Notice of intent to participate in 2023 NASA Tech Showcase

E.A. Burt, V.S. Iltchenko, E. Tardiff, T.A. Ely, R.L. Tjoelker, and A. Matsko Jet Propulsion Laboratory, California Institute of Technology

Technology: High Performance Trapped Mercury Ion Atomic Clocks. A new type of atomic clock that uses trapped ions in a quadrupole or a higher order trap to achieve record atomic clock stability in space. The performance of the clock is comparable with masers while SWaP is an order of magnitude less. In a NASA TDM supported by the offices of STMD and SCaN over a 2-year period from 2019 to 2021 in low Earth orbit, the mercury ion clock, Deep Space Atomic Clock (DSAC), achieved a performance level of 7e-13/sqrt(tau), 3e-15 at a day, 3e-16/day long-term drift, and maintained a time stability of 200 ps at a day and less than 4 ns over 23 days [1]. This operation allowed the technology to reach TRL 7. DSAC had a SWaP of 19 liters, 19 kg and 56 W. A follow-on version, DSAC-2, has been proposed with a performance of 1.5e-13 at one second, 2e-13/sqrt(tau), and < 1e-15 at a day. The primary change in DSAC-2 is to improve manufacturability and reduce SWaP to 10 liters, 10 kg, and 34 W. The estimated instrument life of DSAC was 7 years. The DSAC-2 proposal has an instrument life goal of >10 years. This clock is also a promising replacement for Hydrogen masers in the DSN.

Primary Applications:

- Autonomous deep space navigation [2]. As demonstrated in DSAC [1] and in other versions of this technology [3], trapped ion clock inherent long-term stability and low drift enable in-situ one-way real-time navigation.
- Science requiring high-performance precise local timing such as Radio Occultation (RO) and gravitational field mapping.
 - RO measurements of planetary atmospheres can be done with a higher precision than is possible with a USO because the DSAC noise floor and drift are two orders and 6 orders of magnitude lower respectively. In addition, RO can be accomplished with more complete coverage than is possible with a two-way link because of reduced re-synching times, particularly true for the outer planets.
 - Trapped ion clocks can use the relativistic gravitational red shift to measure variations in gravitational fields. Sensitivity to Earth's J2 gravitational field harmonic was demonstrated during the TDM [1].
- As a DSN frequency standard. Many missions depend on a high-performance two-way link that provides near hydrogen maser frequency stability. The quality of these links is dependent on the DSN hydrogen maser used to reference them. There is currently only a single US source for these instruments and there is no guarantee that they will be available indefinitely. Trapped ion atomic clock technology has maser-like performance and would work well as a maser replacement should these become unavailable.

Potentially Relevant Mission Abstracts:

- Lunar Geophysical Network
 - *Precise timing of laser pulses:* Precise one-way In-situ timing of laser pulses for laser-ranging resulting in higher SNR range measurements
- Jupiter System Observatory at Sun-Jupiter Lagrangian point one

- *RO:* DSAC could enable a possible RO measurement of Jupiter and/or Jovian moon atmospheres
 - Such RO would have the benefit of very long occultation times due to relative Earth-Jupiter motion rather than orbital motion
- New Frontiers Titan Orbiter
 - *Gravity Mapping:* Mercury ion clocks can enable high precision measurement of higher order harmonics in Titan gravitational field [1].
 - *RO:* Mercury ion clocks could also enable radio occultation measurements of Titan's atmosphere with higher precision than is possible with a USO and with more complete coverage than is possible with a two-way link.
- Small Next-Generation Atmospheric Probe for Ice Giant Missions
 - Atmospheric Dynamics: For atmospheric dynamics measurements on time scales of 30 seconds or longer, DSAC frequency stability is better than that of the best USO's
- Uranus Orbiter and Probe
 - *RO:* Mercury ion clocks can enable more precise RO measurements of Uranus' atmosphere than are possible with a USO and with more complete coverage than is possible with a two-way link.
- Enceladus Orbilander
 - RO and gravity mapping: Mercury ion clocks can enable more precise radio/gravity science measurements of Enceladus' atmosphere and gravity field than are possible with a USO and with more complete coverage than is possible with a two-way link.
- Titan Orbiter and Probe
 - Gravity mapping: In support of the Titan Orbiter Probe's goal of performing gravity science, mercury ion clocks combine the relativistic gravitational red shift and in-situ real-time one-way navigation [2] for improved (over a two-way link) mapping of gravitational field variations.
- Triton Ocean Worlds Surveyer
 - RO and gravity mapping: Mercury ion clocks can enable more precise radio/gravity science measurements of Triton's atmosphere and gravity field than are possible with a USO and with more complete coverage than is possible with a two-way link.

References:

[1] E.A. Burt, J. Prestage, R.L. Tjoelker, D. Enzer, D. Kuang, D.W. Murphy, D.E. Robison, J.M. Seubert, R.T. Wang, and T.A. Ely, "Demonstration of a trapped ion atomic clock in space," Nature **595**, pp. 43-47 (2021).

[2] T.A. Ely, E.A. Burt, J.D. Prestage, J.M. Seubert, and R.L. Tjoelker, "Using the Deep Space Atomic Clock for Navigation and Science," IEEE Trans. On Ultrasonics, Ferroelectrics, and Frequency Control **65**, pp. 950-961 (2018).

[3] E.A. Burt, W.A. Diener and R.L. Tjoelker, "A Compensated Multi-pole Linear Ion Trap Mercury Frequency Standard for Ultra-Stable Timekeeping," IEEE Trans. On Ultrasonics, Ferroelectrics, and Frequency Control **55**, pp. 2586-2595 (2008).