

Imaging Spectrometers on SmallSats to Mars: Science Drivers and Needed Technologies

A.A. Fraeman¹ (presenting)

W.M. Calvin², B.L. Ehlmann³, R.O Green¹, D.R. Thompson¹, C.L. Bradley¹

¹Jet Propulsion Laboratory, California Institute of Technology, ²University of Nevada, Reno, ³California Institute of Technology

Scientific Motivation: Ancient Environments

Key community documents have recommended exploration of ancient Martian environmental transitions and better understanding of

Scientific Motivation: Polar and Near Surface Ice

Composition is a key clue to formation processes and preservation of surface observable ice reservoirs.

aqueous environments linked to habitability [e.g. 1-3].

–MASWG included a small spacecraft to map mineralogy from orbit as an example first step in Mission Arc #1: Diverse ancient environments and habitability

–MASWG Mission Arc #3 focusses on ice and geologically recent climate change. Orbital imaging (spectral + texture) is an important precursor to landed geophysics and deep drilling into ice reservoirs

Both could be addressed by orbital visible short-wave infrared (VSWIR) and thermal (IR) imaging spectrometers.

Major Imaging Spectrometer Requirements:

- •6-7 m/pixel (2.5x to 3x better than CRISM)
 •Wavelength range at least 1000 to 3000nm, but preferably both shorter and longer
- •Spectral resolution and SNR similar to or better than CRISM.
- Targeted observations of 1000s of known locations
- Image swath of ~3.5 km or wider

JPL Spectrometer Development:

Technology advances have enabled imaging spectrometers that fulfill above requirements at that are low enough mass and power that they could be compatible with smallsat missions to Mars [4].

Needed SmallSat Technologies:

- Both Offner and Dyson designs developed by JPL in low volume, mass and power prototypes and flight instruments:
 - High-resolution Volatiles and Minerals Moon Mapper (HVM3) on Lunar Trailblazer [5]
 - Ultra-Compact Imaging Spectrometer (UCIS)
 Moon [6]
 - Mapping Imaging Spectrometer for Europa (MISE) [7]
 - Earth Surface Mineral Dust Source
 Investigation (EMIT) [8]

•Capable SmallSat bus (~15-20kg, 80W science payload, inserted into Mars orbit)

Pointing requirements

- -Control: ~0.05 0.01° (10% swatch width at 300 km)
- -Knowledge: 0.001° (1 pixel at 300 km) -Stability: ~0.01°/sec

•Data / Communication throughput (few 100 Gbits / day), ~5,000 – 10,000 targeted

observationsConOps

Lunar Trailblazer: SmallSat with Imaging Spectrometers headed to the Moon

<u>**References:</u>** [1] Jakoksky et al., Report by the Mars Architecture Strategy Working Group (MASWG) report, 2020 [2] National Academy of Sciences, Origins of Worlds and Life, 2022 Planetary Science</u>

Reduced size microVMIDS

Instrument Testbed (ITB) telescope.

