SCIENCE

Surface Deformation and Change Architecture Process Stephen Horst¹, Katia Tymofyeyeva¹, Shadi Oveisgharan¹, Batuhan Osmanoglu²

 ¹Jet Propulsion Laboratory, California Institute of Technology ²NASA Goddard Spaceflight Center

May 2020

Designing NASA's Next Generation SAR Mission Architecture

The 2018 Decadal Survey process has opened participation in mission development.

- Phase I: Brainstorming (2019-2021)
- Phase II: Down-selection (2021-2023)
- Make sure your voice is heard!
- Needs are collected through working group inputs

Brainstorming Approach

- Goal: Systematically evaluate all viable approaches
- "Trade spaces" represent possible mission building blocks
- Technology focus and investment on the instruments.
- Follow industry advancement for other mission systems

Architecture Package **Performance Evaluation New Technologies**

Frade Space Mission

Orbit

Does not reduce mission cost for systematic global coverage •

SDC Trade Space

- Trade space made up of all "building block" elements that could contribute to SDC goals: performance or programmatic
- Trade space elements that have continuous possible ranges broken into broad categorizations
- Broken into separate "Instrument", "Orbital", and "Architecture" spaces to aid in compiling possible architectures (see next slide)

Instrument Building Blocks:

- Frequency Band:
- Orbital Duty Cycle:
- Scanning Mode:
- Elevation Beamwidth: (proxy for swath width)
- Polarization: •
- Single Look Resolution:
- Noise-Equivalent Sigma₀: < -15 dB, < -25 dB

Orbital Building Blocks:

- **Repeat Period:**
- Orbit Altitude:
- Inclination:
- Coverage Technique:

L-band, S-band, C-band, X-band 15%, 50%

- Stripmap, SweepSAR, ScanSAR
- 2 deg, 3 deg, 4 deg, 6 deg, 12 deg
 - Single-pol, Dual-pol, Quad-pol

Single, Equi-Spaced, Grouped

- 5 m, 10 m, 15 m

10 - 16 day

450 - 750 km

60 deg - Sun-sync

Architecture Building Blocks:

- Launch Vehicles: Small Lift, Medium Lift, Heavy Lift
- Launch Sequence:
- Flight Spares:
- Mission Duration:

- Yes, No
- International Contribution:
- **Commercial Augmentation: Yes, No**
- Multi-Squint Corrections: Yes, No
- Co-flyer Coordination:
- Data Latency:
- Downlink Options:
- Coverage:
- Host Other Payloads:

Phased, Simultaneous 3 yrs, 5-7 yrs, 8+ yrs ISRO, ROSE-L, Sentinel, None

- Yes, No
 - < 4 hrs, < 1 day, < 1 week, None
 - X-band, Ka-band, Optical, TDRSS Global, Selective
 - Yes, No

Evaluating Architectures

- Outputs of the brainstorming process become inputs to the down-selection process
- Need simple metrics that can be weighed across mission architectures

Architecture Package		Metric	Cryosphere	Ecosystems	Geohazards	Solid Earth
Trade Space Inputs		Seasonal/yearly East-North-Up (ENU) and Line-of- Sight (LOS) displacement uncertainties ¹	Х			X
Cost Estimates	/	Seasonal and yearly range/azimuth offset uncertainties ¹	Х			
Functional Faction at the		Number of viable data acquisitions seasonally	Х		Х	Х
Engineering Estimates		Percentage of targets observable during each season	Х	Х	Х	X
Performance Estimates		Overall uncertainty of targets at the required coverage (70%)	Х		Х	Х
Technology Assessments		Percentage of targets with deformation accuracy below the SATM requirement	Х	Х	Х	Х
Risk Assessments		Event-based ² displacement and velocity uncertainties in ENU and LOS over a time period ¹			Х	
	N	¹ Per ground target over a given spatial scale ² "Events" can occur at different times of the year and last for varying amounts of time				

Example Performance Evaluation Outputs

- Different sets of targets relate architecture performance to different scientific disciplines (shown below)
- Uncertainties from thousands of targets are condensed into summary statistics for each discipline
- Hydrology is a recently added focus group: need a set of targets representing areas of interest.
- Methodology gives the ability to frame performance evaluation from the global to the local scale

Geo-located Performance

Season	Coverage	DU ¹ (mm)
WINTER	74.6%	10.0 (at 20km)
SPRING	80.9%	10.1
SUMMER	96.1%	13.2
FALL	94.2%	9.1

Seasonal Statistics

¹ Average line of sight displacement uncertainty

Summary Statistics

Category	Coverage	Uncert.	
Solid Earth	83.1%	9.2 mm	
Cryosphere	70.1%	10.1 mm	
Geohazards	85.2%	9.1 mm	
Biomass		•••	
Hydrology		•••	
Soil Moisture			

Performance Tool Models

- The tool translates radar measurement errors into geophysical estimate errors for a specific architecture
 - Radar measurement errors include interferometric phase error or backscattered power error
 - Geophysical estimate errors include items such as vertical displacement error or biomass estimation error
- The tool takes a modular approach to geophysical estimates, requiring the following definitions:
 - 1. Geo-located regions of interest
 - 2. An algorithm for translating measurement errors to geophysical error
- The following models are currently planned:
 - 1. Deformation estimation error
 - 2. Biomass estimation error
 - 3. Biomass disturbance error (needs to be augmented for constellation) 40
 - 4. Soil moisture estimation error (under development via NISAR)
- Additional models are possible, but would require the time, staffing, and funding to implement

Point target location definition for the Geohazards evaluation

Architectures Currently Under Consideration

- Several classes of architectures under evaluation, each with a variety of implementations
- Each class offers advantages in different *capability* areas:
 - **Continuity**: Likelihood of extending the current program of record beyond NISAR with overlap
 - **<u>Temporal Coverage</u>**: Improving the time between interferometric repeat intervals
 - <u>Error Reduction</u>: Reducing the measurement uncertainty by real time estimates of tropospheric delay
 - Look Diversity: Improving deformation estimation in all 3 spatial dimensions to enable new science
 - **<u>Radiometry</u>**: The ability to produce useful radiometric data in addition to interferometric products
 - **Spatial Coverage**: The portion of the globe covered by the instrument in its repeat cycle

Flagship Fleet Architectures

- Characterized by individual spacecraft each with global coverage capability
- Adding spacecraft to the constellation increases the global temporal sampling rate
- Works well as a basis for multi-national collaboration or spec-based acquisition plan
- Requires firm commitment to the measurement because costs for a flagship architecture are high.
- ROSE-L is an example of this architecture paradigm.

Capability	Ranking
Continuity	
Coverage	
Error Reduction	
Look Diversity	

Distributed Repeat-Track Architectures

- N equally distributed smaller satellites that cover 1/N of the adjacent ground track swath
- Gets complete global coverage based on the orbital repeat period
- For urgent response needs, all satellites mechanically steered to the same look angle
- Decreases interferometric repeats by a factor of N over the desired sub-swath

Multi-Squint Formation Architectures

- Forward and backward squinted satellites, surrounding a zero-Doppler satellite
- Multiple real-time look angles enable accurate removal of tropospheric delay
- Look diversity enables good estimation of all 3 spatial components
- Enables new science at the expense of coverage density
- Concept presented by Mark Simons at Living Planet Symposium 2019

Lowered Inclination Architectures

- Lower the orbital inclination of the constellation to improve mid-latitude look diversity
- Would open larger holes over the poles
- Would provide faster non-interferometric revisit times
- Would likely need to be in conjunction with other open measurements in a sun-sync orbit
- First architecture shown that would depend on other instruments and programs to meet the full needs of SDC

Capability	Ranking
Continuity	
Coverage	
Error Reduction	
Look Diversity	

Helical Orbit Formation Architectures

- Operate multiple spacecraft in close proximity using a helical orbit (similar to TanDEM-X)
- Enables a variety of baselines for more than repeat-pass interferometry
- With enough spacecraft (>5), enables radar tomography for vegetation structure
- Modified zero-Doppler steering algorithms would lay down adjacent tracks for global coverage
- S/C diversity in this architecture does not lend itself as easily to atmospheric error correction or 3D deformation

Dedicated Water Vapor Instrument Architectures

- A passive microwave instrument flying in formation with another SAR instrument
- Provides tropospheric delay estimation without adding to the SAR coverage rate
- Lowest cost option that could scale down to cubesat scale in certain situations
- Dependent on either other SDC or international SAR observatories to complete the architecture

Architecture Downselection

- Architecture selection will also take a systematic approach called the "Value Framework"
- Definition of the value framework must be complete by the end of phase 2 (March 2022)
- Elements for evaluation include:
 - 1. Cost
 - 2. Risk (both mission and implementation risks)
 - 3. Science and application responsiveness to the SATM:
 - 1. <u>Utility</u>: how important is the measurement capability to addressing the science/application objective
 - 2. <u>Quality</u>: how well does the measurement estimate the geophysical quantity (performance tool results)
 - 4. Programmatic factors
 - 1. How does the architecture fit into the program of record?
 - 2. What international partnerships are available?

Cost Effectiveness Tradespace

Summary

- The prior rankings are representative, but value assessment comes from the community
- Many opportunities for cross-pollination between the architecture examples shown
- Keep giving us your feedback on which capabilities matter the most for your science
- Without your feedback, other factors (namely cost) will drive the value selection