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A BDTF White Paper 
 

Server-side Analytics 
 
I.  Executive Summary 
 
NASA’s archives of science data are growing larger and incorporating more features.  In many 
cases efforts needed by users of these data are being hampered by the inefficiencies associated 
with moving large data sets from the archives across the internet into the storage local to the user.  
A new paradigm is beginning to appear which will permit operations on the data prior to 
transmission.  These operations reduce the amount of data that will be transmitted. There are 
several terms being used to describe the new paradigm: data analytics, climate analytics, server-
side analytics, etc., which all have common features – namely bring data analysis code to the data.  
This paper will use “server-side analytics” (SSA) as being synonymous with the other terms.  
 
The rationale for moving to server-side analytics architectures include: 
• Reading data over the internet is slower than reading data from a local file. 
• Some analysis tasks require a lot of data: “Compute the mean annual cycle from a 100-year 

climate model run.”  
• Analysis expression is evaluated at the server, where the data reside on disk. 
• Only the analysis result is delivered to the client. 
• Server-side analysis saves a lot of time if:   (size of result) << (size of data operated on) 
 
This white paper lays out the case for adopting SSA implementations where needed and provides 
the following recommendations to SMD: 
• Publish an RFI via NSPIRES to ascertain where there are centers of SSA development that 

could be useful for NASA-sponsored research.   
• Convene workshops for the NASA science community to show off the SSA services that are 

under development and get feedback that could point to where new developments are needed, 
• Solicit via ROSES for demonstrations or prototypes of SSAs that have the most promise of 

solving “log jam” situations in priority areas. 
• For those projects that demonstrate potential at significantly improving the delivery of tailored 

processed data to the researcher, SMD should take steps to make those projects operational. 
 
In all events, members of organizations who provide SMD data archive services need to 
participate.  It is most important that representatives, ideas, and approaches from the broader data 
user communities need to participate and in certain cases lead in the implementations. 
 
Sound science leadership within SMD will be needed to ensure that new SSA architectures are 
implemented where most needed and other proposals for lower priority implementations are 
reserved.  The use of community peer groups and advisory working groups will be valuable in 
providing priority rankings for new concepts and proposals. 
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II.  Introduction 
 
NASA-sponsored investigators have a long tradition of serving data derived from their instruments 
to colleagues in their respective fields.  In the decades of the 1970s to the 1980s, this data service 
involved having the investigator receiving a data request by phone or mail and making a digital 
data tape employing the group’s miniVax or PDP-9.  In the 1990s and into the 21st century, with 
the adoption of the internet and the World Wide Web, this data request and transmission model 
became more efficient as requesters employed web-based forms and data were transmitted via ftp 
protocols. Data archives were created as focused centers for holding instrument data and serving 
the research community at large. This merely codified the old model of data requests and delivery 
that was developed 40 years ago. 
 
III.  Statement of the Problem 
 
The standard method for analyzing Earth and space science data (See Figure 1) is that data residing 
in one or many data stores must be parsed out and shipped over the internet to the researcher who, 
in turn, locally stores the data for subsequent analyses.  The analysis tasks are varied and include 
visualization, parameterization, and comparison with or assimilation into physics models. 
 
In many cases this process is inefficient and unwieldy as the data sets become larger and demands 
on the analysis tasks become more sophisticated and complex. As data storage volumes have 
reached petabyte size, wide-area networks have not kept pace, so that moving data sets or large 
subsets from an archive to a user’s local device is rapidly becoming impossible. 
 
For about a decade, several groups have explored a new paradigm to this model.  The names 
applied to the paradigm include “data analytics”, “climate analytics”, “bringing code to data” and 
“server-side analytics” – all variations of a similar theme. The general idea (See Figure 2) is that 
there will need to be in close network proximity to certain “big" data stores a tailored processing 
capability appropriate to the type and use of the data served. The user of the server-side analytics 
capability will access and retrieve tailored data via the processor that will operate on the data with 
numerical procedures controlled by the user.  Results of the analytics processes will then be relayed 
to the user.  In practice, these results will occupy a much smaller volume, easier to transport to and 
store locally by the user and easier for the user to interoperate with data sets from other remote 
data stores.  A major component of server-side analytics could be to provide sets of tailored results 
to end users in order to eliminate the repetitive preconditioning that is both often required with 
these data sets and which drives much of the throughput challenges. 
 
The main need for SSA is that the linear rate of growth in wide area network capacity is not keeping 
pace with exponential growth of data storage capacity. Users are increasingly interested in 
interrogating larger subsets of data archives (e.g., in order to conduct needle-in-haystack big-data 
analytics with machine learning and other automated procedures), and data archives are reaching 
beyond petabyte volumes, it is no longer feasible for users to download the data they need over 
wide area networks.  Nor is it realistic to assume that the users have access to the necessary local 
data stores needed for temporary caching of the research data. They need hundreds of terabytes or 
even petabytes but often they can only get tens of TB or less.  
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As an example, one NASA-funded university research group recently acquired a petabyte data 
storage system. The group intends to do some very complex analyses of data that are residing at 
NCAR, NASA Ames and the Texas Advanced Computing Center.  The new local data storage is 
providing a great opportunity to bring together massive data sets that are stored at disparate 
locations. Despite using of sophisticated data transfer optimizations tuned in coordination with the 
transmitting data centers, the current estimate is that just to download these requested data sets 
from the 3 remote locations will take upwards of 4 months!  
 
By having SSA in place where the large data sets reside, the operations that would be done on the 
user’s home system instead could be done on the analytics servers available in network proximity 
to the data archive site. Only the results of analytics processing would be transported back to the 
user, in digital, tabular or graphical form. Such reductions could result in many orders of magnitude 
smaller data volumes transferred over the wide area network1. One could imagine even more 
sophisticated analyses – energy budgets, empirical orthogonal functions, probability distributions 
– being conducted remotely by running automated scripts on the server side, which would result 
in even larger reductions in data volume to be transported.  
 
Another reason for adopting SSA architectures is that under the current paradigm of having each 
user download their own copy of a given data set and devise ways of operating on it has great 
potential for duplication of effort and error. Modern processing streams are typically composed of 
many steps in which various transformations are applied to the data. It is quite likely that many of 
the steps are common to many users’ intended analyses. As an example, in climate research users 
typically operate on anomalies, which are the results of subtracting the mean value from the raw 
field. Thus the calculation of a time mean (which may be time dependent, e.g., if there is a known 
cycle like the annual cycle of insolation) is repeated by many users. Having each user “invent” the 
method for analyzing the data means that many users are likely creating code to do the same set of 
operations. Furthermore, as more users develop their own ways of processing data, the likelihood 
increases that at least one of them introduces an error. Using the climate analysis example, there 
are many ways to compute a climatological mean (normal), and some may be more appropriate 
than others, depending on the intended subsequent processing of anomalies. The promise of SSA 
is that the processing stream can be developed once, unit tested, and peer-reviewed for accuracy 
and efficiency, after which it can be made available to the entire user community. By making the 
SSA library a community code, it also would be possible to capture the methods developed by 
users and give the code to all other users. 
 

                                                
1 For example, a typical calculation with the data mentioned above involves computing the 
climatological average, ensemble average and zonal average of a set of, say, 100 different 
statistics (atmosphere, ocean, land and cryosphere variables; maxes, mins, means, std. deviations, 
etc.), across ~30-50 years of data, with ensembles of 20 or more members. The data that would 
be “touched” in such a calculation for a data set with, say 25-km grid spacing (reanalysis data or 
climate runs) or 5-km grid spacing (satellite data or weather runs) would amount to several 10s 
of TB. The result would be reduced by 50 * 20 * 1000 = O(10**6) for each statistic, i.e., 10s of 
MB would be returned to the user, which is a very manageable data volume to move over the 
wide area network. 
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A third aspect of the SSA requirement is that interoperability is becoming more and more critically 
important. If a user wants to do a calculation with data from different archives that are in 
incompatible formats, a lot of work is needed. Rather than have each user re-discover the way to 
interoperate on diverse data sets, an SSA implementation could provide scripts that transform data 
in one format to another to enable interoperability. 
 
This study presents a new architectural approach that may be applicable to several of the four main 
science domains sponsored by NASA2.  Investment and development will be needed.  These could 
be provided via a new set of program initiatives issued from SMD.  
 
The analyzing and assimilating large observational data sets will become more efficient leading to 
more rapid scientific discoveries.  A measure of success in adopting the server-side architecture 
might be that the performance metrics for a data service will incorporate the delivery of meaningful 
data elements rather than simply volume of bytes transferred. 
 
IV.  Discussion and Examples of approaches 
 
The analytics paradigm is quite common and ubiquitously employed – in the apps resident on 
smart phones, tablets and the like.  Here the user hits some keys and icons on the app which encodes 
and relays the requested action across the internet to the app’s home processor.  The processor 
accesses required data which can be local or remote to the processor, prepares its response and 
transmits back to the app on the user’s device – directions to the restaurant, weather in San 
Francisco, etc. 
 
A very well-known example of a server-side analytics process is Google Earth.  The Google Earth 
application or web site (https://www.google.com/earth/) brings close-up views of the Earth’s 
surface interactively.  Google has prepared (and continually updates) a whole-Earth database of 
images acquired from multiple sources including the NASA-related Earth observatories.  The user 
does not directly go to this database to select and pull the data to their computer.  Rather the user’s 
request goes to a special analytics service that (1) requests the image data records from the database 
and (2) transmits only those records along with coded instructions to the computer’s application 
for rendering to the user.  Google has further extended this capability with its “Timelapse” feature 
(see: https://earthengine.google.com/timelapse/ ).  Similar to Google Earth, Timelapse brings to 
the user a video rendering of the 32+ years of LandSat images at a point on the Earth’s surface that 
is specified by the user.  
 
New computing tools are arriving and being employed which will facilitate development of SSA 
implementations. Computational notebooks hosted on the web utilize server-side data 
and computational resources.  For example, Jupyter Hubs (see Figure 3) can enable remote users 
to run programs, algorithms, and other scripts in common scientific languages like Python, R, and 
Julia via the user’s web browser. (see: http://jupyterhub.readthedocs.io ). The programs, 
workflows, graphs, and annotations are compiled into notebooks, which capture “…the whole 
computation process: developing, documenting, and executing code, as well as communicating the 
results.” Jupyter Hubs are currently operated by the Department of Energy and other High-

                                                
2 Astrophysics, Earth Science, Heliophysics and Planetary Science.  See:  https://science.nasa.gov 
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Performance Computation facilities, and Jupyter Notebooks were used to release the discovery of 
the recent detection of gravitational waves by LIGO (https://losc.ligo.org/tutorials/). The LSST 
consortium recently announced that they plan to use JupyterLab for their ‘science platform3.  
 
The NASA research community has explored with some prototyped analytics processing and, in 
some cases, gone on and implemented specific SSA applications.  The APPENDIX has discussions 
on the following projects:  GrADS, MERRA/AS, OceanWorks, Western States Water Mission, 
SWOT and NISAR science data systems, researcher’s tools for accessing and analyzing SDO data, 
SciServer, the NOAO DataLab and GAVIP. 
 
The implementation of SSA architectures will be of great benefit to many NASA areas of research 
– but not all.  In many of the Earth sciences and solar astronomy research areas initial 
implementations are showing great promise.  Certainly, an accelerated effort will be needed as 
shown by the examples cited above.  NASA’s astronomy and astrophysics fields are venturing into 
the large-area survey mode.  In the planetary sciences, the search for both new and previously 
found Near-Earth Objects most likely could be a fertile ground for implementation of SSA 
architectures.  But in many fields, such as high-energy astrophysics, SSA architectures will not be 
appropriate since the traditional request-and-retrieve methods are more than adequate for the 
typical lower-volume data sets. 
 
V.  Recommended approach 
 
SMD needs to start exploring implementations for server-side analytics services.  Probably the 
most expeditious and efficient way to initiate this is to publish an RFI via NSPIRES to ascertain 
where there are centers of SSA development that could be useful for NASA-sponsored research.  
Also, the SMD should convene workshops for the NASA science community to show off the SSA 
services that are under development and get feedback that could on where new developments are 
needed.  Based on the results of these two community events, SMD can solicit via ROSES for 
demonstrations or prototypes of SSAs that have the most promise of solving “log jam” situations 
in priority areas.  For those projects that demonstrate potential at significantly improving the 
delivery of tailored processed data to the researcher, SMD should take steps to make those projects 
operational.  In all events, members of organizations who provide SMD data archive services need 
to participate.  It is most important that representatives, ideas, and approaches from the broader 
data user communities need to participate and in certain cases lead in the implementations. 
 
Sound science leadership within SMD will be needed to ensure that new SSA architectures are 
implemented where most needed and other proposals for lower priority implementations reserved.  
The use of community peer groups and advisory working groups will be valuable in providing 
priority rankings for new concepts and proposals. 
 
VI.  Conclusion 
 
This white paper lays out the case for adopting server-side analytics implementations.  It provides 
rationale, a generic concept, examples of early prototyping and adaptations and a set of 
recommendations for SMD to consider. 
                                                
3 The LLST consortium has produced a design document for its Jupyter implementation:  https://ldm-542.lsst.io 
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SSA implementations are desperately needed in certain applications, e.g. climatology and solar 
astronomy.  In some cases, a SSA implementation will need to be built into the science operations 
architecture of a high-data volume mission.  There are several fields within the NASA science 
domain where the SSA implementations do not make sense.  Careful attention to community needs 
and priorities will be needed to focus resources where needed the most. 
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VIII.   List of Acronyms 
 
AIA Atmospheric Imaging Assembly 
AIST Advanced Information Systems Technology 
API Application Programming Interface 
BDTF Big Data Task Force (formally Ad-Hoc Task Force on Big Data) 
COAPS Center for Ocean-Atmospheric Prediction Studies 
DAAC Distributed Active Archive Center 
DOMS Distributed Oceanographic Match Service 
EDGE Extensible Data Gateway Environment 
EOSDIS Earth Observing System Data and Information System 
GAVIP Gaia Added Value Interface Platform 
GrADS Grid Analysis and Display System 
HEK Heliophysics Events Knowledgebase 
HMI Helioseismic and Magnetic Imager 
JSOC Joint Science Operations Center 
JWST James Webb Space Telescope 
LIGO Laser Interferometer Gravitational-Wave Observatory 
LSST Large Synoptic Survey Telescope 
MERRA Modern-Era Retrospective analysis for Research and Applications 
MUDROD Mining and Utilizing Data Relevancy from Oceanographic Dataset 
NCAR National Center for Atmospheric Research 
NISAR NASA-ISRO Synthetic Aperture Radar 
NOAO National Optical Astronomy Observatory 
NSPIRES NASA Solicitation and Proposal Integrated Review and 
 Evaluation System  
RFI Request for Information 
Pan-STARRS Panoramic Survey Telescope and Rapid Response System 
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RFI Request for Information 
ROSES Research Opportunities in Space and Earth Science 
SAR Synthetic Aperture Radar 
SDAP Science Data Analytics Platform 
SDO Solar Dynamics Observatory 
SDS Science Data System 
SDSS Sloane Digital Sky Survey 
SMD Science Mission Directorate 
SSA Server-Side Analtics (synonymous with Data Analytics, 
  Climate Analytics, etc.) 
SWOT Surface Water Ocean Tomography 
TB Tera Bytes 
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IX  Figures 
1. Traditional Data Request and Delivery Model 
2. Server-Side Analytics Model 
3. Jupyter Hub 
4. OceanWorks Architecture 
5. WaterTrek Data Analytics Architecture 
6. SWOT and NISAR Data Volumes 
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Figure 4: OceanWorks Architecture 
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Figure 5: WaterTrek Data Analytics Architecture 

 

 
Figure 6:  SWOT and NISAR Data Volumes 

 



 

 13 

APPENDIX – Examples of Server-Side Analytics-type Projects 
 
The NASA and its allied research organizations have explored with some prototyped analytics 
processing and, in some cases, gone on and implemented specific SSA applications.  This 
APPENDIX presents discussions on the following projects:  GrADS, MERRA/AS, OceanWorks, 
Western States Water Mission, SWOT and NISAR science data systems, researcher’s tools for 
accessing and analyzing SDO data, SciServer, the NOAO DataLab and GAVIP. 
 
1. One of the earliest examples is a package of Earth science data analysis and visualization 
software called the Grid Analysis and Display System (GrADS), in active development since 1989, 
it was modified in the early 2000s to support remote subsetting and analysis via a client-server 
implementation4. The result was called GDS - the GrADS Data Server. GDS was implemented 
using OPeNDAP as the communication protocol, employing http for transporting packets of 
information on the internet.  (See: http://cola.gmu.edu/grads/grads.php )  Variations GrADS and 
GDS are now widely deployed by NOAA and frequently accessed. 
 
2. Also in Earth Science, the GSFC has developed a capability: MERRA/AS which is a climate 
analytics service specifically tailored to making MERRA5 data more easily accessible to an 
expanding community of consumers, including local governments, federal agencies, and private-
sector customers.  This capability represents an architectural approach to climate data services that 
can be generalized to applications and customers beyond the traditional climate research 
community.  Development of MERRA/AS is mature and ready for operational deployment. 
 
3. The NASA AIST OceanWorks (https://oceanworks.jpl.nasa.gov) establishes an Integrated Data 
Analytic platform on the Cloud environment to enable Big Ocean Science. It focuses on 
technology integration, cloud infusion, advancement and maturity by bringing together several 
previous NASA-funded AIST and ACCESS projects as an effort to deliver a production-ready 
data science platform for the ocean science community. The emphasis is integration and platform 
building by hiding all the complexities of data management, horizontal-scaling, domain-specific 
technology implementations, and cloud computing architecture. User applications and services 
will integrate with OceanWorks through RESTful APIs and well-defined information model. 
OceanWorks is not your typical killer-app. It is a platform for users and external organizations to 
plug into a cloud-based analytics platform for on-the-fly analysis of many oceanographic 
measurements without having to download massive amount of data to their local computer. 
	
Recognizing the technology solution for OceanWorks can be extended to support multidisciplinary 
science, the OceanWorks project has donated all of its solutions to the Apache Software 
Foundation into what is called the Science Data Analytics Platform (SDAP) 
(http://sdap.incubator.apache.org).  Its goal is to create a community-supported, integrated 

                                                
4 Some of the early work to develop GrADS was funded by NASA SMD and its predecessor 
organization. 
5 MERRA: The Modern-Era Retrospective analysis for Research and Applications is an 
amalgamated data set assembled for performing global climate research.  See: 
http://gmao.gsfc.nasa.gov/merra. 
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platform for big geospatial data analysis using Cloud computing technology.  The SDAP currently 
includes many other SSA applications.   
 
For example, the Distributed Oceanographic Matchup Service (DOMS) delivers a cloud-based 
matchup solution by integrating distributed in situ data hosted at JPL, NCAR, and COAPS. The 
project has standardized access to point-based in situ data using open source implementation of 
OpenSearch called the Extensible Data Gateway Environment (EDGE). DOMS translates the 
temporal spatial query into in situ subset requests to the external data centers. Upon receiving the 
sub-setting in situ data, DOMS executes its map-reduced, matchup algorithm on the cloud. The 
matchup result is packaged, transmitted and visualized. 
 
Also, Mining and Utilizing Dataset Relevancy from Oceanographic Dataset (MUDROD) is a 
search analytic technology by continuously mining search logs from data portals. Through 
machine learning technology, MUDROD exposes hidden relationships between ocean datasets and 
dynamically adjust data ranking to show the most relevant datasets first. With data centers like the 
NASA Physical Oceanography Distributed Active Archive Center (PO.DAAC) or projects like 
EOSDIS, which manages large collection of data, the ability to finding related data, services, and 
publications is a game changer. 
 
4. Another JPL project is the Western States Water Mission (WSWM) project at is addressing the 
question “how much water do we have?” by understanding hydrological flows and stocks with 
data from space-based, airborne, and in situ measurements, and NASA’s assimilation capabilities.  
Coupled and validated models will be utilized in a robust state estimation effort to improve the 
accuracy of water availability information.  WSWM data and analytics provide estimates, with 
quantitative uncertainties, of freshwater resources, namely snow water equivalent, surface water, 
soil moisture, and ground water. WSWM will also estimate fluxes like evapotranspiration rates, 
runoff, and stream flow.  Within the context of WSWM, it will be possible to demonstrate the 
architecture, capabilities and technologies of a scalable data analytics center enabling an 
interactive interface to massive hydrological data. 
 
The data science goals are to:  (1) Develop analytics that exploit a massive back-end data store to 
produce estimates relevant to the water management in the Western U.S.; (2) Integrate uncertainty 
management to enable scientific validation of model data against in situ data; (3) Leverage a high-
capacity back end data store to enable timely execution of key machine learning diagnostics, such 
as novelty detection, on these hydrological data; (4) provide APIs that enable users to run their 
own computations. The data analytics platform confronts many big data and data science 
challenges with scalability of distributed data, data integration of heterogeneous data, uncertainty 
quantification from observations to derived inferences, on-demand computation for real-time data 
analytics, different database containers to better support interactive deep dive analysis. 
 
5. The SWOT (https://swot.jpl.nasa.gov) and NISAR (https://nisar.jpl.nasa.gov) missions are 
under development and are scheduled to be launched in about 2020 and 2022, respectively.  Both 
missions will deploy synthetic-aperture radars and will have daily data accumulations of 15 to 86 
TB (see Figure 6.) which is unprecedented for NASA science missions. The science data centers 
(SDS) for both of these missions will probably employ cloud architectures for both processing and 
data storage.  This could involve co-locating the traditional functions of the DAAC adjacent to the 
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mission’s SDSes within a cloud framework.  This opens opportunities to provide server-side 
analytics functions at the data centers and truly “Move the Analysis, not the Data.” 
 
6. There have been several efforts in the field of Heliophysics since 2000, driven by the impending 
flood of data coming from the Solar Dynamics Observatory (SDO). SDO generates 2TB of data 
each day and its data management strategy was critical to its success. SMD grants lead to the 
development of a set of web services that enable outside users to operate upon data hosted on a 
data servers (see http://www.lmsal.com). These services included data cutouts, movie generation 
and prototypes for remote access to more extensive processing tools.  
 
As SDO launched, similar services were developed as part of the Helioviewer project 
(http://helioviewer.org ) which included integration with social media services.   
 
Two of the prime science teams (AIA and HMI) took on the task of devising schemes to deliver 
useful science products at reasonable data volumes. The Joint Science Operations Center (JSOC, 
http://jsoc.stanford.edu ), where AIA and HMI data are processed, currently supports a variety of 
on-demand, pre-processing scripts to help reduce the volume data transfers. These include scripts 
to extract sub-images from the full 4kx4k images and subsample in time; to scale images and 
transform them into a different of coordinate systems and map projections; and to create jpeg 
images and compressed H.264 movies. There is also support for users to bring their analysis codes 
into the JSOC for execution on internal servers in the same manner as other centers of High 
Performance Computing (e.g. NASA/Ames’ Pleaides system). 
 
The Heliophysics Events Knowledgebase (http://www.lmsal.com/hek ) was developed to try to 
anticipate user requests using data mining algorithms to identify interesting subsets of AIA and 
HMI image data as they streamed in. The HEK created a framework and schema that enabled 
community members to contribute algorithms that can be integrated into the science pipeline. 
Metadata and summary movies of the results are posted online with links to web services for 
extracting relevant subsets of the AIA data. 
 
In Astronomy and Astrophysics there are several early examples of server-side analytics services. 
 
8. SciServer, (http://www.sciserver.org) “a collaborative research environment for large-scale 
data-driven science,” is funded by the NSF and run by The Johns Hopkins University. This project 
grew out of the data service activities for the Sloan Digital Sky Survey (SDSS)6.  “SciServer is a 
revolutionary new approach to doing science by bringing the analysis to the data. SciServer 
consists of integrated Tools that work together to create a full-featured system.”  SciServer is 
proving to provide advantages not only to astronomers using SDSS data but to a wide-ranging 
array of activities including genomics, oceanography, soil ecology, etc. More recently the 
SciServer team has been making a lot of progress in extending SciServer services to medicine and 
materials science. 

                                                
6 The SciServer framework grew out of SkyServer, a website first created in 2001 for the Sloan 
Digital Sky Survey. The still-ongoing SDSS (http://www.sdss.org) uses a telescope in New 
Mexico to take images of nearly half a billion stars and galaxies, resulting in a high-resolution 
map of the Universe. 
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The MAST (web reference) archive at the Space Telescope Science Institute has been exploring 
some capabilities to bring the SciServer features for accessing data from JWST and its newly 
acquired Pan-STARS data base. 
 
9. The National Optical Astronomy Observatory is developing Data Lab 
(http://datalab.noao.edu/index.php) which according their web site: “The Data Lab provides 
services to enable as much work as possible close to the data, while allowing transfer of data and 
results to local hardware anytime during the process. These pages contain information on the 
services that the Data Lab provides and the clients available to access them.”   “The Data Lab aims 
to: 
• Connect users to high-value catalogs from NOAO and external sources (e.g. SDSS, Gaia) and 

NOAO-based images linked to catalog objects 
• Enable users to discover the data that they need for their science 
• Allow users to develop intuition through interaction with selected catalog and image sets 
• Allow users to automate their analysis to aid discovery in large datasets” 
 
10. GAVIP, the Gaia Added Value Interface Platform 7 , is a demonstration project under 
development in Europe that will provide “an innovative platform within which scientists can 
submit and deploy code, packaged as ‘Added Value Interfaces’, which will be executed close to 
the data.”  The project recognizes that “there is an increasing need to facilitate the further use of 
Gaia products without needing to download large datasets.” Managers from ESA’s Science 
Operations Centre plan to incorporate GAVIP into their wider Science Exploitation and 
Preservation Platform. 
  

                                                
7 For abstract see: http://adsabs.harvard.edu/abs/2016SPIE.9913E..1VV.  GAVIP documentation 
here: http://docs.gavip.science/     - GAVIP GitHub repositories here:  https://github.com/parameterspace-ie 
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BDTF Recommendation for Implementing Server-side Analytics Architectures 
 
NASA’s archives of science data are growing larger and incorporating more features.  In many 
cases efforts needed by users of these data are being hampered by the inefficiencies associated 
with moving large data sets from the archives across the internet into the storage local to the user.  
A new paradigm is beginning to appear which will permit operations on the data prior to 
transmission.  These operations reduce the amount of data that will be transmitted. There are 
several terms being used to describe the new paradigm: data analytics, climate analytics, server-
side analytics, etc., which all have common features – namely bring data analysis code to the data.  
 
The BDTF has studied the case for adopting SSA implementations where needed and provides the 
following recommendations: 
• Publish an RFI via NSPIRES to ascertain where there are centers of SSA development that 

could be useful for NASA-sponsored research.   
• Convene workshops for the NASA science community to show off the SSA services that are 

under development and get feedback that could point to where new developments are needed, 
• Solicit via ROSES for demonstrations or prototypes of SSAs that have the most promise of 

solving “log jam” situations in priority areas. 
• For those projects that demonstrate potential at significantly improving the delivery of tailored 

processed data to the researcher, SMD should take steps to make those projects operational. 
 
In all events members of organizations who provide SMD data archive services need to participate.  
It is most important that representatives, ideas, and approaches from the broader data user 
communities need to participate and in certain cases lead in the implementations 
 
Sound science leadership from SMD will be needed to ensure that new SSA architectures are 
implemented where most needed and other proposals for lower priority implementations are 
reserved.  The use of community peer groups and advisory working groups will be valuable in 
providing priority rankings for new concepts and proposals. 
 
Rationale for the recommendation: 
The rationale for moving to server-side analytics architectures include: 
• Reading data over the internet is slower than reading data from a local file. 
• Some analysis tasks require a lot of data: “Compute the mean annual cycle from a 100-year 

climate model run.” 
• Analysis expression is evaluated at the server, where the data reside on disk. 
• Only the analytics result is delivered to the client. 
• SSAs can save a lot of time if: (size of result) << (size of data operated on). 
 
Consequences for not adopting the recommendation: 
We are already seeing examples where data analysis communities are restricted by the bandwidth 
of the transmission from the data archives. This problem will get worse due to ever increasing data 
volumes. If we do not take action now, we will not realize the full potential for producing new 
science from these data sets and possibly not meeting L1 requirements. 


