Are you prepared to leave 99% of your data on another planet?

Increasing Data Generation -- Doubling every 2 years

Mass Spec Type	Mission	Launch	Samples/Sec
Quadrupole	MSL	2012	50
Ion Trap	ExoMars	2028	50,000
Orbitrap	Future	TBD	5,000,000

Science Autonomy Concept

Communication

limitations Remote destinations and extreme environments involve longer communication delays and smaller data downlink capacities, while also limiting ground-in-the-loop interactions

Detection

challenges

Scientists will not be able to guide spacecrafts' instrumentation in detection opportunistic features of interest

Data Prioritization

Future instruments will certainly generate more data: data prioritization is vital to optimize mission science return

The ability of a science instrument to **analyze its own data**:

- to calibrate itself
- optimize ops parameters based on realtime findings
- make mission-level decisions based on scientific observations
- determine which data products to prioritize and send back first

Some ML Projects Within NASA Planetary Environments Lab

MOMA ML for Decision-Making (MOMA Science team, E. Lyness, V. Da Poian)

FLaRe Ocean World Analogs (B. Theiling)

Is volatile CO₂ emanating from Europa or Enceladus a direct reflection of the surface ice / subsurface ocean?

848 isotope ratio mass spectrometry (IRMS) analyses of CO₂ from lab-generated ²seawaters'

- known salt composition
- amount initial CO

Innovative Approach (Transfer Learning) on SAM data (V. Da Poian, E. Lyness)

Dragonfly Automation Ideas (Brainstorm stage) (DraMS Science + Software teams)

Machine Learning Introduction

Types of Machine Learning Algorithms

Supervised Learning

Data: every example has features AND labels

 \rightarrow image labeled "cats" vs "not cats"

Model: trained to input features and output labels

- \rightarrow model makes decision
- \rightarrow probability view, model learns: $p(Y \mid X)$

Learning with a teacher: explicit feedback in the form of labeled examples

- \rightarrow goal: make predictions
- \rightarrow + : good performance
- \rightarrow : labeled data is difficult to find

Examples: Regression, Classification (sort documents by topic), Ranking

Unsupervised Learning

Data: none of the example has labels \rightarrow unlabeled images

Model: trained to input features and reveals its unobserved structure \rightarrow model describes the data \rightarrow probability view, model learns: p(X)

Learning by oneself: only observed unlabeled examples

- \rightarrow goal: uncover structure in data
- \rightarrow + : easy to find a lot of data
- \rightarrow : finding patterns of interest

Examples: Clustering, Dimensionality reduction (or Manifold learning)

Victoria Da Poian Victoria.dapoian@nasa.gov, Eric Lyness eric.i.lyness@nasa.gov

3 Primary Components of ML

Data ("experience")

Method, model, hypothesis

Computational approach combining these 2

ML for Data Constrained Planetary Mission Instruments

Due to the lack of flight-like instruments data, we investigate the use of commercial instruments to train ML algorithms and then tune them on flight-like data. This ML open science challenge (organized with DrivenData) is a proof-ofconcept using SAM data onboard Curiosity.

