

Low SWaP High Performance RF-Photonics 94GHz Cloud Radar Receiver

Razi Ahmed (razi.u.ahmed@jpl.nasa.gov)

Jet Propulsion Laboratory, California Institute Of Technology

٠

TRMM, GPM, CloudSat have proven utility of spaceborne radars for measuring clouds and precipitation on Earth

- TRMM/GPM/CloudSat (Volume > 10m³, Weight > 100Kg, Power > 500W)
- RainCube (6U, 5.5Kg, 22W) demonstrated feasibility of compact, affordable radars

94GHz RF-photonics receiver reduces SWaP while improving performance

- Improved SNR due to ultra low system noise temp.
- Improved sensitivity due to low phase noise
- Reduction in overall instrument size due to RF-photonics arch.

Sensitivity	Science	Missions
+15dBZ	Moderate to light rain	t TRMM, GPM, RainCube
OdBZ	Most light rain, snowfall	
-15dBZ	99% of all precipitation	
-25dBZ	Most clouds associated with precipitation	ACCP, CloudCube (IIP 19)
-30dBZ	Large fraction of non-precipitating clouds	CloudSat
-35dBZ	Majority of cloud impacting radiation budget	ls EarthCare
Parameters	RF-electronics	RF-photonics
Volume	>100cm ³	<10cm ³
System Temp	1200K	< 300 K (below ambient)

10-13dBm

-90dBc/Hz @ 10kHz

30dBm

-110dBc/Hz @ 10kHz