

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

High Specific Energy Primary Batteries for NASA Missions

Erik J. Brandon, Hui Li Seong, Keith Billings, Jasmina Pasalic, John-Paul Jones, John Paul Ruiz, Eric Wood Jet Propulsion Laboratory, California Institute of Technology

Technology

Li + CF \rightarrow LiF + C + heat

- Recent significant investments by Europa Lander project advanced the technology
- High capacity anode (Li) and cathode (CF_x) ٠
- Standard D-cell format similar to heritage designs ٠
- Low mass aluminum packaging
- Cell chemistry is highly exothermic, for cell selfheating in cold environments

Applications

- Gas and ice giants atmospheric probes
- Mars, Small Body and Ocean Worlds landers, probes, impactors and penetrators
- Lunar probes and lunar night survival

Benefits

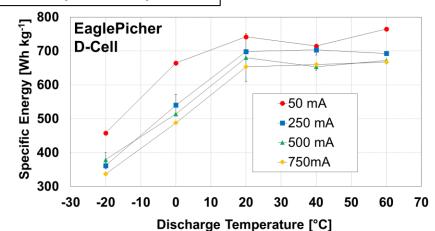
- High specific energy (650-770 Wh/kg)
 - For long run time / low mass power
- Minimal voltage delay
 - Potential to eliminate depassivation circuitry
- Heat generation (~1:1 ratio of heat/power)
 - Reduce or eliminate external heating

Low self-discharge (~1% annually)

High radiation tolerance with minimal loss in capacity up to 10 Mrad total ionizing dose levels

-	
	incert incert

EaglePich


12.5 kWh battery module ~500 Wh/kg design

JPL additively manufactured battery module with heat pipes

		Comparison of SOA vs. Advanced Cells					
	Cell Chemistry	Vendor	Part Number	Format	Specific Energy, Wh/kg (20°C, 50 mA)		
	Li/SO ₂	Saft	LO 26 SXC	D cell	420		
	Li/SOCI ₂	Saft	LSH 20	D cell	421		
EaglePicher	Li/MnO ₂	Ultralife	CR15270	D cell	250		
Dc or4-so	Li/FeS ₂	Energizer	L91	AA cell	350		
	Li/CF _x -MnO ₂	EaglePicher	LCF-133 (COTS and modified)	D cell	514		
Rayovac	Li/CF _x	Rayovac	Europa Lander Developmental	D cell	730		
	Li/CF _x	EaglePicher		D cell	741		

Wide Temperature Operation

POC: Erik Brandon, erik.j.brandon@jpl.nasa.gov