National Aeronautics and Space Administration

Deep Space Atomic Clock (DSAC): First Demonstration of a Trapped Ion Atomic Clock in Space Jet Propulsion Laboratory California Institute of Technology

Introduction

The 40.5 GHz transition in ¹⁹⁹Hg+, optically pumped with a ²⁰²Hg+ discharge lamp, and buffer gas cooled has demonstrated state-of-theart microwave clock performance while at the same time having potential for low SWaP. In 2011, NASA STMD and SCaN started the Deep Space Atomic Clock (DSAC) project to demonstrate a low SWaP version of this technology in space. The DSAC instrument was successfully launched in 2019 and operated for its entire 2-year mission.

mercury ion trap

lon trap in vacuum tube

Ion Clock Instrument

"Mercury Ion Clock for a NASA Technology Demonstration Mission"; IEEE TUFFC, Vol. 63, No. 7, July 2016. R.L. Tjoelker, J.D. Prestage, E. A. Burt, P. Chen, Y. Chong, S. Chung, W. Diener, T. Ely, D. Enzer, H. Mojaradi, C. Okino, M. Pauken, D. Robison, B. Swenson, B. Tucker, R. Wang;

DSAC measurement to UTC:

Calibrating GPS Receiver and Relativistic Effects

(Measurements: clock + OD + measurement system)

GPS phase dynamically corrected for gravitational effects (red shift)

$$s = \int dt \left[1 + \frac{\Phi(r) - \Phi_0}{c^2} - \frac{v^2}{2c^2} \right]$$

10⁴

Clock Lifetime

Averaging Time (s)

No corrections

Relativity corrections, but no **GPSR** temperature corrections

"Using the Deep Space Atomic Clock for Navigation and Science"; IEEE TUFFC, Vol. 65, No. 6, June 2018. T.A. Ely, E.A. Burt, J.D. Prestage, J.S. Seubert, R.L. Tjoelker

Environmental Sensitivities

10⁻¹⁴

Measurement floor after relativity and GPSR temp correction

42

Lamp Temp (C)

43

Estimated clock noise

Trap load time variations

Clock lifetime > 7 years with known methods to extend this

42

Lamp Temp (C)

43

DSAC 2-Year Mission in LEO - Stability Results

Radiation: SAA-induced USO drift variations taken out by clock control loop

Magnetic Shifts: below measurement noise floor

- 250 mG/orbit variations (entire Earth's field) 100x lab!
- Strength of Hg+ technology

Ion number variations:

• Actual = model: well understood

Collision shifts

- Residual frequency offsets with other effects removed
- Stable at 4e-16/day level

Light shifts: Not measured, but est. at <3e-15 measurement noise floor

Temperature sensitivity: 1e-14/C with NO thermal regulation

- Not fundamental, enters through each of the above effects
- Path to unregulated 2e-15/C is known

Mercury Vapor Evolution Extrapolate trap load time: 7-year life

Likely limit: Hg/Au amalgamation – gold to be removed in future versions

 10^{3}

Neon evolution

- Shuttle decay measurements calibrated to neon pressure
- Extrapolate to > 8-year life
- Method to extend understood

Optics aging

- 13.7% change in 13 months
- => > 7 years total life
- Most likely lamp

nature

Explore content ~ Journal information ~ Publish with us \sim

nature > articles > article

Article | Published: 30 June 2021

Demonstration of a trapped-ion atomic clock in space

E. A. Burt 🖂, J. D. Prestage, R. L. Tjoelker, D. G. Enzer, D. Kuang, D. W. Murphy, D. E. Robison, J. M. Seubert, R. T. Wang & T. A. Ely

Nature 595, 43–47 (2021) Cite this article 4541 Accesses | 230 Altmetric | Metrics

Stability at one-day of 3e-15

Drift of 3.0e-16/day

establishes space clock record

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

www.nasa.gov

© 2022 California Institute of Technology. Government sponsorship acknowledged.

Mission Operations Team: Eric Burt, Daphna Enzer, Todd Ely (mission PI), Da Kuang, Dave Murphy, John Prestage (clock co-I), David Robison, Jill Seubert, Robert Tjoelker (clock co-I), Rabi Wang