>C-2a, C-2g,</u> <u>W-1a, W-2a</u>	G1 <u>Cloud Feedbacks</u> Reduce the uncertainty in low- and high-cloud climate feedbacks by advancing our ability to predict the properties of low and high clouds.
Understand the processing of			<u>C-2g, C-5c,</u> <u>H-1b, W-1a,</u> <u>W-2a, W-4a</u>	G2 <u>Storm Dynamics</u> Improve our physical understanding and model representations of cloud, precipitation <i>and dynamical</i> processes within storms.
water and aerosol through the atmosphere and develop the societal applications enabled from			<u>H-1b, H-1c,</u> <u>W-1a, S-4a</u>	G3 <u>Falling Snow</u> To advance understanding of its role in cryospheric-climate feedbacks, quantify the rate of falling snow, particularly at middle to high latitudes.
this understanding.			<u>W-1a, W-5a,</u> <u>C-5a</u>	G4 <u>Aerosol Processes</u> Reduce uncertainty in key processes that link aerosols to weather, climate and air quality related impacts.
		-	<u>C-2h, C-5c</u>	G5 <u>Aerosol Radiative Forcing</u> Reduce the uncertainty in Direct (D) and Indirect (I) aerosol-related radiative forcing of the climate system.

Goal only fully realizable via combined mission.

A or CCP makes meaningful contribution to goal

A+ CC P	А	CC P	Goal	Overarching Science Questions	Objectives
			G1 <u>Cloud Feedbacks</u> Reduce the uncertainty in low- and high-cloud climate feedbacks by advancing our ability to predict the properties of low and high clouds	 To what extent can the properties of low clouds be determined by environmental factors? How do the properties and formation of high clouds relate to (i) deep convection and (ii) large-scale environmental factors? 	 O1 Low Clouds Minimum: Determine the sensitivity of boundary layer <i>bulk</i> cloud physical and radiative properties to large-scale and local environmental factors including thermodynamic and dynamic properties. Enhanced: Adds to Minimum cloud <i>microphysical</i> properties and enhanced bulk cloud properties. O2 High Clouds Minimum: Relate the vertical structure, horizontal extent, ice water path, and radiative properties of <i>convectively generated</i> high clouds to convective vertical transport Relate the vertical structure, horizontal extent, ice water path, and radiative properties of <i>large scale</i> high clouds to environmental factors. Enhanced: Adds to Minimum microphysical properties of ice clouds.

A+ CC P	Α	CC P	Goal	Overarching Science Question	Objectives
			G2 <u>Storm Dynamics</u> Improve our physical understanding and model representations of cloud, precipitation and dynamical processes within storms.	How do different convective storm systems contribute to the vertical mixing and transports of heat, water, and other constituents within the atmosphere and how do these transports relate to the cloud and precipitation properties of storms?	 O3 <u>Convective Storms</u> Minimum: Relate vertical motion within convective storms and its cloud- and precipitation-structures to a) storm life cycle, b) local environment thermodynamic and kinematic factors such as temperature, humidity, and vertical wind shear, c) ambient aerosols, and d) surface properties. Enhanced: Relate vertical motion within convective storms and other storm types and their cloud- and precipitation-structures to a) <i>latent heating profiles</i>, b) storm life cycle, c) local environment thermodynamic and kinematic factors such as temperature, humidity, and vertical wind shear, d) ambient aerosols, and e) surface properties.

A +C CP	A	CC P	Goal	Overarching Science Questions	Objectives
			G3 <u>Falling Snow</u> To advance understanding of its role in cryospheric-climate feedbacks, quantify the rate of falling snow, particularly at middle to high latitudes.	 What large- and mesoscale factors determine the areal extent and intensity of snowfall. To what extent do clouds and precipitation influence the surface mass and energy balances at Earth's ice covered surface? 	 O4 Falling Snow Processes Minimum: Detect and quantify vertical profiles of falling snow rate and relate these to cloud physical properties, meteorological forcing and regime, orography, and land surface properties. Enhanced: Enhancement of Minimum with an additional focus on the surface energy balance particularly at higher latitudes.

A C F	c	A CC P	Goal	Overarching Science Questions	Objectives
			G4 <u>Aerosol</u> <u>Processes</u> Reduce uncertainty in key processes that link aerosols to weather, climate and air quality related impacts.	 What are the major anthropogenic and natural sources of aerosol and how do they vary spatially and temporally? What are the factors that relate AOD to surface PM concentrations? To what extent does long-range transport of smoke, dust, and other particulates impact regional near-surface air quality? 	 O5 <u>Aerosol Redistribution</u> Minimum: Characterize the removal and redistribution of aerosols by clouds and light precipitation (<2 mm/hr). Enhanced: Characterize the removal and redistribution of aerosols by clouds and heavy precipitation (> 2 mm/hr). O6 <u>Aerosol Attribution</u> Minimum: Determine aerosol speciation to quantify the contributions of different aerosol types to observed aerosol properties and improve emission estimates of the different aerosol sources. Enhanced: Characterize changes in aerosol amounts and properties over space and time in terms of 3D transport and spatially resolved emission sources. O7 <u>Air Quality</u> Minimum: Enhance understanding of the processes controlling boundary layer and near surface speciated extinction as means to constrain air quality predictions and estimates of human health impacts. Enhanced: Determine the spatial and temporal variations in boundary layer and near surface speciated PM concentrations as means to constrain air quality
		8			predictions and estimates of human health impacts.

A +C CP	4	CC P	Goal	Overarching Science Questions	Objectives
			G5 <u>Aerosol Radiative</u> Forcing Reduce the uncertainty in Direct (D) and Indirect (I) aerosol-related radiative forcing of the climate system.	 What is the role of absorbing aerosols in the Earth's radiation budget? How do changes in anthropogenic aerosols affect Earth's radiation budget and offset the warming due to greenhouse gases? Under what conditions do aerosols impact the albedo or coverage of shallow clouds? 	 O8 Absorbing Aerosols Minimum: Quantify the impact of absorbing aerosol on the Earth's radiative balance at TOA and surface, and on atmospheric stability. Enhanced: Quantify the impact of absorbing aerosols on <i>vertically resolved</i> radiative heating rates. O9 Aerosol Direct Effect Minimum: Reduce uncertainties in estimates of global mean clear and all-sky shortwave direct radiative effects (DRE) to ±1.2 W/m² at TOA and ±0.6 W/m² at surface with commensurate improvements in regional estimates of DRE and anthropogenic aerosol radiative forcing. Enhanced: Quantify vertically resolved aerosol radiative forcings. O10 Aerosol Indirect Effect Minimum: Provide process level constraints on aerosol-warm cloud interactions as a means to constrain estimates of aerosol indirect radiative forcing. Enhanced: Provide process level constraints on aerosol-cold cloud interactions as a means to constrain estimates of aerosol indirect radiative forcing.

A+C CP	A	ССР	Objectives
			O1 Low Clouds Minimum: Determine the sensitivity of boundary layer <i>bulk</i> cloud physical and radiative properties to large-scale and local environmental factors including thermodynamic and dynamic properties. Enhanced: Adds to Minimum cloud <i>microphysical</i> properties and enhanced bulk cloud properties.
			A+CCP Potential Enabled Applications
PEA1	Weat	ther, ag	riculture, energy and air quality modeling (NWP centers, USDA,

- PEA1 Weather, agriculture, energy and air quality modeling (NWP centers, USDA, IBM, AFWA, Private Companies)
- PEA2 Issuing alerts of fog/vog (air quality and weather communities)
- PEA7 Cloud evolution for aviation and weather prediction (FAA, DoD, DoE, NOAA)
- PEA9 Icing and visibility hazards for aviation industry (FAA, AFWA, Airlines, NOAA)
- PEA15 Storm warnings for lightning and severe storm development (AFWA, NWS, and NWP modeling communities)

Legend: V Needed to meet objective, (V) From PoR but insufficient to meet

PEA16 Forecasting snow and mixed precipitation events (NWP modeling communities, private weather companies)

A	CC P	O D O	POR	PEA#	Geophysical Variables	Qualifiers
					Minimum	
	٧	S	(√)	1	Cloud liquid water path	
	٧	S	(√)	1,2,7,9	Cloud optical depth	
	٧	S	(v)	1,2,7,9,15	Cloud droplet effective radius	
v	٧	S	(√)	1,2,7,9,15, 16	Cloud top phase	
v	٧		(v)	1,2,7,9,15, 16	Cloud top height	
	٧	S	(v)	1,2,7,9,15	Areal cloud fraction	
	٧		(v)		Precipitation phase	
	٧		(v)	1,15,16	Precipitation rate profile	<2 mm/hr
٧			(∨)		PBL height	
			V		Synoptic scale motion	
			V		Environmental thermodynamic profiles	
	٧		(v)		Cloud albedo	Derived
					Enhanced (=Minimum+)	
	v			1,2	Cloud droplet concentration	Layer
٧	v			1,2,7,9,	Cloud base height	
	٧		(∨)	1	Total water path	
	٧			1,	Volumetric cloud fraction	
			v	1,2,7	Diurnally resolved cloud cover	
jectiv	/e, s (iompl	imentary (V)	observation fro	n SBG. M Complimentary observation from MC Surface turbulent fluxes (land and ocean)	U G

A+ CC P	А	CC P	Objectives
			 O2 High Clouds Minimum: Relate the vertical structure, horizontal extent, ice water path, and radiative properties of <i>convectively generated</i> high clouds to convective vertical transport Relate the vertical structure, horizontal extent, ice water path, and radiative properties of <i>large scale</i> high clouds to environmental factors. Enhanced: Adds to Threshold microphysical properties of ice clouds.
			A CCD Dotontial England Applications

A+CCP Potential Enabled Applications

- PEA9 Icing and visibility hazards for aviation industry (FAA, AFWA, Airlines, NOAA)
- PEA10 Characterization of hail events and damage (NWP communities, reinsurance, and agricultural communities)
- PEA15 Storm warnings for lightning and severe storm development (AFWA, NWS, and NWP modeling communities)

Objectives	A	CC P	0 D 0	POR	PEA#	Geophysical Variables	Qualifiers
						Minimum	
High Clouds	٧	٧	S	(√)		Ice water path	
	٧	٧	S	(√)	9,10,15	Cloud optical depth	
imum:	٧	٧			9,10,15	Cloud base height	
Relate the vertical structure, horizontal	٧	٧		(√)	9,10,15	Cloud top height	
extent, ice water path, and radiative properties of <i>convectively generated</i> high	٧			(√)	9,10,15	Cloud top temperature	
clouds to convective vertical transport				٧	9,10,15	Cloud areal extent	
Relate the vertical structure, horizontal				٧	10	Diurnally resolved cloud cover and cloud top height	
extent, ice water path, and radiative properties of <i>large scale</i> high clouds <u>to</u> environmental factors.		v			10,15	Vertical air velocity	Above 5km, >2 m/s
environmental lactors.	٧	٧			9,10,15	Cloud vertical structure	
anced: Adds to Threshold microphysical		٧			9,10,15	Melting layer detection (base and top height)	
perties of ice clouds.				٧	15	Cloud lifecycle categories	
				٧		Synoptic scale motion	
CCP Potential Enabled Applications	٧					Cloud radiative effects, SW LW	
ility hazards for aviation industry (FAA, AFWA, Airlines,				٧	10,15	Environmental thermodynamic profiles	
on of hail events and damage (NWP communities,						Enhanced (=Minimum+)	
nd agricultural communities)	٧	٧			9,10,15	Ice crystal number concentration	Layer
gs for lightning and severe storm development (AFWA, provide the provided the provided the provided the provide the provided the provid	٧	٧	S		9,10,15	Bulk crystal size, including effective radius	
		٧		٧	9,10,15	Convective cloud cover	
Legend: $\mathbf v$ Needed to meet objective, (v) From PoR but insufficient to m	eet c	object	ve,	s dờinp	imentarijābs	ะ ฟิลเฟส ฟลก์เรื่อยี่, จัง ยุธรัฐย์เกิดกาสาร observation from MC	In convection

A+CC P	А	ССР	Objectives	A	CC P	0 D 0	POR	PEA#	Geophysical Variables	Qualifiers
			O3 Convective Storms						Minimum	
		888	Minimum: Relate vertical motion within convective storms					3,4,10,12-15	Vertical air velocity	Above 5km, > 2 m/s
			and its cloud- and precipitation-structures to a) storm life	v	٧		(V)	3,4,6,7,8,10,15,16	Cloud top height	
			cycle, b) local environment thermodynamic and kinematic factors such as temperature, humidity, and vertical wind	v			(√)	3,4,6,7,8,10,15,16	Cloud top temperature	
			shear, c) ambient aerosols, and d) surface properties.		٧		(√)	3,4	Ice water path	
			Enhanced: Relate vertical motion within convective storms		٧		(V)	3,4,7,12-15	Convective classification	
			and other storm types and their cloud- and precipitation-				V	3,4,6,7,15	Cloud lifecycle categories	
			structures to a) latent heating profiles, b) storm life cycle, c)				V		Diurnally resolved cloud cover and cloud top height	
			local environment thermodynamic and kinematic factors such as temperature, humidity, and vertical wind shear, d)		٧		(√)	3,4,6,8,11-16	Precipitation rate profile	
			ambient aerosols, and e) surface properties.		٧		(√)	3,4,15	Cloud vertical structure	In convection, above melting layer
					٧		(√)	3,4,10,15,16	Melting layer detection (base and top height)	
		Α	+CCP Potential Enabled Applications		٧		(√)	4,7,10,15	Stratiform/convective precipitation discrimination	
PEA3 - A	erosols i	impact c	n precipitation and storm development	v				3,4,6	Aerosol extinction profile	
	OAA, NV		rs, IBM) nitialization of aerosols and severe storm development	٧		S	(√)		AOD	Column, PBL
	IWP and		•				٧		Synoptic scale motion	Environmental shear
	-		ics – Big data for planetary resource surveillance (Defense ic and private industry, IBM)				V		Environmental thermodynamic profiles	
	•		or aviation and weather prediction (FAA, DoD, DoE, NOAA)						Enhanced (=Minimum+)	
	•		zations for model initiation (NWP and modeling communities)		٧		(√)	3,4,8	Latent heating profile	
PEA11 -	 PEA10 – Characterization of hail events and damage (NWP, reinsurance, and agricultural) PEA11 - Hydrologic modeling, disease tracking, animal migration, insurance modeling and disaster applications (CDC, NOAA, Red Cross, World Bank, public/private sector) PEA12 - Forecasting heavy rain, snow, flooding events (NOAA, DoD, FAO, reinsurance) PEA13 - Flood and landslide monitoring and forecasting in mountains (NOAA, FEMA, USGS) PEA14 - Streamflow, flooding, drought, energy, and agricultural monitoring and modeling (USDA, Water resource managers) 						(√)	3,4,6,10-16	Precipitation phase	
							(√)	3,4,6,10,15,16	Precipitation particle size	
								3,7,10,12-15	Convective core size	
								3,4	Aerosol effective radius	Profile
			ntning, severe storm development (NWP modeling communities)	v				3,4	Aerosol non-sphericity	Profile & column
	-		v/mixed precipitation events (NWP, private weather companies)					2.4	AAOD	Profile 1

A+ CC A P			Objectives		А	CC P					
Ρ											
			O4 Falling Snow Processes		٧	٧					
			Minimum: Detect and quantify vertical profiles of		V						
			falling snow rate and relate these to cloud physical			٧					
			properties, meteorological forcing and regime,			٧					
			orography, and land surface properties.			٧					
		Enhan	Enhanced: Enhancement of Minimum with an			٧					
			additional focus on the surface energy balance		٧						
		88	particularly at higher latitudes.			٧					
A+CCP Potential Enabled Applications											
PEA6			Analytics – Big data for planetary resource surveillance (Defense								
	<u>1</u> - Hy	drologi	it, public and private industry, IBM) c modeling, disease tracking, animal migration, insurance modeling			٧					
			cations (CDC, NOAA, Red Cross, World Bank, public/private comp.) ng heavy rain, snow, flooding events (NOAA, DoD, FAO, reinsurance)			٧					
PEA1			landslide monitoring and forecasting within mountain environments and emergency response communities, NGOs, PDC)			٧					
PEA1	<u>4</u> - Str	eamflo	w, flooding, drought, energy, and agricultural monitoring and			٧					
PEA1			USDA, Water resource managers) ng snow/mixed precipitation events (NWP, private weather		٧						
	com	panies)			٧					
							ſ				
					٧	v					
			Legend : \mathbf{V} Needed to meet objective, (V) From PoR but insufficient to	o n	heet ob	ectiv	1				

Α	CC P	0 D 0	POR	PEA#	Geophysical Variables	Qualifiers
					Minimum	
٧	٧			6,16	Cloud top height	
٧				6,16	Cloud top temperature	
	٧			6,11-14,16	Ice water path	
	٧	м	(v)	6,11-14,16	Surface or near surface precipitation rate	
	٧			11-14,16	Vertical air velocity	> 2 m/s
	٧		(v)	6,11-14,16	Precipitation rate profile	
	٧			16	Cloud liquid water path	
	٧		(V)	6,11-14,16	Surface or near surface precipitation phase	
			٧		Synoptic scale motion	
			٧		Environmental thermodynamic profiles	
					Enhanced (=Minimum+)	
	٧			16	Bulk snow particle size	
	٧			11-14,16	Snowfall vertical (Doppler) motion	< 1 m/s
	٧			6	Volumetric cloud fraction	
	٧	s		6,16	Cloud phase	
٧				6,16	Blowing surface snow	
	٧	s	(v)	6,16	Cloud optical depth	
			٧		Water vapor advection	
٧	٧		٧		Cloud radiative effects, LW & SW	
neet obj √	ectiv √	'e, s	Compli √	mentary observa	ion from SBG, M Complimentary observation from MC Surface radiation budget	1 2

A+ CC	Α	сс	Objectives	A	CC P	OD O	POR	PEA#	Geophysical Variables	Qualifiers
P	~	Ρ	Objectives						Minimum	
				٧				3,4,5	Aerosol extinction profile	
			O5 Aerosol Redistribution	٧		s	(√)	3,4,5	AOD	
			Minimum: Characterize the removal and		٧		(√)	1,3,4	Cloud liquid water path	
			redistribution of aerosols by clouds and light	٧	٧		(√)	1,3,4,5	Cloud top height	
			precipitation (<2 mm/hr).		٧	s	(√)	1,3,4,5	Cloud optical depth	
							(v)	1,3,4,5	Cloud droplet effective radius	
			Enhanced: Characterize the removal and redistribution of aerosols by clouds and		٧		(√)	1,3,4	Surface or near surface precipitation rate	< 2mm/hr
			heavy precipitation (> 2 mm/hr).		٧		(√)	1,3,4	Precipitation phase	
					٧		(√)	1,3,4	Precipitation rate profile	
			A+CCP Potential Enabled Applications				٧		Synoptic-scale motion	
PEA	<u>1</u> - W		er, agriculture, energy and air quality modeling (NWP				٧		Environmental thermodynamic profiles	
PEA			, USDA, IBM, AFWA, Private Companies) ng/forecasting impact of aerosols on precipitation and	٧			(√)		PBL height	
	sto	orm d	evelopment (NOAA, NWP centers, IBM)						Enhanced (=Minimum+)	
	PEA4 - Improved model initialization of aerosols and severe storm development (NWP and model comm.)							3,4,5	Fine mode aerosol extinction profile	
PEA	PEA5 - Estimate radiative fluxes for air quality modeling, solar insolation, and agricultural forecasting.								Angstrom exponent	Column
					٧		(√)	1,3,4	Surface or near surface precipitation rate	>2mm/hr
					٧			1,3,4,5	Volumetric cloud fraction	
			Legend: v Needed to meet objective, (v) From PoR but insuffic	ient 1	to me	et o	ojective	1,3,4.5 , s Complim	Vertical air velocity, entary observation from SPG, M Complimentary observation from MC	> 2 M/s 🔒 13

	λ+ CC P	А	CC P	Objectives	A	CC P	0 D 0	POR	PEA#	
										Minimu
		8		O6 Aerosol Attribution	v				1,2,6,17-19,2 1,22	Aeroso
		88		Minimum: Determine aerosol speciation to quantify	v				1,2,6,17-19	Aeroso
		88		the contributions of different aerosol types to observed aerosol properties and improve emission	v		s	(√)	1, 6, 19-22	AOD
		88		estimates of the different aerosol sources.	v				6, 19,20	AAOD/
		8		Enhanced: Characterize changes in aerosol amounts	v				6, 19,20,22	Fine m
		8		and properties over space and time in terms of 3D	v			(√)	17-20	Angstro
		88		transport and spatially resolved emission sources.	v			(√)	17-20	Index o
				A+CCP Potential Enabled Applications	v				17-20	Aeroso
<u>P</u>	EA1			r, agriculture, energy and air quality modeling (NWP centers, M, AFWA, Private Companies)	v			(√)	1,2,6,19-22	PBL hei
		- Issu	uing a	lerts of fog/vog (air quality and weather communities)				v		Enviror
<u>P</u>	<u>EA6</u>			ial Analytics – Big data for planetary resource surveillance department, public and private industry, IBM)						Enhand
				attribution of pollution (EPA, NOAA, state AQ agencies) on industry and safety (FAA, VAACs, private industry: GE,	v				17,19,21,22	Aeroso
		P&V	V, RR,		v				17,19,21,22	Angstro
		<u>0</u> – H	umar	n health studies & health risk estimation (CDC, WHO, NIH,	v				17,19	AAOD
		<u>1</u> – A	Q rul	es, reinsurance industry) e-making (EPA, state AQ agencies)	v				17,19,21,22	Fine m
<u>P</u>	EA2	<u>2</u> – 0	perat	tional weather & AQ forecasting (NOAA, state AQ agencies)				v		Synopt
				Legend : v Needed to meet objective, (v) From PoR but insufficie	ent to	ndet	obje	ective, S	Compli ²² entary c	byevatica

C P	0 D 0	POR	PEA#	Geophysical Variables	Qualifiers
				Minimum	
			1,2,6,17-19,2 1,22	Aerosol extinction profile	Total and non- spherical
			1,2,6,17-19	Aerosol layer height	
	S	(√)	1, 6, 19-22	AOD	PBL and column
			6, 19,20	AAOD/SSA	PBL and column
			6, 19,20,22	Fine mode AOD	PBL and column
		(√)	17-20	Angstrom exponent	PBL and column
		(√)	17-20	Index of refraction	Column
			17-20	Aerosol non-sphericity	Profile & column
		(√)	1,2,6,19-22	PBL height	
		٧		Environmental thermodynamic profiles	
				Enhanced (=Minimum+)	
			17,19,21,22	Aerosol effective radius	Profile
			17,19,21,22	Angstrom exponent	Profile
			17,19	AAOD	Profile
			17,19,21,22	Fine mode aerosol extinction	Profile
		v		Synoptic scale motion	
et Vet	obje	ective, S	Complinentary o	b yevatica rair see of ita mplimentary observation from MC	> 2 m/s 🕕 🔒 14

A+ CC P	A	CC P	Objectives	A	ССР	0 D 0	POR	PEA#	Geophysical Variables
-	800								Minimum
	8		O7 <u>Air Quality</u> Minimum: Enhance understanding of the	٧				6,19,21,22	Aerosol extinction profile
	88		processes controlling boundary layer and near	v				6,17, 19, 21,22	Aerosol layer height
	8		surface speciated extinction as means to constrain air quality predictions and estimates	٧		s	(√)	6,21,22	AOD
	88		of human health impacts.	٧				6,17,21,22	AAOD/SSA
	88		Enhanced: Determine the spatial and	v				6,17,19,21,22	Fine mode AOD
	88	temporal variations in boundary layer and					(√)	6,17,19,21,22	Angstrom exponent
	8		near surface speciated PM concentrations as means to constrain air quality predictions and estimates of human health impacts.	v			(√)	6,17,19,20,21,2 2	Index of refraction
	88		estimates of numar nearth impacts.	v				6,17,20,21,22	Aerosol non-sphericity
		A+	CCP Potential Enabled Applications	٧			v	6,17,20,21,22	PBL height
PEA	<mark>5</mark> – Ge	eospa	tial Analytics – Big data for planetary resource				v		Environmental thermodynamic profiles
PFA			nce (IBM, Weather Underground, etc.) attribution of pollution (EPA, NOAA, state AQ						Enhanced (=Minimum+)
	age	ncies)	v			(√)	17,19,20,21	PM concentration
	<u>PEA19</u> – Wildfire management (EPA, NOAA, State AQ agencies) <u>PEA20</u> – Human health studies & health risk estimation (CDC, WHO,							17,19,20,21	Aerosol effective radius
PEA		·	ersities, reinsurance industry) e-making (EPA, state AQ agencies)	٧				17,19,20,21	Angstrom exponent
	<mark>22</mark> – C ncies)	Operat	tional weather & AQ forecasting (NOAA, state AQ	٧				17,19	AAOD
				v				17,19,20,21	Fine mode aerosol extinction profile
			Legend: V Needed to meet objective, (V) From PoR but insu	ficient	to meet	obje	ctive, S √	Complimentary obs	ervation from SBG, M Complimentary observation from MC

Qualifiers

Total and nonspherical

PBL and column PBL and column PBL and column PBL and column

Profile & column

Column

Profile

Profile Profile

Û 🔂 1

A+ CC P	A	CC P	Objectives
			O8 Absorbing Aerosols Minimum: Quantify the impact of absorbing aerosol on the Earth's radiative balance at TOA and surface, and on atmospheric stability. Enhanced: Quantify the impact of absorbing aerosols on <i>vertically resolved</i> radiative heating rates.

A+CCP Potential Enabled Applications

- PEA1 Weather, agriculture, energy and air quality modeling (NWP centers, USDA, IBM, AFWA, Private Companies)
- <u>PEA3</u> Aerosols impact on precipitation and storm development (NOAA, NWP centers, IBM)
- <u>PEA6</u> Geospatial Analytics Big data for planetary resource surveillance (IBM, Weather Underground, etc.)
- PEA17 Source attribution of pollution (EPA, NOAA, state AQ agencies)
- <u>PEA20</u> Human health studies & health risk estimation (CDC, WHO, NIH, universities, reinsurance industry)
- PEA21 AQ rule-making (EPA, state AQ agencies)
- PEA22 Operational weather & AQ forecasting (NOAA, state AQ agencies)

A	CC P	0 D 0	POR	PEA#	Geophysical Variables	Qualifiers
					Minimum	
v				3,6,20-2 2	Aerosol extinction profile	
v				3,6,17,2 0-22	Aerosol layer height	
v		S	(√)	1,3,6,20 -22	AOD	PBL and column
v				17,20-2 2	AAOD	PBL and column
			٧		Environmental thermodynamic profiles	
			٧		Surface albedo	
٧				1,22	Cloud reflectance	
٧	v		(√)	1,22	Cloud top height	
٧				1,22	TOA and surface radiative fluxes (derived)	
					Enhanced (=Minimum+)	
v				3,6,20	Aerosol absorption coefficient profile	

	A+ CCA	C	C P	Objectives	А	CC P	0 D 0	POR	PEA#	Geophysical Variables	Qualifiers
	P	1.								Minimum	
	- 8	8.			v				6,17,20,21,22	Aerosol extinction profile	
	-8	8.		9 <u>Aerosol Direct Effect</u>	v				6,17,21,22	Aerosol layer height	
	- 8	8		1inimum : Reduce uncertainties in estimates of lobal mean clear and all-sky shortwave direct	v					Non-spherical aerosol extinction profile	
	radiative effects (DRE) to ±1.2 W/m ² at TOA and						s	(√)	5,6,17,21,22	AOD	Column
	-8	±1.6 W/m ² at surface with commensurate improvements in regional estimates of DRE and						(√)	6,17,21,22	AAOD	Column
	-8	anthropogenic aerosol radiative forcing.						(√)	5,6,17,21,22	Fine mode AOD	Column
	- 8	8.	Enhanced: Quantify vertically resolved aerosol radiative forcings.					(√)	6,17,21,22	Angstrom exponent	Column
	- 8	8			v			(√)	6,17,21,22	Index of refraction	Column
	-8	8.			v				17,21	Aerosol non-sphericity	Profile & column
	- 8							٧		Environmental thermodynamic profiles	
Γ			A	+CCP Potential Enabled Applications				٧		Surface albedo	
P	<u>EA5</u> — E	stim	_	diative fluxes for air quality modeling, solar insolation,		٧			5,6,22	Cloud reflectance	
	and agricultural forecasting. – (EPA, CMAQ, WRFChem) <u>PEA6</u> – Geospatial Analytics – Big data for planetary resource surveillance (IBM, Weather Underground, etc.) <u>PEA17</u> – Source attribution of pollution (EPA, NOAA, state AQ agencies) <u>PEA20</u> – Human health studies & health risk estimation (CDC, WHO, NIH,				x	٧			5,6,22	Cloud top height	
(٧	٧		٧	5,6,22	TOA and surface radiative fluxes (derived)	
										Enhanced (= Minimum+)	
	universities, reinsurance industry) <u>PEA21</u> – AQ rule-making (EPA, state AQ agencies)								17,20,21	Aerosol effective radius	Profile
<u>P</u>	PEA22 – Operational weather & AQ forecasting (NOAA, state AQ agencies)								17,20,21	Angstrom exponent	Profile
				Legend: $\mathbf v$ Needed to meet objective, $\left(\mathbf v\right)$ From PoR but insufficient	nt tør	neet	obje	ctive, S	Com gliŋeၟၓႍဨၟၟၯၟ obse	Aterofson sabs of formative overtreaserve tips formed	17

A+ CC	Α	сс	Objectives	А	CC P	OD O	POR	PEA#	Geophysical Variables	Qualifiers
P	~	Р							Minimum	
						S	(√)	6,17,21,22	AOD	PBL and column
			O10 <u>Aerosol Indirect Effect</u>	V				6,17,21,22	Angstrom exponent	PBL and column
			Minimum: Provide process level constraints on aerosol-warm cloud interactions as a	V				6,17,21,22	Fine mode AOD	PBL and column
			means to constrain estimates of aerosol	V				6,17,21,22	Aerosol extinction profile	
			indirect radiative forcings.	V	٧		(√)	2,5,22	Cloud LWP	
			Enhanced: Provide process level constraints on aerosol-cold cloud interactions as a	V			(√)	2,5,22	Cloud optical depth	
			means to constrain estimates of aerosol	V			(√)	2,5,22	Cloud droplet effective radius	
			indirect radiative forcing.	V	٧			2,5,22	Cloud droplet concentration	Layer
				V				2,5,22	Cloud top phase	
			A+CCP Potential Enabled Applications	V	х		(√)	2,5,22	Cloud top height	
	2 - Issuing alerts of fog/vog (air quality and weather communities)			V			V	5	Areal cloud fraction	
PEA	PEA5 – Estimate radiative fluxes for air quality modeling, solar insolation, and agricultural forecasting. – (EPA, CMAQ,							5	Cloud reflectance	
WRFChem) <u>PEA6</u> – Geospatial Analytics – Big data for planetary resource					٧		(√)		Surface or near surface precipitation rate	<2 mm/hr
<u>PEA6</u> – Geospatial Analytics – Big data for planetary resource surveillance (IBM, Weather Underground, etc.)							V	6,17,20-22	PBL height	Lidar and reanalysis

- PEA17 Source attribution of pollution (EPA, NOAA, state AQ agencies)
- <u>PEA20</u> Human health studies & health risk estimation (CDC, WHO, NIH, universities, reinsurance industry)
- PEA21 AQ rule-making (EPA, state AQ agencies)
- <u>PEA22</u> Operational weather & AQ forecasting (NOAA, state AQ agencies)

(See next slide for Enhanced)

٧

٧

Synoptic scale motion

Environmental thermodynamic profiles

A+ CC P	А	CC P	Objectives						
			O10 Aerosol Indirect Effect						
			Minimum: Provide process level constraints						
			on aerosol-warm cloud interactions as a means to constrain estimates of aerosol						
			indirect radiative forcings.						
			Enhanced: Provide process level constraints on aerosol-cold cloud interactions as a						
			means to constrain estimates of aerosol						
			indirect radiative forcing.						
-			A+CCP Potential Enabled Applications						
PEAG	<u> </u>	eospa	tial Analytics – Big data for planetary resource						
		•	M, Weather Underground, etc.) e attribution of pollution (EPA, NOAA, state AQ agencies)						
			n health studies & health risk estimation (CDC, WHO,						
			versities, reinsurance industry)						
PEA21 – AQ rule-making (EPA, state AQ agencies) PEA22 – Operational weather & AQ forecasting (NQAA, state AQ									
PEA22 – Operational weather & AQ forecasting (NOAA, state AQ agencies)									

A	CC P	0 D 0	POR	PEA#	Geophysical Variables	Qualifiers
					Enhanced (= Minimum+)	
٧				6,17,20-22	PBL aerosol number concentration	
٧				6,17,20-22	Aerosol effective radius	PBL
٧	٧			2,22	Cloud droplet concentration	Layer
٧				2,22	Cloud top extinction	
				2,22	Cloud top droplet size	
				2,22	Cloud top droplet concentration	
v	٧			2,22	Cloud base height	
	٧			17,22	Vertical air velocity	> 1 m/s
	٧		(√)	22	Precipitation phase	
			٧		Diurnally resolved cloud cover	
			٧		Surface turbulent fluxes (land and ocean)	
٧	٧			6,22	Ice crystal number concentration	
٧	٧			6,22	Ice crystal particle size	

O1 Low Clouds		Desired Ca	apabili	ity			
Geophysical		Precision/		Resolut	tion	Observables	Notes
Variables	Range	Accuracy	Δx	Δz	Swath		
Minimum							
Cloud LWP	20-400gm ⁻²	20 gm-2			fp	VIS + SWNIR reflection ~5%, μ wave radiances NE Δ T~ 3K matched to radar, radar reflectivity Z<-15dBZ	Uwave and optical based methods match under carefully prescribed conditions
Cloud optical depth	0.3-100	15%	'		20km	VIS reflectance, ~3%	
Cloud droplet effective radius	4-100 µm	2µm		~ 3 OD	20km	VIS + SWNIR reflection ~ 3%	Re is needed as deep into cloud as we can get - (~3 OD) for purpose of deriving LWP - 2.1um Re aPEArs to most optimally match uwave based LWP
Cloud top phase	Liquid,Solid or mixed	30%		~ 1 OD	fp	Polarized backscatter , $\Delta\beta{>}0.05km^{-1}$, SWNIR reflectance ~5%	also with DOLP
Cloud top height	0.5-15km	100m	'	100m	fp	VIS backscatter, Δβ>0.05km ⁻¹	Expect to address this this from lidar backscatter
Areal cloud fraction	0.05-1.00	5%		N/A	20km	VIS reflection ~5%	Cloud amount matched radar/lidar footprints and will be used in diagnostic analysis
Precipitation phase	Liquid,Solid or mixed	30%	5km	N/A	fp	Z Bright band, ΔVr , polarimetric radar linear depolarization ratio (LDR; e.g., Ka > ~-15 dB), differential reflectivity ΔZ ~2dBZ, dual-frequency ratio (snow index), polarimetric VIS backscatter, $\Delta \beta$ >??5km ⁻¹	Basic separation of liquid and frozen phases in stratiform is most straight forward.
Precipitation rate profile	<2 mm/hr	['	[]			· · · · · · · · · · · · · · · · · · ·	
PBL height	<3 km	250 m				GPS RO might be source	

O1 Low Clouds		Desired	d Capa	bility			
Geophysical		PrecisionA		Resoluti	ion	Observables	Notes
Variables	Range	ccuracy	Δx	Δx Δz Swath			
Minimum (continued)							
Synoptic scale motion						From met analysis	
Environmental thermodynamic profiles						From met analysis	
Cloud Albedo (derived)	0.1-0.8	5% absolute	5km	N/A	fp	A calculated quantity with threshold inputs. Can then be cross calibrated with PoR (CERES & EVC)	
Enhanced							
Cloud droplet concentration	10-1000 cm ⁻³	50%	1km			VIS + SWNIR reflection ~5%, μ wave radiances NE Δ T~ 3K matched to radar, radar reflectivity Z<-15dBZ	We are advocating a completely new approach using cloud and precip data jointly.
Cloud base height	250 m-15 km	250 m		250m		Radar reflectivity >35GHz	
Total water path (cloud+precipitation)	20-400 gm ⁻²	20 gm-2	1km	N/A	fp	VIS + SWNIR reflection ~5%, μ wave radiances NE Δ T~ 3K matched to radar, radar reflectivity Z<-15dBZ	
Volumetric cloud fraction						1	
Diurnally resolved cloud cover	0.05-1.00	5%	5km	N/A	wide	VIS reflection/IR - Geostationary from PoR	For context only
Surface turbulent fluxes (land and ocean)						TBD - this is a link to SBG	

O2 <u>High Clouds</u>		Desired	d Capal	oility			
Geophysical	Range	Precision		Resolutio	on	Observables	Notes
Variables	Kange	Accuracy	Δх	Δz	Swath		
Minimum	-		-				
							X
						Idt	
Enhanced	-	-		-			

O3 Convective Storms		Desired	d Capal	bility			
Geophysical	Range	Precision		Resolution		Observables	Notes
Variables	Nange	Accuracy	Δx	Δz	Swath		
Minimum							
							X
						1 d k	
						101	
Enhanced							

O4 <u>Falling Snow</u>		Desired	d Capal	bility			
Processes Geophysical	_	Precision		Resolutio	on	Observables	Notes
Variables	Range	Accuracy	Δx	Δz	Swath		
Minimum			-	-			
Enhanced			-	-			

05 <u>Aerosol Redistribution</u>		Desired	l Capab	oility				
Geophysical	Range	Precision	Resolution		on	Observables	Notes	
Variables	Kange	Accuracy	Δx	Δz	Swath			
Minimum								
							X	
Enhanced								

O6 Aerosol Attribution		Desired	d Capal	bility			
Geophysical	Range	Precision		Resolutio	on	Observables	Notes
Variables	Kange	Accuracy	Δx	Δz	Swath		
Minimum					-		
							X
						Idt	
						10101	
Enhanced							

07 <u>Air Quality</u>		Desired	l Capal	oility			
Geophysical	Range	Precision		Resolutio	on	Observables	Notes
Variables	Kange	Accuracy	Δx	Δz	Swath		
Minimum	-	-			-		
Enhanced	-			-			

O8 <u>Absorbing Aerosols</u>		Desired	d Capal	bility				
Geophysical	Range	Precision		Resolution		Observables	Notes	
Variables	Nange	Accuracy	Δx	Δz	Swath			
Minimum								
							X	
Enhanced		-						

O9 <u>Aerosol Direct Effect</u>		Desired	d Capal	oility			
Geophysical	Range	Precision		Resolution		Observables	Notes
Variables	Kange	Accuracy	Δх	Δz	Swath		
Minimum			-		-		
							X
						10101	
Enhanced		-					

O10 <u>Aerosol Indirect Effect</u>		Desired	d Capal	bility			
Geophysical	Pango	Precision		Resolutio	on	Observables	Notes
Variables	Range	Accuracy	Δx	Δz	Swath		
Minimum	-						
							X
						Idk	
Enhanced	-	-			-		

A+ CC P	A	CC P	PE A#	Enabled Applications	Partners	Geophysical Variables	Relevant Objective(s)
			1	Cloud and precipitation properties enable the weather prediction and modeling communities to improve parameterizations of clouds to improve weather forecasting, energy planning, air quality modeling, and agriculture forecasting.	NWP Centers (NOAA, NRL, ECMWF, JMA, NCAR), USDA, AFWA, IBM, Private Companies	Cloud height, depth, radius, amount, phase, precipitation rate and phase	<u>01, 05, 06, 08</u>
			2	Observations of aerosol and cloud properties used by the weather and air quality communities to understand and issue alerts about the development of fog/vog.	NOAA, NCAR, NASA, EPA and State Agencies	Aerosol and cloud properties	<u>01, 06, 010</u>
			3	Observations of aerosols and clouds enable the weather forecasting and modeling communities to improve modeling/forecasting the impact of aerosols on precipitation and storm development, including cyclones and hurricanes.	NOAA, NASA, NCAR, NWP modeling community, IBM	Aerosols, precipitation, and cloud properties	<u>03, 05, 08</u>
			4	Observations of aerosol, precipitation and cloud properties, and vertical velocities are used to improved modeling of vertical transport, scavenging, wet deposition, and links to ice particles and severe storm development .	NWS, NOAA, CTM, EPA, state AQ agencies, other modeling communities	Vertical velocity, aerosol, cloud, and precipitation properties	<u>03, 05</u>
			5	Cloud and aerosol optical depths are used to estimate radiative fluxes for applications such as estimating available photosynthetically active radiation (PAR) for air quality modeling, attenuated solar insolation for solar power companies, and agricultural forecasting. Solar power companies use estimates of size resolved aerosol concentrations and precipitation to model dry and wet deposition on the panels, respectively.	Air quality modelers (EPA, NOAA, state agencies), solar energy companies, agricultural communities	Aerosol Optical Depth, Aerosol Concentration Profiles, Aerosol Speciation, cloud properties	<u>05, 09, 010</u>
			6	Data fusion techniques through geospatial analytics and "big data" management rely on aerosol, cloud and precipitation properties to provide continuous, detailed, multidimensional, and global monitoring as an invaluable tool for planetary resource surveillance.	Private industry (e.g., IBM, Weather Underground), Defense Department, public companies (e.g. Mars corporation)	Aerosol Optical Depth, Aerosol Concentration Profiles, Aerosol Speciation, brightness temperatures, surface precipitation	<u>03, 04, 06,</u> <u>07, 08, 09,</u> <u>010</u>
			7	Observations of cloud height and droplets enable the aviation industry and weather prediction community to improve situational awareness of cloud evolution.	NOAA, FAA, DoD, DoE	Cloud phase, height, depth, radius, and amount	<u>01, 03</u>
			8	Brightness temperature and precipitation rates enable the weather forecasting and modeling communities to improve storm track and intensity forecasts of hurricanes and severe storms.	NOAA, NASA, NCAR, ECMWF, NRL, JTWC, and other NWP centers, IBM	Brightness temperature (Cloud top temperature) and precipitation rates	03 1

A + C C P	А	•	PE A#	Enabled Applications	Partners	Geophysical Variables	Relevant Objective(s)
			9	Estimates of ice content, optical depth and cloud height are used by the aviation industry to inform rime icing, threats to engine performance, and visibility hazards.	NOAA, FAA, AFWA, Airlines	Ice content, optical depth and cloud height	<u>01</u> , <u>02</u>
			10	Information on microphysical properties can inform the development of hail events and are used by the weather forecasting, reinsurance and agricultural communities to forecast and asses hail events and damage.	NOAA, reinsurance, and agricultural communities	Microphysical properties (cloud phase, vertical motion, radius)	<u>02</u> , <u>03</u>
			11	Surface precipitation observations are used by a range of public and private communities, international and domestic governmental organizations and NGOs as inputs into hydrologic models, vector and water borne disease modeling, animal migration tracking, insurance models, and disasters applications.	CDC, NOAA, Red Cross, NASA, reinsurance, World Bank and agricultural communities, public and private companies (e.g., Johnson & Johnson, Agvesto, MiCRO)	Surface precipitation	<u>03, 04</u>
			12	Observations of surface precipitation rate are used by the weather forecast community to anticipate heavy rain, snow, or flooding in areas with gaps in the in situ observational network .	NOAA, Red Cross, NASA, FAO, US Army, reinsurance community	Surface precipitation	<u>03, 04</u>
			13	Estimates of extreme and orographically enhanced precipitation within mountainous regions are used by the hydrologic modeling and emergency response communities for modeling/estimating flooding and landslide hazards.	NOAA, Red Cross, NASA, reinsurance community, hydrologic modeling communities, Red Cross, NGOs, PDC	Surface precipitation	<u>03, 04</u>
			14	Estimates of total water volume and long-term surface precipitation observations are critical for water resource managers, agricultural communities, and energy companies for estimating streamflow, flooding and inundation impacts, assessing drought conditions, and modeling/forecasting crop yields.	USDA, Water Resource Management community	Surface precipitation	<u>03, 04</u>
			15	Estimates of ice content, and vertical motion are used by the weather forecast and NWP modeling communities as a proxy for lightning initiation to anticipate severe storm development.	NOAA, AFWA, NWP modeling communities	ice content and vertical motion	<u>01, 02, 03</u>

A + C P	A	-	PE A#	Enabled Applications	Partners	Geophysical Variables	Relevant Objective(s)
			17	Observations of aerosols are used for source attribution of pollution, including interhemispheric transport.	Federal weather and AQ agencies (EPA, NOAA), state AQ agencies, other modeling communities	Aerosol Optical Depth, Aerosol Concentration Profiles, Aerosol Speciation	<u>06, 09, 010</u>
			18	Observations of aerosols are used to estimate concentrations and location of volcanic ash and issue aviation safety alerts, which are vital to the aviation community. Aircraft engine manufacturers use ambient aerosol concentration data to assess impact of PM on engine performance.	Aviation Industry: FAA, VAACs, private industry (e.g., General Electric, Pratt and Whitney, Rolls Royce, Northrop Grumman)	Aerosol Optical Depth, Aerosol Concentration Profiles, Aerosol Speciation	<u>06</u>
			19	Observations of aerosols are used to estimate wildfire smoke injection heights, which enable more accurate initialization of smoke transport models for improving air quality forecasts and estimating exposure to wildfire PM and co-emitted trace gas pollutants.	Wildfire management: Federal AQ agencies (EPA, NOAA, Forest Service), state AQ agencies, other modeling communities	Aerosol Optical Depth, Aerosol Concentration Profiles, Aerosol Speciation	<u>06, 07</u>
			20	Observations of aerosol are used to infer spatio-temporal variations & trends of speciated surface-level PM ($PM_{1,} PM_{2.5}, PM_{10}$), which are used for health studies, such as to associate the effects of exposure to PM with specific health outcomes, and to calculate health risks and longevity.	Health: CDC, WHO, NIH, health researchers at universities (e.g., Global Burden of Disease), reinsurance industry	Aerosol Optical Depth, Aerosol Concentration Profiles, Aerosol Speciation	<u>06, 07, 09</u>
			21	Observations of aerosol are used to infer spatio-temporal variations & trends of speciated surface-level PM (PM_{1} , $PM_{2.5}$, PM_{10}), which used to support AQ rule-making and define exceptional events.	AQ Rule-making: EPA, state AQ agencies	Aerosol Optical Depth, Aerosol Concentration Profiles, Aerosol Speciation	<u>06, 07, 09,</u> <u>010</u>
			22	Aerosol observations are used to infer vertically-resolved, speciated PM for operational weather and AQ forecasting (e.g., forecast initialization), tracking dust plumes, and issuing AQ alerts.	Operational AQ Forecasts: Federal (NOAA) and state AQ agencies	Aerosol Optical Depth, Aerosol Concentration Profiles, Aerosol Speciation	06, 07, 08, 09, 010

DS Traceability Goals 1-2

	2017 Decadal Survey Objectives (from Appendix B)	A-CCP Goals
W-1a W-2a	at minutes to subseasonal time scales. Improve the observed and modeled representation of natural, low-frequency modes of weather/climate variability.	G1 <u>Cloud Feedbacks</u> Reduce the uncertainty in low- and high-cloud climate feedbacks by advancing our ability to predict the properties of low and high clouds.
C-5c C-2g H-1b W-1a W-2a W-4a	Improve the observed and modeled representation of natural, low-frequency modes of weather/climate variability.	G2 <u>Storm Dynamics</u> Improve our physical understanding and model representations of cloud, precipitation and dynamical processes within storms.

DS Traceability Goals 3-5

	2017 Decadal Survey Objectives (from Appendix B)	A-CCP Goals
H-1b H-1c W-1a S-4a	scales suitable to capture flash floods and beyond. Quantify rates of snow accumulation, snowmelt, ice melt, and sublimation from snow and ice worldwide at scales driven by topographic variability.	G3 <u>Falling Snow</u> To advance understanding of its role in cryospheric-climate feedbacks, quantify the rate of falling snow, particularly at middle to high latitudes.
W-1a W-5a C-5a	(boundary layer processes) (air pollution and health) Improve estimates of the emissions of natural and anthropogenic aerosols	G4 <u>Aerosol Processes</u> Reduce uncertainty in key processes that link aerosols to weather, climate and air quality related impacts.
C-2a C-2h C-5c	Reduce uncertainty in low and high cloud feedback. Reduce aerosol radiative forcing uncertainty Quantify the effect that aerosol has on cloud	G5 <u>Aerosol Radiative Forcing</u> Reduce the uncertainty in Direct (D) and Indirect (I) aerosol-related radiative forcing of the climate system.

Acronyms (1/3)

Α	Aerosols
AFWA	Air Force Weather Agency
AAOD	Absorbing Aerosol Optical Depth
AOD	Aerosol Optical Depth
AQ	Air Quality
ССР	Clouds, Convection, and Precipitation
CDC	Centers for Disease Control
CMAQ	The Community Multiscale Air Quality Modeling System
СТМ	Chemical Transport Model
D	Direct
DOD	Department of Defense
DOE	Department of Energy
DRE	Direct Radiative Effect
ECMWF	European Centre for Medium-Range Weather Forecasts
EPA	Environmental Protection Agency
FAA	Federal Aviation Administration
FAO	Food and Agriculture Organization
FP	Footprint
G	Goal
GE	General Electric
GPS	Global Positioning System

Acronyms (2/3)

I	Indirect
IR	Infrared
JMA	Japan Meteorological Agency
JTWC	Joint Typhoon Warning Center
LW	Longwave
LWP	Liquid Water Path
NCAR	National Center for Atmospheric Research
NIH	National Institutes of Health
NG	Northrop Grumman
NOAA	National Oceanic and Atmospheric Administration
NRL	Naval Research Laboratory
NWP	Numerical Weather Prediction
0	Objective
OD	Optical Depth
PBL	Planetary Boundary Layer
PDC	Pacific Disaster Center
PEA	Potential Enabled Application
PM	Particulate Matter
PoR	Program of Record
P&W	Pratt & Whitney
RO	Radio Occultation
RR	Rolls Royce

Acronyms (3/3)

S	SBG (Surface Biology and Geology)
SW	Shortwave
SWNIR	Shortwave-Near Infrared
TBD	To Be Determined
ΤΟΑ	Top Of Atmosphere
USDA	United States Department of Agriculture
VAAC	Volcanic Ash Advisory Center
VIS	Visible
WHO	World Health Organizations
WRF	Weather Research and Weather (Forecasting Model)

