

National Aeronautics and Space Administration

> Jet Propulsion Laboratory California Institute of Technology Pasadena. California

High Specific Energy Primary Batteries for NASA Missions

Erik J. Brandon, Hui Li Seong, Keith Billings, Jasmina Pasalic, John-Paul Jones, John Paul Ruiz, Eric Wood Jet Propulsion Laboratory, California Institute of Technology

Technology

$Li + CF_x \rightarrow LiF + C + heat$

- Recent significant investments by Europa Lander project advanced the technology
- High capacity anode (Li) and cathode (CF_{x}) ٠
- Standard D-cell format similar to heritage designs ٠
- Low mass aluminum packaging
- Cell chemistry is highly exothermic, for cell selfheating in cold environments

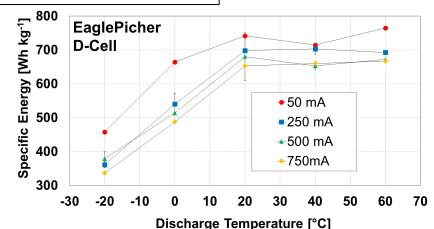
Applications

- Gas and ice giants atmospheric probes
- Mars, Small Body and Ocean Worlds landers, probes, impactors and penetrators
- Lunar probes and lunar night survival

Benefits

- High specific energy (650-770 Wh/kg)
 - For long run time / low mass power
- Minimal voltage delay
 - Potential to eliminate depassivation circuitry
- Heat generation (~1:1 ratio of heat/power)
 - Reduce or eliminate external heating

Low self-discharge (~1% annually)


High radiation tolerance with minimal loss in capacity up to 10 Mrad total ionizing dose levels

12.5 kWh battery module ~500 Wh/kg design

JPL additively manufactured battery module with heat pipes

		Comparison of SOA vs. Advanced Cells			
	Cell Chemistry	Vendor	Part Number	Format	Specific Energy, Wh/kg (20ºC, 50 mA)
	Li/SO ₂	Saft	LO 26 SXC	D cell	420
the second second	Li/SOCl ₂	Saft	LSH 20	D cell	421
EaglePicher	Li/MnO ₂	Ultralife	CR15270	D cell	250
рсога-во Антонартичка	Li/FeS ₂	Energizer	L91	AA cell	350
	Li/CF _x -MnO ₂	EaglePicher	LCF-133 (COTS and modified)	D cell	514
Rayovac	Li/CF _x	Rayovac	Europa Lander Developmental	D cell	730
	Li/CF _x	EaglePicher		D cell	741

Wide Temperature Operation

POC: Erik Brandon, erik.j.brandon@jpl.nasa.gov