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I. Executive Summary 
 
Big Data and High Performance Computing deeply permeates NASA’s Earth and space science 
endeavor.  However, NASA science is not institutionally well-integrated with the large community 
of scholars and experts who develop the methodologies underlying modern Data Science: 
computer scientists, information technologists, applied mathematicians and statisticians.   
Technology transfer from and collaboration with these scholarly communities is insufficient to 
meet NASA’s needs, both within NASA centers and in the wider U.S. space science research 
community.   
 
This White Paper details some of these issues and recommends actions to improve methodologies 
used for current and future missions across all science domains.  Examples include: compressed 
sensing for image and signal processing; Deep Learning neural networks for pattern recognition 
and classification; Virtual Reality visual exploration tools; and agile software development and 
other strategies from computer engineering. 
 
Recommendations: 
● NASA SMD should organize and fund professional development in statistics and informatics, 

both for its internal scientists and for the wider Earth and space science communities.  This 
includes organizing training workshops, producing on-line training materials, attending 
methodology conferences, and hiring expert consultants. 

● Specifications and performance reviews for mission science operations software development 
should include high standards for computational algorithms and statistical methods with 
evaluation by cross-disciplinary experts.   

● NASA SMD should ensure modern software engineering (for example: agile, fast iteration 
processes for creation and modification of software systems) is applied to its sponsored 
development and maintenance projects. This may include active involvement of data science 
professionals as staff or consultants. 

An Aphorism 
 

The scientist collects data in order to understand natural phenomena 

The statistician helps the scientist acquire understanding from the data 

The computer scientist helps the scientist perform the calculations*  

The individual proficient at all these tasks is a data scientist 
* needed only for Big Data 
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II. Introduction 
 
NASA’s culture and administrative mechanisms take full cognizance that major advances in space 
science are driven by improvements in instrumentation. But it is less well recognized that new 
instruments give rise to science questions so diverse and complex that traditional data analysis 
procedures are often inadequate.  The knowledge and skills of the statistician, applied 
mathematician, and algorithmic computer scientist need to be incorporated into programs that 
currently emphasize engineering and physical science in order to fully achieve the scientific 
potential of satellite missions.  These issues might be divided into two stages: data reduction 
through software pipelines developed within NASA mission centers; and science analysis that is 
performed by hundreds of space scientists dispersed through NASA, U.S. universities, and abroad.  
Both stages benefit from the latest statistical and computational methods; in some cases, the 
science result is completely inaccessible without modern methodology. 
 
NASA-sponsored science is participating in a broad transformation towards the Fourth Paradigm1 
where scientific insights are extracted from peta-scale datasets using advanced statistical and 
computational methods.  An example of this transition is occurring in astronomy where 
computations from cosmic microwave background and exoplanet detection satellites require large 
supercomputer allocations.  The scientific interpretations involve diverse methodology such as 
supervised classification, spatial point processes, time series analysis, and Bayesian inference.  In 
heliophysics, sophisticated image processing techniques are needed to identify classes of features 
from multi-petabyte solar datasets using statistical machine learning. New subfields like 
astrostatistics and astroinformatics are emerging with journals2, scholarly societies3, and 
conferences4.  A critical problem is the education of space scientists in these new methodologies; 
recent STScI5 and National Academy of Sciences6 reports emphasize the need for professional 
training beyond long-standing formal education in the physical sciences.  
 
The emerging term for such cross-disciplinary activities -- Data Science -- can be represented as 
the intersection of three skill areas: domain expertise (like space science), mathematics and 
statistics, and computational skills.  The aphorism above encapsulates the relationship between 
these three domains. Data science is a rapidly emerging area of study and practice that has 
witnessed amazing acceleration in recent years with foundations in statistics and computer science 
over several decades7.  However, NASA science is not a leader in this movement.  Substantial 
                                                
1 The Fourth Paradigm: Data-Intensive Scientific Discovery (2009) T. Hey, S. Tansley & K. Tolle, Microsoft 
Research 
2 Astronomy & Computing (Elsevier, started 2013), AAS Journals Policy statement on software (2016) 
3 International Astrostatistics Association (founded 2012), American Astronomical Society Working Group in 
Astroinformatics and Astrostatistics (2014), American Statistical Association Astrostatistics Interest Group (2014), 
IEEE Astrominer Task Force (2014), International Astronomical Union Commissions on Computational 
Astrophysics and Astroinformatics & Astrostatistics (2015) 
4 Astrostatistics and Astroinformatics Portal – Meetings, https://asaip.psu.edu/meetings 
5 Big Data @ STScI: Enhancing STScI’s Astronomical Data Science Capabilities over the Next Five Years (2016), 
http://archive.stsci.edu/reports/BigDataSDTReport_Final.pdf 
6 Optimizing the U.S. Ground-Based Optical and Infrared Astronomy System (2015), National Academy Press, 
https://www.nap.edu/login.php?record_id=21722 
7 While dozens of texts are available in data science, we highlight three well-respected and widely-read volumes that 
emphasize the mathematical and algorithmic foundations:  C. M. Bishop, Pattern Recognition and Machine 
Learning (2007);  T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data Mining, 
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benefits can accrue with new analysis procedures at a fraction of the cost of the total satellite 
missions, and yet these techniques are not universally employed across every mission.  Promising 
areas of methodological improvements for space science include: 
 
● Statistical procedures including: False Discovery Rate for multiple hypothesis testing; 

Uncertainty Quantification for computationally expensive modeling; model selection and 
residual analysis following regression fits 

● Machine learning, data mining and computational intelligence including: Deep Learning 
neural nets, pattern recognition, decision trees and Random Forests 

● Data cleaning and curation including: data aggregation, normalization, synchronization, 
assimilation, and improved meta-data descriptions of datasets 

● Data visualization to improve understanding including: visual exploration tools, sonification, 
haptic data sensing techniques, and virtual reality. 

 
Some of the discussions in this white paper employ a classic NASA mission model where the 
mission’s science team is responsible for processing of data products derived from the data 
gathered by the operational platform (satellite, aircraft, etc.)  This processing often employs 
algorithm’s employing physics models and mathematical techniques.  In Earth science, 
observational data and higher-level derived products are managed and made available to the 
research communities via the Earth Observing System Data and Information System (EOSDIS - 
https://earthdata.nasa.gov/about.) “The EOSDIS science operations are performed within a 
distributed system of many interconnected nodes, the Science Investigator-led Processing 
Systems (SIPS), and distributed via discipline-specific Distributed Active Archive Centers 
(DAACs) with specific responsibilities for production, archiving, and [dissemination] of Earth 
science data products. The DAACs serve a large and diverse user community (…) by providing 
capabilities to search and access science data products and specialized services.”  The 
conclusions reached and recommendations made in this white paper are applicable not only to 
the mission model of science data processing but also to the extended model employed in the 
Earth sciences. 

III. Statement of the Problem 
 
The enormous strides in methodology from statistics, applied mathematics and computer science 
of recent decades are often not incorporated into NASA satellite data or science analysis programs.  
High standards for analysis methodology and algorithms are not set consistently for mission 
analysis pipelines within NASA mission centers, for science analysis software maintained by 
NASA archive centers, or for extramural science programs funded by NASA.  The result is uneven 
quality in data and science analysis products of NASA science missions; the methods used in 
NASA software systems for data processing and science analysis are often obsolete. 
 
The underlying cause of the problem involves human resources and academic culture.  Space 
science has weak mechanisms for incorporating progress from the large scholarly community in 
statistics, applied mathematics, and computational algorithms.  Cross-disciplinary training and 
collaborative cross-disciplinary research efforts are often inadequate.  Space scientists, both within 

                                                
Inference, and Prediction, 2nd ed. (2016);  I. Goodfellow, Y, Bengio, A. Courville, Deep Learning (2016).  
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NASA and external universities and institutes, are often weakly trained in modern statistical and 
computational methodology. 
 
The volume, variety and velocity of NASA science data is taxing established methods and 
technologies: 
• The volume has become particularly acute in the Earth Sciences and Heliophysics divisions; 

the Astrophysics (with JWST and WFIRST) and Planetary divisions are soon entering the 
realm of Big Data.   

• Planetary missions have instruments measuring very different aspects of their targets, and 
astrophysics has a bewildering variety of science questions addressed by NASA observatories. 

• Computationally intensive simulations supporting these missions often generate even larger 
data volumes.  This introduces new concerns such as optimal design of computer experiments 
and model validation against observation.   

• Scientific progress can be impeded by architectural limitations on data movement, accessibility 
and data fusion, although progress is evident in systems like the NASA Astronomical Virtual 
Observatory. 

• Access to and analysis of large databases sometimes lack of state-of-the-art statistical 
methodologies and computational algorithms designed for Big Data 

• The state of documentation of data sets is inconsistent as are procedures for the development, 
testing, improvement, approval, documentation and promulgation of algorithms.  These 
impede both current and future extraction of scientific results. 

IV. Examples of approaches 

Two promising new methods for NASA SMD science   

Compressed sensing is a powerful lossy signal restoration method, related to wavelet and Fourier 
transforms, where a sparse representation is obtained that gives a near-optimal and highly efficient 
extraction of information from an image or signal8.  Compressed sensing is providing enormous 
computational advantages in fields such as medical imaging and computer vision, but has only 
begun to be applied to problems in space science.  Spatio-temporal movies of solar flare plasma 
structures from multiwavelength videos obtained by the Solar Dynamics Observatory shows the 
potential of this mathematical approach9.  Compressed sensing also has high potential for 
improved planetary mapping with synthetic radar10, weak lensing surveys for cosmology11, and 
many other imaging applications. 
  
                                                
8 Candès, Emmanuel J.; Romberg, Justin K.; Tao, Terence, Stable signal recovery from incomplete and inaccurate 
measurements, Comm. Pure Appl. Math. 59 (8): 1207–1223, 2006; D. Donoho, Compressed Sensing, IEEE Trans. 
Information Theory, 52(4), 1289-1306, 2006; D. Donoho,  U.S. Patent 8855431, 2014. Donoho and Candès have 
both received MacArthur Foundation ‘genius’ awards.   
9 Cheung, Mark C. M.; Boerner, P.; Schrijver, C. J.; Testa, P.; Chen, F.; Peter, H.; Malanushenko, A., Thermal 
Diagnostics with the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory: A Validated 
Method for Differential Emission Measure Inversions, 2015, Astrophys. J. 807, #143 
10 M. A. Herman, Strohmer, T. 2009, High-resolution radar via compressed sensing, IEEE Trans. Signal Proc. 57(6), 
2275-2284 
11 A. Leonard, F.-X. Dupe, J.-L. Starck, A compressed sensing approach to weak lensing, 2012, Astro. Astrophys., 
539, #A85 
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Deep Learning, a type of multi-layer convolutional neural network, has recently achieved 
breakthroughs in the extraction of patterns and classification of very large collections of images, 
speech and other signals12.  It is a computationally intensive machine learning technique that is 
mostly unsupervised, where the procedure learns to extract meaningful features from large and 
complex datasets.  It has solved previously intractable problems such as accurate automated natural 
language translation from English to Japanese, labeling faces in images, playing the game Go, and 
improving efficiency in factory energy usage. Viewed as a critical advance in artificial intelligence, 
the potential of deep learning for space science is mostly unknown.  Early results include mapping 
the proportion of ices and dust on the Martian poles from remote hyperspectral imaging13, 
inference of electron densities from plasma wave measurements from the Van Allen Probes 
mission14, and evaluating the evolutionary states of red giant stars using asteroseismological time 
series from the Kepler mission15. 
 
Upskilling and Education 
Space scientists are typically well-trained in mathematics relating to physical processes, but not in 
mathematics relating to extraction of reliable information from complex noisy datasets.  They are 
typically conversant with computer programming and processing on a moderate scale, but many 
are not prepared for the world of Big Data with challenges in data storage, access, and efficient 
analysis on high performance multicore computers.   
The problem arises in the curriculum of physical scientists: courses in modern statistics, applied 
mathematics, and computer science are not in the required curriculum.  This deficiency has been 
recently documented among astronomers: a survey of ~1100 scientists found that 90% write 
software but only 8% received substantial training in software development16.  Informal on-the-
job training is adequate for some purposes, but can lead to mediocrity, or even unnecessary failure, 
for more challenging problems with Big Data.   In statistics, the methodology is so diverse that 
coursework and usage of statistical software environments is essential for many scientific projects.   
Some progress in education has been made.  Textbooks on statistical methodology and data 
analysis (with computer codes) for remote sensing, atmospheric science and astrophysics are 
available and taught in some universities17.  More successful have been the informal and short-
form trainings, including: Summer Schools, Hack Days, and bootcamps.  Programs like the 
                                                
12 Hinton, G. et al. Deep neural networks for acoustic modeling in speech recognition. IEEE Signal Proc. Mag. 29, 
82–97, 2012; Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature, 521, 436-444, 2015 
13 A. Deleforge, F. Forbes, S. Ba, R. Horaud, 2015 Hyper-spectral image analysis with partially latent regression and 
spatial Markov dependencies, IEEE J. Selected Topics Signal Processing, 9(6), 1037-1048 
14 I. S Zhelavskaya, M. Spasojevic, Y. Y. Shprits, W. S. Kurth, 2016, Automated determination of electron density 
from electric field measurements on the Van Allen Probes spacecraft, J. Geophys. Res. Space Physics, 121, 4611-4625. 
15 Hon, M., Stello, D., Yu, J., Deep learning classification in asteroseismology, 2017, Mon. Not. Royal Astro. Soc., 
in press, arxiv/1705.06405 
16 I. Momcheva & E. Tollerud, Software Use in Astronomy: An Informal Survey (2015) 
https://arxiv.org/abs/1507.03989  
17 Texts include D. S. Wilks, Statistical Methods in the Atmospheric Sciences, 3rd ed. (2011); E. D. Feigelson & G. J. 
Babu, Modern Statistical Methods for Astronomy with R Applications (2012),  Z. Ivezic, A. J. Connolly, J. T. 
VanderPlas, A. Gray, Statistics, Data Mining, and Machine Learning in Astronomy: A Practical Guide for the 
Analysis of Survey Data (2014); M. J. Canty, Image Analysis, Classification and Change Detection in Remote 
Sensing with Algorithms in ENVI/IDL and Python, 3rd ed. (2014); C. Bailer-Jones Practical Bayesian Inference for 
Physical Scientists (2017).  For a complete list in astrostatistics, see https://asaip.psu.edu/resources/recent-
books/methodology-books-for-astronomy  
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Software and Data Carpentries18 and programming workshops like AstroHackWeek19, are positive 
examples of how the community can upskill itself. But, except for these instances and perhaps a 
disorganized Facebook-based discussion forum20, these resources are touching relatively few 
space scientists.   University curricula are not renovating fast enough to match the needs of 
methodological education for future space scientists, and professional development resources are 
insufficiently funded or organized to meet the needs of current space scientists.   

The role of scholarly societies  
The broader research communities have recognized the importance of these issues with burgeoning 
activities.  The AGU Fall meetings with >20,000 Earth and space scientists has dozens of sessions 
on informatics: exploiting Big Data, improving data infrastructure and access, coordinating data 
frameworks, facing supercomputing challenges, and developing methodology for data analytics 
and Deep Learning to accelerate scientific discovery21.  A once-in-a-century reorganization of the 
IAU in 2015 led to the addition of ‘Data Science’ to the name of a Division and the initiation of 
new Commissions on Computational Astrophysics and on Astroinformatics and Astrostatistics22.  
Cross-disciplinary working groups for advanced methodology in astronomy also arose in the AAS, 
ASA, and the IEEE engineering society in the past few years.  In 2016, the AAS Journals that 
publish 1/3 of the world’s research literature created a new Statistical Scientific Editor position to 
improve the methodology in its articles23.    

V.  Recommended approaches  

Training workshops   
Several organizations, particularly in astrophysics, have organized informal training workshops in 
statistics and informatics.  These training workshops receive little or no funding from NASA.   
● Since 2001, the European Astronomical Data Analysis conference series have been 

accompanied by hands-on tutorial sessions on advanced data processing24.  
● Since 2005, Penn State University has organized a week-long Summer School in Statistics for 

Astronomers, partially supported by the National Science Foundation 25. Similar tutorials have 
been offered upon request at ~20 research institutions worldwide. 

● Since 2014, ESA has held week-long Data Analysis and Statistics Workshops at the ESAC 
facility in Madrid ES26.   

● In recent years, American Astronomical Society meetings are preceded by a selection of 
professional development workshops that include training in computer programming (Python, 
R, software carpentry) and statistical methodology27.  

                                                
18 https://software-carpentry.org/about/ & http://www.datacarpentry.org/about/ 
19 https://arxiv.org/pdf/1711.00028.pdf 
20 Facebook groups: https://www.facebook.com/groups/remotesensing/ (Remote sensing and GIS, ~15,000 
members);  https://www.facebook.com/groups/astro.r/ (astrostatistics, ~3000 members) 
21 https://fallmeeting.agu.org/2016/scientific-program-guidelines/ 
22 https://www.iau.org/science/scientific_bodies/divisions/B/info/commissions/ 
23 http://journals.aas.org/editorial.html 
24 http://ada8.cosmostat.org 
25 http://astrostatistics.psu.edu/su17/ 
26 https://www.cosmos.esa.int/web/esac-science-faculty/esac-faculty-events 
27 https://files.aas.org/aas227/AAS_227_Block_Schedule.pdf  (January 2016 AAS meeting workshops) 
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● Seven Solar Information Processing Workshops, combining solar astronomers with 
statisticians and computer scientists, were held prior to 2014 with partial NASA support. 

Communities of Practice 
The National Science Foundation has funded a system of Big Data Regional Innovation Hubs 
(BDHubs), networks of organizations working on technologies and applications around Big Data, 
data science, and science applications.  One regional consortium fosters workforce development, 
another builds public-private multi-sector partnerships, and others focus on societal challenges 
addressed through Big Data.  Each Hub collectively responds to “Spoke” funding programs that 
provide the main research funding for the BDHubs effort.  Spokes are organized thematically, for 
instance in urban science, transportation, agriculture, and medicine, and other efforts of interest to 
society and to NSF directorates.  The system provides a scaffold for Big Data innovation, 
promoting more impactful proposals that leverage Big Data technologies "to support basic research 
and people to create knowledge that transforms the future”. Key to this effort is participation of 
industry and nonprofit partners, though the leads for all hubs are university-based faculty.  
  
An excellent example of a similar effort focused on building connections within a campus is the 
Moore-Sloan Data Science Environments (DSEs), a partnership of three-universities and two 
private foundations created in 2013 to address the lack of academic support for research oriented 
data scientists at universities throughout the US28.  The Gordon and Betty Moore Foundation and 
Alfred P. Sloan Foundation fund it at a level of $37.8 million over five years. The DSE premise is 
that changes in academia are required to more fully support data scientists who enable new data-
driven discoveries.  Data scientists are in high demand in industry but lack similar support in 
academia due to their inherently interdisciplinary nature.  DSEs support the academic careers of 
data scientists, promote education and training in data-intensive discovery, build an ecosystem of 
tools and software, and support reproducibility and open science. These themes are further 
augmented by additional working groups around topics such as Cross-Domain Image Analysis and 
Text as Data29.   

Software engineering 
Software engineering is a major field that specializes in developing methods for software 
architecture and design, parallel and distributed computing, performance optimization, database 
access, debugging and testing, maintenance and reuse.  For three decades, the IEEE society has 
been running international conferences on software engineering, architecture, reliability, and 
comprehension30.   Some of the issues that can benefit NASA programming efforts include:  
● Software design patterns emphasize broad principles in strategy, structure and implementation 

of major software development efforts.  Software design can be based on components (such as 
object-oriented programming), linear pipelines, or other principles.  Each design approach has 
different implications for parallelization, efficiency, maintenance and reuse.   

● Software development approaches include: top-down strategies for larger systems and bottom-
up strategies for smaller systems; agile software development and evolutionary prototyping 
when the requirements change as the project progresses; and the traditional waterfall model of 

                                                
28 http://msdse.org  
29 ImageXD: https://bids.berkeley.edu/research/image-xd,  TextXD: https://bids.berkeley.edu/research/textxd  
30 http://icse2017.gatech.edu 
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sequential software design and development.  NASA has a strong agile development program 
for flight software31 but less prominently in space science applications.  

● Parallel and distributed computing architectures require special programming designs.  The 
MapReduce model, for example, separates data filtering from analysis functions and is 
effective in multithreaded applications on many processors.  Effective use of hybrid CPU-GPU 
clusters requires particular attention to intra-core caching and inter-core communication.   

● Software maintenance and reuse (beyond well-established libraries) are important elements of 
continuing or replacing legacy programs.  Staff time devoted to fixing bugs and adapting code 
to changing system environments can be reduced with high-level debuggers and impeded by 
earlier weak programming practices. 

Distribution of space science software 
In the past, it was often difficult to promulgate software with advanced methods from an expert 
research group to the wider scientific community. NASA SMD’s Applied Information System 
Research Program, along with other research programs, encountered this problem during the 
1990s.  But software dissemination has greatly improved mechanisms today.  Source code can be 
deposited and updated on repositories like GitHub32 that currently hosts tens-of-millions of open-
source software projects.  Well-organized software libraries and packages implementing advanced 
analysis for space science are also be provided through language-specific repositories.  The Python 
Package Index currently has over 100,000 packages, and the public domain R statistical software 
environment has over 10,000 packages with millions of users33. NASA scientists played a central 
role in developing the important Astropy toolbox34. 

Algorithms, Machine Learning & Optimization 
New approaches to data analysis are advancing quickly in the fields of machine learning and 
optimization, which if applied across the NASA science missions, would accelerate discoveries 
and support the generation of new science currently not possible.  Though machine learning is at 
the peak of inflated expectations according to a major consulting firm35, scientists in the astronomy 
and physics community are reaping tangible benefits from its application in an array of uses: real-
time decision making from instruments and sensors, high performance categorization of survey 
data, advanced pattern recognition in high energy physics to name a few. 
  
One key factor in utilizing machine learning approaches to science problems is knowing which 
method to apply on one’s datasets and at what stage of the research program.  Some methods are 
better for hypothesis generation, while others are better for model creation and understanding.  The 
tools and reference implementations of these new methods require a familiarity with the 
mathematics and computer science theory if they are to be used properly.  Powerful methods such 
as Classification Trees with Random Forests, Support Vector Machines, and Deep Learning neural 
networks have considerable flexibility.  The user’s choices of algorithmic procedure may, or may 
not, significantly affect the scientific conclusion.  Scientists who have advanced training in 
                                                
31 https://www.nasa.gov/sites/default/files/files/FlightSoftware.pdf 
32 http://github.com 
33 http://pypi.python.org; https://cran.r-project.org/web/packages/   
34 Astropy Collaboration, 2013. "Astropy: A community Python package for astronomy". Astronomy & 
Astrophysics. 558: A33  
35 http://www.gartner.com/newsroom/id/3412017 
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machine learning, or statisticians/computer scientists with cross-training in the domain of science 
the data sets come from, are the ones best suited to make these choices and apply machine learning 
appropriately to the problem at hand. 
  
Machine learning can mean an array of different approaches to extracting insights from data.  
Supervised learning uses human curated / validated / tagged datasets to help a program construct 
a model of new input data.  Unsupervised learning attempts to categorize datasets based on 
qualities within the data, and is used for anomaly detection, neural networks, and other clustering 
applications.  Deep Learning which can be either supervised or unsupervised is a layered network 
of models corresponding to different abstractions or hierarchies in the data. Deep Learning has 
made significant progress towards image and scene recognition – in some cases on par with 
exceeding human accuracy, at a fraction of the speed. There are many other sub-areas within 
machine learning that could prove invaluable to NASA SMD-sponsored scientists.  

Visualization  
Data visualization helps scientists in a variety of stages of discovery, from exploration of new data, 
to real-time analysis and decision making, to interactive communication of results. Modern scale 
scientific data have challenges with traditional visualization techniques. Large datasets often 
cannot be completely loaded into memory, hindering real-time exploration. Highly complex 
datasets have too many variables for pair-wise comparison, hindering the discovery of correlations 
or anomalies.  
 
New techniques are beginning to be available to manage these, and other similar challenges with 
big data visualization. By using machine learning on high dimensional datasets, recommender 
systems and group theoretic ‘scagnostics’ are able to suggest reasonable alternative to standard 
pair-wise comparisons, alerting researchers to combinations of variables that could be of interest36. 
For large data sets, techniques such as pre-fetching the likely next subsets of data to be visualized 
can speed up real time exploration of big data.  
 
Further, the language of data visualization has become significantly more advanced in the last few 
years with more compelling, user-friendly tools for building and sharing graphical representations 
of data. For example, new languages such as Vega37 provide a standard and expressive way to 
program data visualizations for both exploration and analysis. These tools take into account the 
ways in which humans understand information, and help researchers gain new insights into their 
data.  
 
Finally, Augmented Reality and Virtual Reality technologies offer entirely new ways to visualize 
digital information. Though currently too expensive and early stage to be generally useful to 
scientists, the future of these techniques will offer immersive and infinite resolution visuals of data 
that will allow researchers the ability to see both the ‘forest’ and the ‘trees’ of the phenomena being 

                                                
36 C. Richthammer et al., Interactive visualization of recommender systems data, SHCIS ’17, Proceedings of the 4th 
Workshop on Security in Highly Connected IT Systems, 19-24; Wilkinson, L. & Wills, G. (2007) Scagnostics 
distributions. J, Computational & Graphical Statistics, 17, 473-491.  
 
37 Vega, A visualization grammar, https://vega.github.io/vega/ 
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studied. As price and size/bulk come down, every researcher will be able to have these capabilities 
in their lab or office. 

VI.  Conclusions 
 
Though state-of-the-art techniques and practices are in practice in many places across the NASA 
enterprise, advanced methodologies of data science are not being uniformly integrated into data 
and science analysis, either within NASA or in its funded programs.  NASA has not taken 
leadership in the development, promulgation, or community education of statistical and 
computational methodologies for space science.  NASA has played an insufficient role in the 
development of data science as a profession through scholarship, investment, employment or 
education. 
 
To promote improved computational and statistical methodology in the service of NASA science, 
the Task Force recommends: 
 
● NASA SMD should fund and encourage its scientists and engineers to pursue professional 

development in statistics and informatics.  Informatics is very broad including efficient 
algorithms, database management, Deep Learning, parallel programming, software 
engineering, statistical methodology, and other topics.  This can include in-service workshops 
to promulgate best practices, attending external meetings on advances in methodology, and 
hiring expert consultants to bring state-of-the-art procedures to M&A efforts. 

● NASA SMD should contribute to efforts to educate the wider Earth and space science 
communities in recent developments in statistics and informatics.  This can include hosting 
training workshops and developing online training materials using modern platforms such as 
Jupyter notebooks.  

● Specifications for mission science operations software development should include proposal, 
documentation and evaluation of computational algorithms and statistical methods when they 
are crucial for the software performance and science outcomes.  The goal is to establish high 
standards for analysis methodology and algorithms within mission analysis pipelines and 
archive software services. Cross-disciplinary experts should participate in software 
performance reviews.   

● NASA SMD should ensure modern software engineering (for example: agile, fast iteration 
processes for creation and modification of software systems) is applied to its sponsored 
development and maintenance projects. This may include active involvement of data science 
professionals as staff or consultants. 

VII. Acknowledgements   
Thanks to Victor Pankratius (MIT) for insights into software engineering, and to Aneta 
Sieminigowska (Smithsonian Astrophysical Observatory) for material from the AAS Working 
Group on Astroinformatics and Astrostatistics.  

VIII. List of Acronyms 
AAS  American Astronomical Society 
AGU  American Geophysical Union 
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ASA  American Statistical Association 
BDTF  Big Data Task Force 
BDHubs Big Data Regional Innovation Hubs (NSF) 
CPU  Central processing unit 
DSE  Data Science Environment (Moore-Sloan Foundation) 
ESA  European Space Agency 
IEEE  Institute of Electrical and Electronic Engineers 
GPU  Graphical processing unit 
IAU  International Astronomical Union 
JWST  James Webb Space Telescope 
M&A   Mission and archives 
SMD  Science Mission Directorate 
SQL  Structured Query Language 
STScI  Space Telescope Science Institute 
WFIRST Wide Field Infrared Survey Telescope  
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BDTF Findings & Recommendation: Methodologies 
 
Finding:  
The volume, variety and velocity of NASA science data is taxing established methods and 
technologies. The problem arises both from data generated by science missions and from 
computationally intensive simulations supporting these missions.  
  
Finding:  
The enormous strides in methodology from statistics, applied mathematics and computer science 
of recent decades are often not incorporated into NASA satellite data or science analysis 
programs.  High standards for analysis methodology and algorithms are not set consistently for 
analysis pipelines within NASA mission centers, for science analysis software maintained by 
NASA archive centers, or for extramural science programs funded by NASA.   
 
Recommendation:  
The BDTF recommends that NASA SMD make the necessary changes in training, proposal and 
mission reviews, and implementation of the critical capabilities that data science algorithms 
provide.  
• NASA SMD should organize and fund professional development in statistics and 

informatics, both for its internal scientists and for the wider Earth and space science 
communities.  This includes organizing training workshops, producing on-line training 
materials, attending methodology conferences, and hiring expert consultants. 

• Specifications and performance reviews for mission science operations software 
development should include high standards for computational algorithms and statistical 
methods with evaluation by cross-disciplinary experts.  

• NASA SMD should ensure modern software engineering (for example: agile, fast iteration 
processes for creation and modification of software systems) is applied to its sponsored 
development and maintenance projects. This may include active involvement of data science 
professionals as staff or consultants.  

 
Background: see the BDTF white paper: Data Science: Statistical and Computational 
Methodologies for NASA’s Big Data in Science. 
 
Rationale  
Data science and modern software engineering methods provide powerful insights and allow for 
fully leveraging the large, real-time, and complex datasets coming from NASA SMD missions 
and its research programs. These methods often come from adjacent fields from the normal SMD 
focus areas, and therefore require cross-disciplinary training, collaborations, and other 
technology transfer.  
 
Consequences for not adopting the recommendation  
NASA science missions will not adequately leverage data to extract the full value from the 
datasets made available. Inadequate methodologies will result in weak recovery of the science 
potential, lower quality results, and higher costs for analysis. Furthermore, there is potential for 
inefficient software maintenance practices.	


